

Berger Automating with STEP 7 in STL and SCL

Automating with
STEP7 in STL and SCL
Programmable Controllers
SIMATIC S7-300/400

by Hans Berger

6th revised and enlarged edition, 2012

Publicis Publishing

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

ISBN 978-3-89578-412-5
6th edition, 2012

Editor: Siemens Aktiengesellschaft, Berlin and Munich
Publisher: Publicis Publishing, Erlangen
© 2012 by Publicis Erlangen, Zweigniederlassung der PWW GmbH

This publication and all parts thereof are protected by copyright. Any use of it outside the
strict provisions of the copyright law without the consent of the publisher is forbidden and will
incur penalties. This applies particularly to reproduction, translation, microfilming or other
processing‚ and to storage or processing in electronic systems. It also applies to the use of
individual illustrations or extracts from the text.

Printed in Germany

This book contains one Trial DVD. “SIMATIC STEP 7 Professional, Edition 2010 SR1, Trial
License” encompasses: SIMATIC STEP 7 V5.5 SP1, S7-GRAPH V5.3 SP7, S7-SCL V5.3 SP6,
S7-PLCSIM V5.4 SP5 and can be used for trial purposes for 14 days.

This Software can only be used with the Microsoft Windows XP 32 Bit Professional Edition SP3
or Microsoft Windows 7 32/64 Bit Professional Edition SP1 or Microsoft Windows 7 32/64 Bit
Ultimate Edition SP1 operating systems.

Additional information can be found in the Internet at:
http://www.siemens.com/sce/contact
http://www.siemens.com/sce/modules
http://www.siemens.com/sce/tp

The programming examples concentrate on describing the STL and SCL functions and providing
SIMATIC S7 users with programming tips for solving specific tasks with this controller.

The programming examples given in the book do not pretend to be complete solutions or to be
executable on future STEP 7 releases or S7-300/400 versions. Additional care must be taken in order
to comply with the relevant safety regulations.

The author and publisher have taken great care with all texts and illustrations in this book.
Nevertheless, errors can never be completely avoided. The publisher and the author accept no liability,
regardless of legal basis, for any damage resulting from the use of the programming examples.

The author and publisher are always grateful to hear your responses to the contents of the book.

Publicis Publishing
P.O. Box 3240
91050 Erlangen
E-mail: publishing-distribution@publicis.de

Internet: www.publicis-books.de

Preface

5

Preface

The SIMATIC automation system unites all the
subsystems of an automation solution under a
uniform system architecture to form a homoge-
neous whole from the field level right up to pro-
cess control. This Totally Integrated Automa-
tion (TIA) enables integrated configuring and
programming, data management and communi-
cations throughout the complete automation
system.

As the basic tool for SIMATIC, STEP 7 plays
an integrating role in Totally Integrated Auto-
mation. STEP 7 is used to configure and pro-
gram the SIMATIC S7, SIMATIC C7 and
SIMATIC WinAC automation systems. Micro-
soft Windows has been chosen as the operating
system to take advantage of the familiar user
interface of standard PCs as also used in office
environments.

For block programming STEP 7 provides pro-
gramming languages that comply with DIN EN
6.1131-3: STL (statement list; an Assembler-
like language), LAD (ladder logic; a represen-
tation similar to relay logic diagrams), FBD
(function block diagram) and the S7-SCL
optional package (Structured Control Lan-
guage, a Pascal-like high-level language). Sev-
eral optional packages supplement these lan-
guages: S7-GRAPH (sequential control), S7-
HiGraph (programming with state-transition
diagrams) and CFC (connecting blocks; similar
to function block diagram). The various meth-
ods of representation allow every user to select
the suitable control function description. This
broad adaptability in representing the control
task to be solved significantly simplifies work-
ing with STEP 7.

This book describes the STL and SCL program-
ming languages for S7-300/400. As a valuable
supplement to the description of the languages,
and following an introduction to the S7-300/
400 automation system, it provides valuable,
practice-oriented information on the basic han-

dling of STEP 7 when configuring, networking
and programming SIMATIC PLCs. The
description of the “Basic Functions” of a binary
control, such as logic operations or latching/
unlatching functions, makes it particularly easy
for first-time users or users changing from relay
contactor controls to become acquainted with
STEP 7. The digital functions explain how dig-
ital values are combined; for example, basic
calculations, comparisons or data type conver-
sion.

The book shows how you can control program
processing (program flow) and design struc-
tured programs. In addition to the cyclically
processed main program, you can also incorpo-
rate event-driven program sections as well as
influence the behavior of the controller at
startup and in the event of errors/faults.

One section of the book is dedicated to the
description of the SCL programming language.
SCL is especially suitable for programming
complex algorithms or for tasks in the data
management area, and it supplements STL
towards higher-level programming languages.
The book concludes with the description of a
program for converting STEP 5 programs to
STEP 7 programs, and a general overview of
the system functions and the function set for
STL and SCL.

The contents of this book describe Version 5.5
of the STEP 7 programming software and Ver-
sion 5.3 SP5 of the S7-SCL optional package.

Nuremberg, May 2012

Hans Berger

6

The Contents of the Book at a Glance

Overview of the S7-
300/400 programma-
ble logic controller

PLC functions compa-
rable to a contactor
control system

Numbers, manipulat-
ing the contents of the
accumulators

Program run control,
block functions

Introduction

1 SIMATIC S7-300/
400 Programmable
Controller

Structure of the Pro-
grammable Controller
(Hardware Components
of S7-300/400);
Memory Areas;
Distributed I/O
(PROFIBUS DP);
Communications
(Subnets);
Modules Addresses;
Addresses Areas

2 STEP 7 Program-
ming Software

Editing Projects;
Configuring Stations;
Configuring the Net-
work; Symbol Editor;
STL Program Editor;
SCL Program Editor;
Online Mode;
Testing the Program

3 SIMATIC S7
Program

Program Processing;
Block Types;
Programming STL and
SCL Code Blocks;
Programming Data
Blocks;
Addressing Variables,
Constant Representa-
tions, Data Types
(Overview)

Basic Functions

4 Binary Logic
Operations

AND, OR and
Exclusive OR
Functions;
Nesting Functions

5 Memory
Functions

Assign, Set and Reset;
Edge Evaluation;
Example of a
Conveyor Belt
Control System

6 Move Functions

Load Functions,
Transfer Functions;
Accumulator
Functions;
System Functions for
Data Transfer

7 Timer Functions

Start SIMATIC Timers
with Five Different
Types;
IEC Timers

8 Counter Functions

SIMATIC Counters;
Count up, Count
down, Set, Reset and
Scan Counters;
IEC Counters

Digital Functions

9 Comparison
Functions

Comparison Accord-
ing to Data Types INT,
DINT and REAL

10 Arithmetic
Functions

Four-function Math
with INT, DINT and
REAL numbers;
Adding Constants,
Decrementing and
Incrementing

11 Math Functions

Trigonometric
Functions;
Arc Functions;
Powers, Logarithm

12 Converting
Functions

Data Type Conversion;
Complement Forma-
tion

13 Shift Functions

Shifting and Rotating

14 Word Logic

AND, OR,
Exclusive OR

Program Flow
Control

15 Status Bits

Binary Flags,
Digital Flags;
EN/ENO
Mechanism

16 Jump
Functions

Unconditional Jump;
Jumps Conditional on
the RLO, BR and the
Digital Flags;
Jump Distributor,
Loop Jump

17 Master Control
Relay

MCR Dependency,
MCR Area,
MCR Zone

18 Block Functions

Block Call,
Block End;
Temporary and Static
Local Data;
Data Addresses

19 Block
Parameters

Formal Parameters,
Actual Parameters;
Declarations,
Assignments and
“Parameter Passing”

7

Processing the user
program

Working with complex
variables, indirect
addressing

Description of the
Programming
Language SCL

S5/S7 Converter,
block libraries,
overviews

Program
Processing

20 Main Program

Program Structure;
Scan Cycle Control
(Response Time, Start
Information, Back-
ground Scanning);
Program Functions;
Communications via
Distributed I/O and
Global Data;
S7 and S7-Basic
Communications

21 Interrupt
Handling

Time-of-Day Inter-
rupts; Time-Delay In-
terrupts; Watchdog
Interrupts; Hardware
Interrupts; DPV1 In-
terrupts; Multiproces-
sor Interrupt; Handling
Interrupts

22 Restart
Characteristics

Cold Restart,
Hot Restart,
Warm Restart;
STOP, HOLD,
Memory Reset;
Parameterizing
Modules

23 Error Handling

Synchronous Errors;
Asynchronous Errors;
System Diagnostics

Variable Handling

24 Data Types

Structure of the
Data Types,
Declaration and
Use of Elementary and
Complex Data Types;
Programming of User
Defined Data Types
UDT

25 Indirect
Addressing

Area Pointer,
DB Pointer,
ANY Pointer;
Indirect Addressing
via Memory and
Register (Area-internal
and Area-crossing);
Working with Address
Registers

26 Direct Variable
Access

Load Variable
Address
Data Storage of
Variables in the
Memory;
Data Storage when
Transferring Parame-
ters; “Variable” ANY
Pointer;
Brief Description of
the “Message Frame
Example”

Structured Control
Language SCL

27 Introduction,
Language
Elements

Addressing,
Operators,
Expressions,
Value Assignments

28 Control
Statements

IF, CASE, FOR,
WHILE, REPEAT,
CONTINUE, EXIT,
GOTO, RETURN

29 SCL Block
Calls

Function Value; OK
Variable, EN/ENO
Mechanism, Descrip-
tion of Examples

30 SCL Functions

Timer Functions;
Counter Functions;
Conversion and Math
Functions;
Shifting and Rotating

31 IEC Functions

Conversion and Com-
parison Functions;
STRING Functions;
Date/Time-of-Day
Functions;
Numerical Functions

Appendix

32 S5/S7
Converter

Preparations for
Conversion;
Converting STEP 5
Programs;
Postprocessing

33 Block
Libraries

Organization Blocks;
System Function
Blocks;
IEC Function Blocks;
S5-S7 Converting
Blocks;
TI-S7 Converting
Blocks;
PID Control Blocks;
DP Functions

34 STL Operation
Overview

Basic Functions;
Digital Functions;
Program Flow Control;
Indirect Addressing

35 SCL Statement
and Function
Overview

Operators;
Control Statements;
Block Calls;
Standard Functions

8

The Programming Examples

The present book provides many figures repre-
senting the use of the STL and SCL program-
ming languages. All programming examples
can be downloaded from the publisher’s web-
site www.publicis-books.de. There are two li-
braries, one for STL examples (STL_Book) and
one for SCL examples (SCL_Book). When
dearchived with the Retrieve function, these li-
braries occupy approximately 2.9 or 1.7 MB
(dependent on the PG/PC file system used).

The library STL_Book contains eight programs
that are essentially illustrations of the STL
method of representation. Two extensive exam-
ples show the programming of functions, func-
tion blocks and local instances (Conveyor Ex-
ample) and the handling of data (Message
Frame Example). All the examples exist as
source files and contain symbols and com-
ments.

The library SCL_Book contains five programs
with representations of the SCL statements and

Library STL_Book

Basic Functions
Examples of STL representation

Program Processing
Examples of SFC Calls

FB 104 Chapter 4: Binary Logic Operations
FB 105 Chapter 5: Memory Functions
FB 106 Chapter 6: Transfer Functions
FB 107 Chapter 7: Timer Functions
FB 108 Chapter 8: Counter Functions

FB 120 Chapter 20: Main Program
FB 121 Chapter 21: Interrupt Handling
FB 122 Chapter 22: Restart Characteristics
FB 123 Chapter 23: Error Handling

Digital Functions
Examples of STL representation

Variable Handling
Examples of Data Types and Variable Processing

FB 109 Chapter 9: Comparison Functions
FB 110 Chapter 10: Arithmetic Functions
FB 111 Chapter 11: Math Functions
FB 112 Chapter 12: Conversion Functions
FB 113 Chapter 13: Shift Functions
FB 114 Chapter 14: Word Logic

FB 124 Chapter 24: Data Types
FB 125 Chapter 25: Indirect Addressing
FB 126 Chapter 26: Direct Variable Access
FB 101 Elementary Data Types
FB 102 Complex Data Types
FB 103 Parameter Types

Program Flow Control
Examples of STL representation

Conveyor Example
Examples of Basic Functions and Local Instances

FB 115 Chapter 15: Status Bits
FB 116 Chapter 16: Jump Functions
FB 117 Chapter 17: Master Control Relay
FB 118 Chapter 18: Block Functions
FB 119 Chapter 19: Block Parameters
Source File Block Programming (Chapter 3)

FC 11 Conveyor Belt Controller
FC 12 Counter Control
FB 20 Feed
FB 21 Conveyor Belt
FB 22 Parts Counter

Message Frame Example
Handling Data examples

General Examples

UDT 51 Data Structure Header
UDT 52 Data Structure Message Frame
FB 51 Generate Message Frame
FB 52 Save Message Frame
FC 61 Clock Check
FC 62 Generate Checksum
FC 63 Convert Date

FC 41 Range Monitor
FC 42 Limit Value Detection
FC 43 Compound Interest Calculation
FC 44 Double-Word-Wise Edge Evaluation
FC 45 Converting S5 Floating-Point to S7 REAL
FC 46 Converting S7 REAL to S5 Floating-Point
FC 47 Copy Data Area (ANY Pointer)

9

the SCL functions. The programs “Conveyor
Example” The library SCL_Book contains five
programs with representations of the SCL state-
ments and the SCL functions. The programs
“Conveyor Example” and “Message Frame Ex-
ample” and “Message Frame Example” show
the same functions as the STL examples of the
same name. The program “General Examples”
contains SCL functions for processing complex
data types, data storage and – for SCL program-

mers – a statement for programming simple
STL functions for SCL programs.

To try the programs out, set up a project corre-
sponding to your hardware configuration and
then copy the program, including the symbol
table from the library to the project. Now you
can call the example programs, adapt them for
your own purposes and test them online.

Library SCL_Book

27 Language Elements
Examples of SCL Representation (Chapter 27)

30 SCL Functions
Examples of SCL Representation (Chapter 30)

FC 271 Delimiter Example
OB 1 Main Program for the Delimiter Example
FB 271 Operators, Expressions, Assignments
FB 272 Indirect Addressing

FB 301 Timer Functions
FB 302 Counter Functions
FB 303 Conversion Functions
FB 304 Math Functions
FB 305 Shifting and Rotating

28 Control Statements
Examples of SCL Representation (Chapter 28)

31 IEC Functions
Examples of SCL Representation (Chapter 31)

FB 281 IF Statement
FB 282 CASE Statement
FB 283 FOR Statement
FB 284 WHILE Statement
FB 285 REPEAT Statement

FB 311 Conversion Functions
FB 312 Comparison Functions
FB 313 String Functions
FB 314 Date/Time-of-day Functions
FB 315 Numerical Functions

29 SCL Block Calls
Examples of SCL Representation (Chapter 29)

General Examples

FC 291 FC Block with Function Value
FC 292 FC Block without Function Value
FB 291 FB Block
FB 292 Example Calls for FC and FB Blocks
FC 293 FC Block for EN/ENO Example
FB 293 FB Block for EN/ENO Example
FB 294 Calls for EN/ENO Examples

FC 61 DT_TO_STRING
FC 62 DT_TO_DATE
FC 63 DT_TO_TOD
FB 61 Variable Length
FB 62 Checksum
FB 63 Ring Buffer
FB 64 FIFO Register
STL Functions for SCL Programming

Conveyor Example
Examples of Basic Functions and Local Instances

Message Frame Example
Handling Data examples

FC 11 Conveyor Belt Controller
FC 12 Counter Control
FB 20 Feed
FB 21 Conveyor Belt
FB 22 Parts Counter

UDT 51 Data Structure Header
UDT 52 Data Structure Message Frame
FB 51 Generate Message Frame
FB 52 Save Message Frame
FC 61 Clock Check

Automating with STEP 7

10

Automating with STEP 7

This double page shows the ba-
sic procedure for using the
STEP 7 programming software.

Start the SIMATIC Manager
and set up a new project or open
an existing project. All the data
for an automation task are
stored in the form of objects in
a project. When you set up a
project, you create containers
for the accumulated data by set-
ting up the required stations
with at least the CPUs; then the
containers for the user pro-
grams are also created. You can
also create a program container
direct in the project.

In the next steps, you configure
the hardware and, if applicable,
the communications connec-
tions. Following this, you cre-
ate and test the program.

The order for creating the auto-
mation data is not fixed. Only
the following general regula-
tion applies: if you want to pro-
cess objects (data), they must
exist; if you want to insert ob-
jects, the relevant containers
must be available.

You can interrupt processing in
a project at any time and con-
tinue again from any location
the next time you start the
SIMATIC Manager.

Automating with STEP 7

11

Table of Contents

12

Table of Contents

Preface 5

Automating with STEP 7 10

Introduction 21

1 SIMATIC S7-300/400
Programmable Controller 22

1.1 Structure of the
Programmable Controller 22

1.1.1 Components 22
1.1.2 S7-300 Station 22
1.1.3 S7-400 Station 24
1.1.4 Fault-Tolerant SIMATIC 25
1.1.5 Safety-related SIMATIC 26
1.1.6 CPU Memory Areas 27

1.2 Distributed I/O. 30

1.2.1 PROFIBUS DP 30
1.2.2 PROFINET IO. 32
1.2.3 Actuator/Sensor Interface 33
1.2.4 Routers. 35

1.3 Communications. 37

1.3.1 Introduction 37
1.3.2 Subnets 39
1.3.3 Communications Services 42
1.3.4 Connections 44

1.4 Module Addresses 44

1.4.1 Signal Path. 44
1.4.2 Slot Address 45
1.4.3 Logical Address 46
1.4.4 Module Start Address 46
1.4.5 Diagnostics Address 46
1.4.6 Addresses for Bus Nodes 47

1.5 Address Areas 47

1.5.1 User Data Area 47
1.5.2 Process Image 48
1.5.3 Consistent User Data 49
1.5.4 Bit Memories 50

2 STEP 7 Programming Software 51

2.1 STEP 7 Basic Package 51

2.1.1 Installation 51
2.1.2 Automation License Manager . . 51
2.1.3 SIMATIC Manager 52
2.1.4 Projects and Libraries 53
2.1.5 Multiprojects 55
2.1.6 Online Help 56

2.2 Editing Projects 56

2.2.1 Creating Projects 56
2.2.2 Managing, Rearranging and

Archiving 58
2.2.3 Project Versions 58
2.2.4 Creating and Editing Multiprojects 59

2.3 Configuring Stations 60

2.3.1 Arranging Modules 62
2.3.2 Addressing Modules 62
2.3.3 Parameterizing Modules 63
2.3.4 Networking Modules with MPI . 63
2.3.5 Monitoring and Modifying

Modules. 64

2.4 Configuring the Network 64

2.4.1 Configuring the Network View . 66
2.4.2 Configuring Distributed I/O with

the Network Configuration 66
2.4.3 Configuring Connections 67
2.4.4 Network Transitions 70
2.4.5 Loading the Connection Data . . 71
2.4.6 Adjusting Projects in the

Multiproject. 71

2.5 Creating the S7 Program 73

2.5.1 Introduction. 73
2.5.2 Symbol Table 73
2.5.3 STL-Program Editor 75
2.5.4 SCL Program Editor 80
2.5.5 Rewiring 83
2.5.6 Address Priority 83
2.5.7 Reference Data 84
2.5.8 Language Settings 86

Table of Contents

13

2.6 Online Mode 87

2.6.1 Connecting a PLC 87
2.6.2 Protection of the user program. . 88
2.6.3 CPU Information. 89
2.6.4 Loading the User Program into

the CPU 89
2.6.5 Block Handling 90

2.7 Testing the Program 92

2.7.1 Diagnosing the Hardware 92
2.7.2 Determining the Cause of a STOP 93
2.7.3 Monitoring and Modifying

Variables 93
2.7.4 Forcing Variables 95
2.7.5 Enabling Peripheral Outputs . . . 96
2.7.6 Test and process mode 97
2.7.7 STL Program Status 97
2.7.8 Monitoring and Controlling Data

Addresses 99
2.7.9 Debugging SCL Programs 100

3 SIMATIC S7 Program 102

3.1 Program Processing 102

3.1.1 Program Processing Methods . . 102
3.1.2 Priority Classes 103
3.1.3 Specifications for Program

Processing 105

3.2 Blocks 106

3.2.1 Block Types 106
3.2.2 Block Structure 108
3.2.3 Block Properties 108
3.2.4 Block Interface 111

3.3 Addressing Variables 113

3.3.1 Absolute Addressing of
Variables 113

3.3.2 Indirect Addressing 115
3.3.3 Symbolic Addressing of

Variables 115

3.4 Programming Code Blocks
with STL 116

3.4.1 Structure of an STL Statement. . 116
3.4.2 Programming STL Code Blocks

Incrementally 117
3.4.3 Overview Window 118
3.4.4 Programming Networks 119
3.4.5 Source-oriented programming

of an STL code block 120

3.5 Programming Code Blocks
with SCL 122

3.5.1 Structure of an SCL Statement . 122
3.5.2 Programming SCL Code Blocks 124

3.6 Programming Data Blocks . . . 127

3.6.1 Programming Data Blocks
Incrementally 127

3.6.2 Source-Oriented Data Block
Programming 131

3.7 Variables and Constants 133

3.7.1 General Remarks Concerning
Variables 133

3.7.2 General Remarks Regarding
Data Types 134

3.7.3 Elementary Data Types 134
3.7.4 Complex Data Types 137
3.7.5 Parameter Types 137

Basic Functions 138

4 Binary Logic Operations . . . 139

4.1 Processing a Binary Logic
Operation 139

4.2 Elementary Binary Logic
Operations. 141

4.2.1 AND Function 142
4.2.2 OR Function 142
4.2.3 Exclusive OR Function 142

4.3 Negating the Result of the
Logic Operation 144

4.4 Compound Binary Logic
Operations. 145

4.4.1 Processing Nesting Expressions 145
4.4.2 Combining AND Functions

According to OR 146
4.4.3 Combining OR and Exclusive OR

Functions According to AND. . 146
4.4.4 Combining AND Functions According

to Exclusive OR. 147
4.4.5 Combining OR Functions and

Exclusive OR Functions 148
4.4.6 Negating Nesting Expressions . 148

5 Memory Functions. 149

5.1 Assign 149

5.2 Set and Reset 149

5.3 RS Flipflop Function 151

5.3.1 Memory Functions with Reset
Priority 151

Table of Contents

14

5.3.2 Memory Function with Set
Priority. 151

5.3.3 Memory Function in a Binary
Logic Operation 151

5.4 Edge Evaluation 152

5.4.1 Positive Edge 153
5.4.2 Negative Edge 154
5.4.3 Testing a Pulse Memory Bit . . . 154
5.4.4 Edge Evaluation in a Binary

Logic Operation 154
5.4.5 Binary Scaler 155

5.5 Example of a Conveyor Belt
Control System 155

6 Move Functions. 159

6.1 General Remarks on Loading
and Transferring Data 159

6.2 Load Functions 161

6.2.1 General Representation of a
Load Function 161

6.2.2 Loading the Contents of Memory
Locations 161

6.2.3 Loading Constants 162

6.3 Transfer Functions. 163

6.3.1 General Representation of a
Transfer Function 163

6.3.2 Transferring to Various Memory
Areas. 163

6.4 Accumulator Functions 164

6.4.1 Direct Transfers Between
Accumulators 164

6.4.2 Exchange Bytes in Accumulator 1 165

6.5 System Functions for Data
Transfer 166

6.5.1 Copying Memory Area 166
6.5.2 Uninterruptible Copying of

Variables. 167
6.5.3 Initializing a Memory Area . . . 167
6.5.4 Copying STRING Variables . . 168
6.5.5 Reading from Load Memory . . 168
6.5.6 Writing into the Load Memory . 169

7 Timer Functions 171

7.1 Programming a Timer 171

7.1.1 Starting a Timer 171
7.1.2 Specifying the Time 172
7.1.3 Resetting a Timer 173

7.1.4 Enabling a Timer 173
7.1.5 Checking a Timer. 173
7.1.6 Sequence of Timer Instructions . 174
7.1.7 Clock Generator Example 174

7.2 Pulse Timers 175

7.3 Extended Pulse Timers 177

7.4 On-Delay Timers 179

7.5 Retentive On-Delay Timers . . . 181

7.6 Off-Delay Timers. 183

7.7 IEC Timer Functions 185

7.7.1 Pulse Generation SFB 3 TP . . . 185
7.7.2 On Delay SFB 4 TON 186
7.7.3 Off Delay SFB 5 TOF 186

8 Counter Functions 187

8.1 Setting and Resetting Counters . . 187

8.2 Counting 188

8.3 Checking a Counter. 189

8.4 Enabling a Counter 189

8.5 Sequence of Counter Instructions 190

8.6 IEC Counter Functions 191

8.6.1 Up Counter SFB 0 CTU 191
8.6.2 Down Counter SFB 1 CTD. . . . 191
8.6.3 Up-Down Counter SFB 2 CTUD. 192

8.7 Parts Counter Example 192

Digital Functions 196

9 Comparison Functions 197

9.1 General Representation of a
Comparison Function. 197

9.2 Description of the Comparison
Functions 198

9.3 Comparison Function in a Logic
Operation 199

10 Arithmetic Functions 201

10.1 General Representation of an
Arithmetic Function 201

10.2 Calculating with Data Type INT . 202

10.3 Calculating with Data Type DINT 203

10.4 Calculating with Data Type
REAL 204

Table of Contents

15

10.5 Successive Arithmetic Functions 205

10.6 Adding Constants to
Accumulator 1 206

10.7 Decrementing and Incrementing . 206

11 Math Functions 208

11.1 Processing a Math Function . . . 208

11.2 Trigonometric Functions. 209

11.3 Arc Functions 209

11.4 Other Math Functions 209

12 Conversion Functions 211

12.1 Processing a Conversion
Function 211

12.2 Converting INT and DINT
Numbers 212

12.3 Converting BCD Numbers. . . . 212

12.4 Converting REAL Numbers . . . 213

12.5 Other Conversion Functions . . . 214

13 Shift Functions 216

13.1 Processing a Shift Function . . . 216

13.2 Shifting. 217

13.3 Rotating 219

14 Word Logic 221

14.1 Processing a Word Logic
Operation. 221

14.2 Description of the Word Logic
Operations 223

Program Flow Control 224

15 Status Bits 225

15.1 Description of the Status Bits . . 225

15.2 Setting the Status Bits and the
Binary Flags 227

15.3 Evaluating the Status Bit. 229

15.4 Using the Binary Result 231

16 Jump Functions 233

16.1 Programming a Jump Function . 233

16.2 Unconditional Jump 234

16.3 Jump Functions with RLO and
BR. 234

16.4 Jump Functions with
CC0 and CC1 235

16.5 Jump Functions with
OV and OS 237

16.6 Jump Distributor 237

16.7 Loop Jump 238

17 Master Control Relay 239

17.1 MCR Dependency 239

17.2 MCR Area. 240

17.3 MCR Zone 240

17.4 Setting and Resetting I/O Bits . 241

18 Block Functions 243

18.1 Block Functions for Code Blocks 243

18.1.1 Block Calls: General 244
18.1.2 CALL Call Statement 244
18.1.3 UC and CC Call Statements . . 245
18.1.4 Block End Functions 246
18.1.5 Temporary Local Data 246
18.1.6 Static Local Data 249

18.2 Block Functions for Data Blocks 251

18.2.1 Two Data Block Registers . . . 251
18.2.2 Accessing Data Addresses . . . 252
18.2.3 Open Data Block 254
18.2.4 Exchanging the Data Block

Registers 255
18.2.5 Data Block Length and Number 255
18.2.6 Special Points in Data Addressing 255

18.3 System Functions for Data Blocks 257

18.3.1 Creating a Data Block in the
Work Memory 257

18.3.2 Creating a Data Block in the
Load Memory 257

18.3.3 Deleting a Data Block. 259
18.3.4 Testing a Data Block 259

18.4 Null Operations 259

18.4.1 NOP Statements. 259
18.4.2 Program Display Statements . . 260

19 Block Parameters 261

19.1 Block Parameters in General . . 261

19.1.1 Defining the Block Parameters . 261

Table of Contents

16

19.1.2 Processing the Block Parameters 261
19.1.3 Declaration of the Block

Parameters 262
19.1.4 Declaration of the Function Value 263
19.1.5 Initializing Block Parameters . . 264

19.2 Formal Parameters. 264

19.3 Actual Parameters 267

19.4 “Passing On” Block Parameters . 270

19.5 Examples 271

19.5.1 Conveyor Belt Example 271
19.5.2 Parts Counter Example 272
19.5.3 Feed Example 272

Program Processing 276

20 Main Program 277

20.1 Program Organization 277

20.1.1 Program Structure 277
20.1.2 Program Organization 278

20.2 Scan Cycle Control 279

20.2.1 Process Image Updating. 279
20.2.2 Scan Cycle Monitoring Time . . 281
20.2.3 Minimum Scan Cycle Time,

Background Scanning 282
20.2.4 Response Time 283
20.2.5 Start Information 283

20.3 Program Functions 285

20.3.1 Time 285
20.3.2 Read System Clock 287
20.3.3 Run-Time Meter 287
20.3.4 Compressing CPU Memory . . . 289
20.3.5 Waiting and Stopping 289
20.3.6 Multiprocessing Mode. 289
20.3.7 Determining OB Program

Execution Time 290
20.3.8 Changing the Program Protection 292

20.4 Communication via
Distributed I/O. 294

20.4.1 Addressing PROFIBUS DP . . . 294
20.4.2 Configuring PROFIBUS DP . . 298
20.4.3 Special Functions for

PROFIBUS DP 307
20.4.4 Addressing PROFINET IO . . . 312
20.4.5 Configuring PROFINET IO . . . 315

20.4.6 Special functions for
PROFINET IO 321

20.4.7 System Blocks for the
Distributed I/O 329

20.5 Global Data Communication . . . 337

20.5.1 Fundamentals 337
20.5.2 Configuring GD Communication 339
20.5.3 System Functions for GD

Communication. 341

20.6 S7 Basic Communication. 342

20.6.1 Station-Internal
S7 Basic Communication 342

20.6.2 System Functions for Data
Interchange within a Station . . . 343

20.6.3 Station-External
S7 Basic Communication 344

20.6.4 System Functions for Station-
External S7 Basic Communication 345

20.7 S7 Communication 347

20.7.1 Fundamentals 347
20.7.2 Two-Way Data Exchange 349
20.7.3 One-Way Data Exchange. 351
20.7.4 Transferring Print Data 352
20.7.5 Control Functions. 352
20.7.6 Monitoring Functions. 353

20.8 IE Communication 356

20.8.1 Fundamentals 356
20.8.2 Establishment and Cancellation

of Connections 358
20.8.3 Data Transmission with TCP

Native or ISO-on-TCP 360
20.8.4 Data Transmission with UDP . . 361

20.9 PtP Communication with
S7-300C 363

20.9.1 Fundamentals 363
20.9.2 ASCII Driver and 3964(R)

Procedure 364
20.9.3 RK512 Computer Link 366

20.10 Configuration in RUN 368

20.10.1 Preparation of Modifications
to Configuration. 369

20.10.2 Changing the Configuration . . 370
20.10.3 Loading the Configuration . . . 371
20.10.4 CiR Synchronization Time . . . 371
20.10.5 Effects on Program Execution . 371
20.10.6 Controlling the CiR Procedure . 372

Table of Contents

17

21 Interrupt Handling 373

21.1 General Remarks. 373

21.2 Time-of-Day Interrupts 374

21.2.1 Handling Time-of-Day Interrupts 375
21.2.2 Configuring Time-of-Day

Interrupts with STEP 7. 376
21.2.3 System Functions for Time-of-Day

Interrupts 376

21.3 Time-Delay Interrupts 378

21.3.1 Handling Time-Delay Interrupts . 378
21.3.2 Configuring Time-Delay

Interrupts with STEP 7. 379
21.3.3 System Functions for Time-Delay

Interrupts 379

21.4 Watchdog Interrupts 380

21.4.1 Handling Watchdog Interrupts. . 381
21.4.2 Configuring Watchdog Interrupts

with STEP 7 382

21.5 Hardware Interrupts 382

21.5.1 Generating a Hardware Interrupt 382
21.5.2 Servicing Hardware Interrupts . . 383
21.5.3 Configuring Hardware Interrupts

with STEP 7 384

21.6 DPV1 Interrupts 384

21.7 Multiprocessor Interrupt 386

21.8 Synchronous Cycle Interrupts . . 387

21.8.1 Processing Synchronous Cycle
Interrupts 387

21.8.2 Isochronous Updating of Process
Image. 388

21.8.3 Programming of Synchronous
Cycle Interrupts with STEP 7 . . 389

21.9 Handling Interrupts 389

21.9.1 Disabling and Enabling Interrupts 389
21.9.2 Delaying and Enabling Delayed

Interrupts 390
21.9.3 Reading Additional Interrupt

Information. 391

22 Restart Characteristics 393

22.1 General Remarks. 393

22.1.1 Operating Modes. 393
22.1.2 HOLD Mode 394
22.1.3 Disabling the Output Modules . . 394
22.1.4 Restart Organization Blocks . . . 394

22.2 Power-Up 395

22.2.1 STOP Mode 395
22.2.2 Memory Reset. 395
22.2.3 Restoration of Delivery State . . 396
22.2.4 Retentivity 396
22.2.5 Restart Parameterization 396

22.3 Types of Restart. 397

22.3.1 START-UP Mode. 397
22.3.2 Cold Restart 397
22.3.3 Warm Restart 399
22.3.4 Hot Restart 400

22.4 Ascertaining a Module Address 400

22.5 Parameterizing Modules 403

22.5.1 General Remarks on
Parameterizing Modules 403

22.5.2 System Blocks for Module
Parameterization 405

22.5.3 Blocks for Data Record Transfer 407

23 Error Handling 409

23.1 Synchronous Errors 409

23.2 Synchronous Error Handling . . 411

23.2.1 Error Filters 411
23.2.2 Masking Synchronous Errors . . 412
23.2.3 Unmasking Synchronous Errors 412
23.2.4 Reading the Error tab 412
23.2.5 Entering a Substitute Value . . . 413

23.3 Asynchronous Errors 414

23.4 System Diagnostics 416

23.4.1 Diagnostic Events and Diagnostic
Buffer 416

23.4.2 Writing User Entries in the
Diagnostic Buffer 416

23.4.3 Evaluating Diagnostic Interrupts 417
23.4.4 Reading the System Status List . 419

23.5 Web Server 420

23.5.1 Activate Web Server 420
23.5.2 Reading Web Information . . . 420
23.5.3 Web Information 420

Variable Handling 422

24 Data Types 423

24.1 Elementary Data Types 423

24.1.1 Declaration of Elementary Data
Types 423

Table of Contents

18

24.1.2 BOOL, BYTE, WORD,
DWORD, CHAR 424

24.1.3 Number Representations 425
24.1.4 Time Representations 427

24.2 Complex Data Types 428

24.2.1 DATE_AND_TIME. 429
24.2.2 STRING 429
24.2.3 ARRAY 430
24.2.4 STRUCT. 432

24.3 User-Defined Data Types 434

24.3.1 Programming UDTs
Incrementally 434

24.3.2 Source-File-Oriented
Programming of UDTs 434

25 Indirect Addressing 436

25.1 Pointers 436

25.1.1 Area Pointer 436
25.1.2 DB Pointer 436
25.1.3 ANY Pointer. 438

25.2 Types of Indirect Addressing
in STL 439

25.2.1 General 439
25.2.2 Indirect Addresses 439
25.2.3 Memory-Indirect Addressing . . 440
25.2.4 Register-Indirect Area-Internal

Addressing. 442
25.2.5 Register-Indirect Area-Crossing

Addressing. 442
25.2.6 Summary 442

25.3 Working with Address Registers 443

25.3.1 Loading into an Address Register 443
25.3.2 Transferring from an Address

Register 443
25.3.3 Swap Address Registers 443
25.3.4 Adding to the Address Register . 445

25.4 Special Features of Indirect
Addressing. 446

25.4.1 Using Address Register AR1 . . 446
25.4.2 Using Address Register AR2 . . 446
25.4.3 Restrictions with Static Local

Data 446

26 Direct Variable Access 449

26.1 Loading the Variable Address . . 449

26.2 Data Storage of Variables 450

26.2.1 Storage in Global Data Blocks . 450

26.2.2 Storage in Instance Data Blocks . 451
26.2.3 Storage in the Temporary Local

Data 451

26.3 Data Storage when Transferring
Parameters 454

26.3.1 Parameter Storage in Functions . 454
26.3.2 Storing Parameters in Function

Blocks 456
26.3.3 “Variable” ANY Pointer 456

26.4 Brief Description of the Message
Frame Example 458

Structured Control Language (SCL) . 465

27 Introduction, Language
Elements 466

27.1 Integration in SIMATIC 466

27.1.1 Installation 466
27.1.2 Setting Up a Project 466
27.1.3 Editing the SCL Source 466
27.1.4 Completing the Symbol Table . . 467
27.1.5 Compiling the SCL Program . . . 468
27.1.6 Loading SCL Blocks 468
27.1.7 Testing SCL Blocks 468
27.1.8 Addresses and Data Types 468
27.1.9 Data Type Views 470

27.2 Addressing 471

27.2.1 Absolute Addressing 471
27.2.2 Symbolic Addressing 471
27.2.3 Indirect Addressing in SCL . . . 472

27.3 Operators 473

27.4 Expressions 474

27.4.1 Arithmetic Expressions 475
27.4.2 Comparison Expressions 475
27.4.3 Logical Expressions 476

27.5 Value Assignments 476

27.5.1 Assignment for Elementary
Data Types 476

27.5.2 Assignment of DT and STRING
Variables 476

27.5.3 Assignment of Structures 476
27.5.4 Assigning Fields 477

28 Control Statements 478

28.1 IF Statement 478

28.2 CASE Statement 479

Table of Contents

19

28.3 FOR Statement 479

28.4 WHILE Statement 480

28.5 REPEAT Statement 480

28.6 CONTINUE Statement 481

28.7 EXIT Statement 481

28.8 RETURN Statement 481

28.9 GOTO Statement. 481

29 SCL Blocks 483

29.1 SCL Blocks – General 483

29.2 Programming SCL Blocks 483

29.2.1 Function FC without a Function
Value 484

29.2.2 Function FC with Function
Value 484

29.2.3 Function Block FB 484
29.2.4 Temporary Local Data 485
29.2.5 Static Local Data 486
29.2.6 Block Parameters 486
29.2.7 Formal Parameters 487

29.3 Calling SCL Blocks 487

29.3.1 Function FC without Function
Value 488

29.3.2 Function FC with Function Value 488
29.3.3 Function Block with its Own

Data Block 488
29.3.4 Function Block as Local Instance 489
29.3.5 Actual Parameters 489

29.4 EN/ENO Mechanism 490

29.4.1 OK Variable 490
29.4.2 ENO Output 490
29.4.3 EN Input 491

30 SCL Functions 492

30.1 Timer Functions 492

30.2 Counter Functions 493

30.3 Math Functions 494

30.4 Shifting and Rotating 494

30.5 Conversion Functions 495

30.5.1 Implicit Conversion Functions. . 495
30.5.2 Explicit Conversion Functions. . 495

30.6 Numerical Functions 498

30.7 Programming Your Own
Functions with SCL 499

30.8 Programming Your Own
Functions with STL 501

30.9 Brief Description of the SCL
Examples 502

30.9.1 Conveyor Example 502
30.9.2 Message Frame Example 503
30.9.3 General Examples. 503

31 IEC functions 505

31.1 Conversion Functions 505

31.2 Comparison Functions 507

31.3 STRING Functions 508

31.4 Date/Time-of-Day Functions . . 510

31.5 Numerical Functions 511

Appendix 513

32 S5/S7 Converter 514

32.1 General 514

32.2 Preparation 515

32.2.1 Checking Executability on
the Target System (PLC) 515

32.2.2 Checking Program Execution
Characteristics 515

32.2.3 Checking the Modules 516
32.2.4 Checking the Addresses. 516

32.3 Converting 518

32.3.1 Creating Macros 518
32.3.2 Preparing the Conversion 519
32.3.3 Starting the Converter. 519
32.3.4 Convertible Functions. 520

32.4 Post-Editing 521

32.4.1 Creating the STEP 7 Project . . 521
32.4.2 Non-convertible Functions . . . 522
32.4.3 Address Changes 522
32.4.4 Indirect Addressing 523
32.4.5 Access to “Excessively Long”

Data Blocks 525
32.4.6 Working with Absolute

Addresses 525
32.4.7 Parameter Initialization 525
32.4.8 Special Function Organization

Blocks 525
32.4.9 Error Handling 525

Table of Contents

20

33 Block Libraries 528

33.1 Organization Blocks 528

33.2 System Function Blocks. 529

33.3 IEC Function Blocks 532

33.4 S5-S7 Converting Blocks 533

33.5 TI-S7 Converting Blocks 534

33.6 PID Control Blocks 535

33.7 Communication Blocks 535

33.8 Miscellaneous Blocks 535

33.9 SIMATIC_NET_CP. 536

33.10 Redundant IO MGP V31 537

33.11 Redundant IO CGP V40. 537

33.12 Redundant IO CGP V51. 537

34 STL Operation Overview . . . 538

34.1 Basic Functions 538

34.1.1 Binary Logic Operations 538
34.1.2 Memory Functions 539
34.1.3 Transfer Functions. 539
34.1.4 Timer Functions 539
34.1.5 Counter Functions 539

34.2 Digital Functions 539

34.2.1 Comparison Functions. 539

34.2.2 Math Functions 540
34.2.3 Arithmetic Functions 540
34.2.4 Conversion Functions 540
34.2.5 Shift Functions 540
34.2.6 Word Logic Operations. 540

34.3 Program Flow Control 541

34.3.1 Jump Functions 541
34.3.2 Master Control Relay. 541
34.3.3 Block Functions 541

34.4 Indirect Addressing 541

35 SCL Statement and
Function Overview 542

35.1 Operators 542

35.2 Control Statements 542

35.3 Block Calls 542

35.4 SCL Standard Functions 543

35.4.1 Timer Functions 543
35.4.2 Counter Functions 543
35.4.3 Conversion Functions 543
35.4.4 Math functions 544
35.4.5 Shift and Rotate. 544

Index. 545

Abbreviations 553

Introduction

21

Introduction

This section of the book provides an overview
of the SIMATIC S7-300/400.

The S7-300/400 programmable controller is
of modular design. The modules with which it
is configured can be central (in the vicinity of
the CPU) or distributed without any special set-
tings or parameter assignments having to be
made. In SIMATIC S7 systems, distributed I/O
is an integral part of the system. The CPU, with
its various memory areas, forms the hardware
basis for processing of the user programs. A
load memory contains the complete user pro-
gram: the parts of the program relevant to its
execution at any given time are in a work mem-
ory whose short access times are the prerequi-
site for fast program processing.

STEP 7 is the programming software for S7-
300/400 and the automation tool is the
SIMATIC Manager. The SIMATIC Manager is
an application for the Windows operating sys-
tems from Microsoft and contains all functions
needed to set up a project. When necessary, the
SIMATIC Manager starts additional tools, for
example to configure stations, initialize mod-
ules, and to write and test programs.

You formulate your automation solution in the
STEP 7 programming languages. The
SIMATIC S7 program is structured, that is to
say, it consists of blocks with defined functions
that are composed of networks or rungs. Differ-
ent priority classes allow a graduated interrupt-
ibility of the user program currently executing.
STEP 7 works with variables of various data
types starting with binary variables (data type
BOOL) through digital variables (e.g. data type
INT or REAL for computing tasks) up to com-
plex data types such as arrays or structures
(combinations of variables of different types to
form a single variable).

The first chapter contains an overview of the
hardware of the S7-300/400 automation system
and the second chapter contains the same over-

view of the STEP 7 programming software.
The basis of the description is the functional
scope for STEP 7 Version 5.5.

Chapter 3 “SIMATIC S7 Program” serves as an
introduction to the most important elements of
an S7 program and shows the programming of
individual blocks in the programming lan-
guages STL and SCL. The functions and state-
ments of STL and SCL are then described in the
subsequent chapters of the book. All the
descriptions are explained using brief exam-
ples.

1 SIMATIC S7-300/400
Programmable Controller
Structure of the programmable controller;
distributed I/O; communications; module
addresses; address areas

2 STEP 7 Programming Software
SIMATIC Manager; processing a project;
configuring a station; configuring a net-
work; writing programs (symbol table,
program editor); switching online; testing
programs

3 SIMATIC S7 Program
Program processing with priority classes;
program blocks; addressing variables;
programming blocks with STL and SCL;
variables and constants; data types (over-
view)

1 SIMATIC S7-300/400 Programmable Controller

22

1 SIMATIC S7-300/400 Programmable Controller

1.1 Structure of the
Programmable Controller

1.1.1 Components

The SIMATIC S7-300/400 is a modular pro-
grammable controller comprising the following
components:

b Racks;
Accommodate the modules and connect
them to each other

b Power supply (PS);
Provides the internal supply voltages

b Central processing unit (CPU);
Stores and processes the user program

b Interface modules (IMs);
Connect the racks to one another

b Signal modules (SMs);
Adapt the signals from the system to the
internal signal level or control actuators via
digital and analog signals

b Function modules (FMs);
Execute complex or time-critical processes
independently of the CPU

b Communications processors (CPs)
Establish the connection to subsidiary net-
works (subnets)

b Subnets
Connect programmable controllers to each
other or to other devices

A programmable controller (or station) may
consist of several racks, which are linked to one
another via bus cables. The power supply, CPU
and I/O modules (SMs, FMs and CPs) are
plugged into the central rack. If there is not
enough room in the central rack for the I/O
modules or if you want some or all I/O modules
to be separate from the central rack, expansion
racks are available which are connected to the
central rack via interface modules (Figure 1.1).

It is also possible to connect distributed I/O to a
station (see Chapter 1.2.1 “PROFIBUS DP”).

The racks connect the modules with two buses:
the I/O bus (or P bus) and the communication
bus (or K bus). The I/O bus is designed for
high-speed exchange of input and output sig-
nals, the communication bus for the exchange
of large amounts of data. The communication
bus connects the CPU and the programming
device interface (MPI) with function modules
and communications processors.

1.1.2 S7-300 Station

Centralized configuration

In an S7-300 controller, as many as 8 I/O mod-
ules can be plugged into the central rack.
Should this single-tier configuration prove
insufficient, you have two options for control-
lers equipped with a CPU 313 or a more
advanced CPU:

b Either choose a two-tier configuration (with
IM 365 up to 1 meter between racks)

b or choose a configuration of up to four tiers
(with IM 360 and IM 361 up to 10 meters
between racks)

You can operate a maximum of 8 modules in a
rack. The number of modules may be limited by
the maximum permissible current per rack,
which is 1.2 A.

The modules are linked to one another via a
backplane bus, which combines the functions
of the P and K buses.

Local bus segment

A special feature regarding configuration is the
use of the FM 356 application module. An
FM 356 is able to “split” a module's backplane
bus and to take over control of the remaining
modules in the split-off “local bus segment”

1.1 Structure of the Programmable Controller

23

Figure 1.1 Hardware Configuration for S7-300/400

Single-tier configuration Two-tier configuration
with IM 365

Four-tier configuration
with IM 360 and IM 361

Modular design
of an S7-300 station

Modular design
of an S7-400 station

Far range
up to 600 m
without
5V transmission
(IM 461-4)

Close range
up to 1.5 m
with 5V transmission
(IM 461-1)

In the controller rack:
IM 460-1
IM 460-0
IM 460-3
IM 460-4
IM 463-2

Close range
up to 5 m
without
5V transmission
(IM 461-0)

Far range
up to 100 m
without
5V transmission
(IM 461-3)

Far range
up to 600 m for
S5 expansion
devices (IM 314)

SIEMENS S EMENS S EMENS

1 SIMATIC S7-300/400 Programmable Controller

24

itself. The limitations mentioned above regard-
ing the number of modules and the power con-
sumption also apply in this case.

Standard CPUs

The standard CPUs are available in different
versions with regard to memory size and pro-
cessing speed. They range from the “smallest”
CPU 312 for smaller applications with moder-
ate processing speed requirements up to the
CPU 319-3 PN/DP with a large program mem-
ory and fast program execution for cross-sector
automation tasks. Equipped with the corre-
sponding interfaces, some CPUs can be used as
the central controller for the distributed I/O
over PROFIBUS and PROFINET.

A micro memory card (MMC) is required for
using the standard CPUs – as is the case with all
innovated S7-300 CPUs. This memory medium
opens up new application possibilities com-
pared to the previously used memory card (see
Chapter 1.1.6 “CPU Memory Areas”).

The now discontinued CPU 318 can be re-
placed by the CPUs 317 or 319.

Compact CPUs

The 3xxC CPUs permit a compact design for
mini programmable controllers. Depending on
the version, they already contain:

b Integral I/O
Digital and analog inputs/outputs

b Integral technological functions
Counting, measurement, control, position-
ing

b Integral communications interfaces
PROFIBUS DP master or slave, point-to-
point coupling (PtP)

The technological functions are system blocks
which use the onboard I/Os of the CPU.

Technology CPUs

The CPUs 3xxT combine open-loop control
functions with simple motion control functions.
The control section is designed as with a stan-
dard CPU. It is configured, parameterized and
programmed using STEP 7. The technology
objects and the motion control section require
the S7-Technology option package that is inte-

grated in the SIMATIC Manager following the
installation.

The technology CPUs have a PROFIBUS DP
interface which permits use as a DP master or
DP slave. The CPUs are used for cross-sector
automation tasks in series machine construc-
tion, special machine construction, and plant
construction.

Fail-safe CPUs

The CPUs 3xxF are used in production plants
with increased safety requirements. Corre-
sponding PROFIBUS and PROFINET inter-
faces allow use of safety-related distributed I/O
with the PROFIsafe bus profile (see “S7 Dis-
tributed Safety” under 1.1.5 “Safety-related
SIMATIC”). Standard modules for normal
applications can be used parallel to safety-
related operation.

SIPLUS

The SIPLUS product family offers modules
that can be used in harsh environments. The
SIPLUS components are based on standard de-
vices which have been specially converted for
the respective application, for example for an
extended temperature range, increased resis-
tance to vibration and shock, or voltage ranges
differing from the standard. Please therefore
note the technical data for the respective SIP-
LUS module. In order to carry out the configu-
ration with STEP 7, use the equivalent type (the
standard module on which it is based); this is
specified, for example, on the module's name-
plate.

1.1.3 S7-400 Station

Centralized configuration

The controller rack of the S7-400 is available in
the versions UR1 (18 slots), UR2 (9 slots) and
CR3 (4 slots). UR1 and UR2 can also be used
as expansion racks. The power supply and the
CPU also occupy slots in the racks, possibly
even two or more per module. If necessary, the
number of available slots can be increased
using expansion racks: UR1 and ER1 have 18
slots each, UR2 and ER2 have 9 slots each.

1.1 Structure of the Programmable Controller

25

Using the IM 460-1 and IM 461-1 interface
modules, one expansion rack per interface can
be located up to 1.5 m away from the controller
rack, and the 5 V supply is also transmitted. Up
to 4 expansion ranks can also be operated via
IM 460-0 and 461-0 in the local range up to
5 m. For longer distances, the IM 460-3 and
IM 461-3 or the IM 460-4 and 461-4 enable up
to 4 expansion racks to be operated up to 100 m
or 600 m away.

A maximum of 21 expansion racks can be con-
nected to a central rack. To distinguish between
racks, you set the number of the rack on the
coding switch of the receiving IM.

The backplane bus consists of a parallel P bus
and a serial K bus. Expansion racks ER1 and
ER2 are designed for “simple” signal modules
which generate no process interrupts, do not
have to be supplied with 24 V voltage via the P
bus, require no back-up voltage, and have no K
bus connection. The K bus is in racks UR1,
UR2 and CR2 either when these racks are used
as central racks or expansion racks with the
numbers 1 to 6.

Connecting segmented rack

A special feature is the segmented rack CR2.
The rack can accommodate two CPUs with a
shared power supply while keeping them func-
tionally separate. The two CPUs can exchange
data with one another via the K bus, but have
completely separate P buses for their own sig-
nal modules.

Multiprocessor mode

In an S7-400, as many as four specially
designed CPUs in a suitable rack UR can take
part in multiprocessor mode. Each module in
this station is assigned to only one CPU, both
with its address and its interrupts. See Chapters
20.3.6 “Multiprocessing Mode” and 21.7 “Mul-
tiprocessor Interrupt” for more details.

Connection of SIMATIC S5 modules

The IM 463-2 interface module allows you to
connect S5 expansion units (EG 183U, EG
185U, EG 186U as well as ER 701-2 and ER
701-3) to an S7-400, and also allows central-
ized expansion of the expansion units. An

IM 314 in the S5 expansion unit handles the
link. You can operate all analog and digital
modules allowed in these expansion units. An
S7-400 can accommodate as many as four
IM 463-2 interface modules; as many as four
S5 expansion units can be connected in a dis-
tributed configuration to each of an IM 463-2's
interfaces.

1.1.4 Fault-Tolerant SIMATIC

For applications with high fault tolerance
demands for machines and processes, there are
two versions of SIMATIC S7 fault-tolerant pro-
grammable controllers with a redundant
design: software redundancy and S7-400H/FH.

Software redundancy

Using SIMATIC S7-300/400 standard compo-
nents, you can establish a software-based
redundant system with a master station control-
ling the process and a standby station assuming
control in the event of the master failing.

Fault tolerance through software redundancy is
suitable for slow processes because transfer to
the standby station can require several seconds
depending on the configuration of the program-
mable controllers. The process signals are “fro-
zen” during this time. The standby station then
continues operation with the data last valid in
the master station.

Redundancy of the input/output modules is im-
plemented with distributed I/O (ET 200M with
IM 153-2 interface module for redundant PRO-
FIBUS DP). The software redundancy can be
configured with STEP 7 Version 5.2 and higher.

Fault-tolerant SIMATIC S7-400H

The SIMATIC S7-400H is a fault-tolerant pro-
grammable controller with redundant configu-
ration comprising two central racks, each with
an H CPU and a synchronization module for
data comparison via fiber optic cable. Both
controllers operate in “hot standby” mode; in
the event of a fault, the intact controller
assumes operation alone via automatic bump-
less transfer. The UR2-H rack with 2x9 slots
offers the possibility for also installing a fault-
tolerant system in one single rack.

1 SIMATIC S7-300/400 Programmable Controller

26

The I/O can have normal availability (single-
channel, single-sided configuration) or en-
hanced availability (single-channel, switched
configuration with ET 200M). Communication
takes place with a single or redundant bus.

The user program is the same as for a non-re-
dundant device; the redundancy function is pro-
vided exclusively by the hardware that is used
and is kept hidden from the user. The software
package required for configuration is included
in STEP 7 from V5.3. The provided standard li-
braries Redundant IO contain blocks for sup-
porting the redundant I/O.

1.1.5 Safety-related SIMATIC

Fail-safe programmable controllers control
processes in which the safe state can be
achieved by direct switching-off. They are used
in plants with increased safety requirements.

The safety functions are mainly located in the
safety-related user program of a corresponding-
ly designed CPU and in the failsafe input and
output modules. An F-CPU complies with the
safety requirements up to AK 6 in accordance
with DIN V 19250/DIN V VDE 0801, up to SIL
3 in accordance with IEC 61508, and up to Cat-
egory 4 in accordance with EN 954-1. Safety
functions can be executed parallel to a non-safe-
ty-related user program in the same CPU.

Safety-related communication over PROFIBUS
DP – also over PROFINET IO with S7 Distrib-
uted Safety – uses the PROFIsafe bus profile.
This permits transmission of safety-related and
non-safety-related data on a single bus cable.

Safety Integrated for the manufacturing
industry

S7 Distributed Safety is a failsafe automation
system for the protection of machines and per-
sonnel mainly for applications with machine
controls and in the process industry.

Controllers from the SIMATIC S7-300, S7-
400, and ET 200S ranges are available as F-
CPUs. The safety-related I/O modules are con-
nected to S7-400 over PROFIBUS DP or PRO-
FINET IO using the safety-related PROFIsafe
bus profile. With S7-300 and ET 200S, use of
safety-related I/O modules is additionally possi-
ble in the central rack.

The hardware configuration and programming
of the non-safety-related user program are car-
ried out using the standard applications of
STEP 7.

The SIMATIC S7 Distributed Safety option
package is required to program the safety-relat-
ed parts of the program. With this option pack-
age you can use the F-LAD or F-FBD program-
ming languages to create the blocks which con-
tain the safety-related program. Interfacing to
the I/O is carried out using the process image as
with the standard program. S7 Distributed
Safety also includes a library with TÜV-certi-
fied safety blocks. There is an additional library
available with F-blocks for press and burner
controls.

The safety-related user program can be execut-
ed parallel to the standard user program. If an
error is detected in the safety-related part of the
program, the CPU enters the STOP state.

Safety Integrated for the process industry

S7 F/FH Systems is a failsafe automation sys-
tem based on S7-400 mainly for applications in
the process industry. The safety-related I/O
modules are connected over PROFIBUS DP
using the safety-related PROFIsafe bus profile.

An S7-400 F-CPU is provided with the safety-
related control functions by application of an S7
F Systems Runtime license. A non-safety-relat-
ed user program can be executed parallel to the
safety-related plant unit.

In addition to fail-safety, the S7-400FH also
provides increased availability. If a detected
fault results in a STOP of the master CPU, a re-
action-free switch is made to the CPU running
in hot standby mode. The S7 H Systems option
package is additionally required for operation
as S7-400FH.

The hardware configuration and programming
of the non-safety-related user program are car-
ried out using the standard applications of
STEP 7.

The S7 F Systems option package is additional-
ly required for programming the safety-related
program parts, and additionally the CFC option
package V5.0 SP3 and higher and the S7-SCL
option package V5.0 and higher.

1.1 Structure of the Programmable Controller

27

The safety-related program is programmed us-
ing CFC (Continuous Function Chart). Pro-
grammed, safety-related function blocks from
the supplied F-library can be called and inter-
connected in this manner. Alongside functions
for programming safety functions, they also in-
clude fault detection and fault reaction func-
tions. This ensures that if there are failures or
errors, the F-system can be stopped in or trans-
ferred to a safe mode. If a fault is detected in the
safety program, the safety-related part of the
plant is switched off, whereas the remaining
part can continue to operate.

Fail-safe I/O

Failsafe signal modules (F-modules or F-sub-
modules) are required for safety operation. The
fail-safety is achieved through the integrated
safety functions and the corresponding wiring
of sensors and actuators.

The F-modules can also be used in standard
applications with enhanced diagnostics require-
ments. Redundant F-modules can be used with
S7 F/FH systems to increase the availability
both in standard and safety-related operation.

The failsafe I/O is available in various versions:

b The fail-safe signal modules in S7-300 de-
sign are used in the ET 200M distributed I/O
device or – with S7-Distributed Safety – al-
so centrally.

b Failsafe I/O modules are available for the
distributed I/O devices in the designs ET
200S, ET 200pro, and ET 200eco.

b Failsafe interface modules are also available
as F-CPUs for the ET 200S and ET 200pro
distributed I/O devices.

b Failsafe DP standard slaves and – with S7-
Distributed Safety also IO standard devices
– can be used which can handle the PRO-
FIsafe bus profile.

Failsafe CPUs and signal modules are also
available in SIPLUS design.

1.1.6 CPU Memory Areas

Figure 1.2 shows the memory areas in the pro-
gramming device, in the CPU, and in the signal
modules which are important for your program.

The programming device contains the off-line
data. These consist of the user program (pro-
gram code and user data), the system data (e.g.
hardware configuration, network and connec-
tion configuration) and further project-specific
data such as e.g. the symbol table and com-
ments.

The online data consists of the user program
and the system data on the CPU, stored in two
storage areas: the load memory and the work
memory. In addition, the system memory is also
present here.

Finally, the I/O modules contain memories for
the signal statuses of the inputs and outputs.

The central processing units have a slot for a
plug-in memory module. This memory module
also contains the load memory, or parts thereof
(see “Physical design of CPU memory”, further
below). The memory module is designed as
memory card (S7-400-CPUs) or as micro mem-
ory card (S7-300 CPUs and derived ET 200
CPUs). A firmware update for the CPU operat-
ing system can also be performed via the mem-
ory module.

Memory card

The memory submodule for the S7-400 CPUs
is the memory card (MC). There are two types
of memory card: RAM cards and flash EPROM
cards.

If you only want to expand the load memory,
use a RAM card. A RAM card allows you to
modify the entire user program online. This is
necessary, for example, for larger programs
when testing and during commissioning. RAM
memory cards lose their contents when
unplugged.

If you want to protect your user program
against power failure following testing and
commissioning, including configuration data
and module parameters, use a flash EPROM
card. In this case, load the entire program
offline onto the flash EPROM card with the
card plugged into the programming device.
With the relevant CPUs, you can also load the
program online with the memory card plugged
into the CPU.

1 SIMATIC S7-300/400 Programmable Controller

28

Micro memory card

The memory submodule for the newer S7-300
CPUs is a micro memory card (MMC). The
data on the MMC are non-volatile, but can be
read, written and deleted just like with a RAM.
This response permits data backup without a
battery.

The MMC contains the complete load memory,
so that an MMC is always required for opera-
tion. The MMC can be used as a portable stor-
age medium for user programs or firmware
updates. Using special system functions, you
can read or write data blocks on the MMC from
the user program, e.g. read recipes from the
MMC, or create a measured-value archive on
the MMC and provide it with data.

Load memory

The entire user program, including configura-
tion data, is in the load memory (system data).
From the programming device, the user pro-
gram is always initially loaded into the load
memory and from there into the work memory.
The program in the load memory is not exe-
cuted as the control program.

With a CPU 300 and a CPU ET200, the load
memory is present completely on the micro
memory card. Thus the contents of the load
memory are retained even if the CPU is de-en-
ergized.

If the load memory with a CPU 400 consists of
an integrated RAM or RAM memory card, a
backup battery is required in order to keep the
user program retentive. With an integrated

Figure 1.2 Memory areas on the CPU

1.1 Structure of the Programmable Controller

29

EEPROM or a plug-in flash EPROM memory
card as the load memory, the CPU can be oper-
ated without battery backup.

From STEP 7 V5.1 and with appropriately
equipped CPUs, you can save all the project
data as a compressed archive file in the load
memory (see Chapter 2.2.2 “Managing, Rear-
ranging and Archiving”).

Work memory

Work memory is designed in the form of high-
speed RAM fully integrated in the CPU. The
operating system of the CPU copies the “execu-
tion-relevant” program code and the user data
into the work memory. “Relevant” is a charac-
teristic of the existing objects and does not
mean that a particular code block will necessar-
ily be called and executed. The “actual” control
program is executed in the work memory.

Specific to the product, the work memory can
be either a coherent area or divided according
to program and data memories, where the latter
is also divided into retentive and non-retentive
parts.

When writing back the user program into the
programming device, the blocks are fetched
from the load memory, supplemented by the cur-
rent values of the data addresses from the work
memory (further information available in Chap-
ters 2.6.4 “Loading the User Program into
the CPU” and 2.6.5 “Block Handling”).

System memory

System memory contains the addresses (vari-
ables) that you access in your program. The
addresses are combined into areas (address
areas) containing a CPU-specific number of
addresses. Addresses may be, for example,
inputs used to scan the signal states of momen-
tary-contact switches and limit switches, and
outputs that you can use to control contactors
and lamps.

The system memory on a CPU contains the fol-
lowing address areas:

b Inputs (I)
Inputs are an image (“process image”) of
the digital input modules.

b Outputs (Q)
Outputs are an image (“process image”) of
the digital output modules.

b Bit memories (M)
are information stores which are directly ac-
cessible from any point in the user program.

b Timers (T)
Timers are locations used to implement
waiting and monitoring times.

b Counters (C)
Counters are software-level locations,
which can be used for up and down count-
ing.

b Temporary local data (L)
Locations used as dynamic intermediate
buffers during block processing. The tem-
porary local data are located in the L stack,
which the CPU occupies dynamically dur-
ing program execution.

The letters enclosed in parentheses represent
the abbreviations to be used for the different
addresses when writing programs. You may
also assign a symbol to each variable and then
use the symbol in place of the address identifier.

The system memory also contains buffers for
communication jobs and system messages
(diagnostics buffer). The size of these data buf-
fers, as well as the size of the process input
image, the process output image and the L
stack, are parameterizable on certain CPUs.

Physical design of CPU memory

The physical design of the load memory differs
according to the type of CPU (Figure 1.3).

A CPU 300 or CPU ET 200 does not have an
integrated load memory. A micro memory card
containing the load memory must always be in-
serted to permit operation. The load memory
can be written and read like a RAM. The phys-
ical design means that the number of write op-
erations is limited (no cyclic writing by user
program). You can use the menu command CO-
PY RAM TO ROM to transfer the current values
of the data operands from the work memory to
the load memory.

With a CPU 300 with firmware version V2.0.12
or later, the work memory for the user data con-
sists of a retentive part and a non-retentive part.

1 SIMATIC S7-300/400 Programmable Controller

30

The control program is also present in the non-
retentive part.

The integrated RAM load memory in a CPU
400 is designed for small programs or for mod-
ification of individual blocks if the load memo-
ry is a flash EPROM memory card. If the com-
plete control program is larger than the integrat-
ed load memory, you will need a RAM memory
card for testing. The tested program is then cop-
ied with the programming device to a flash
EPROM memory card, which you insert into
the CPU for operation.

The work memory of a CPU 400 is divided into
two parts: One part saves the program code, the
other the user data. The system and work mem-
ories in a CPU 400 constitute one (physical)
unit. If the process image changes in size, this
affects the size of the work memory.

1.2 Distributed I/O

Distributed I/O refers to modules connected via
PROFIBUS DP or PROFINET IO. PROFIBUS
DP uses the PROFIBUS subnet for data trans-
mission, PROFINET IO the Industrial Ethernet
subnet (for further information, see Chapter
1.3.2 “Subnets”).

1.2.1 PROFIBUS DP

PROFIBUS DP provides a standardized inter-
face for transferring predominantly binary pro-
cess data between an “interface module” in the
(central) programmable controller and the field
devices. This “interface module” is called the
DP master and the field devices are the DP
slaves.

Figure 1.3 Physical Design of the CPU Memory

Work memory
Program code

User data

Work memory
Program code

Work memory
Program code

Work memory
User data

Non retentive
user data

Retentive
user data

System memory

System memory

System memory

CPU

CPU

CPU

S7-300 and ET CPUs without adjustable data retentivity

S7-300 and ET CPUs with adjustable data retentivity

S7-400 CPU
Memory Card

or

Micro Memory Card

Micro Memory Card

Load memory
RAM and ROM

Load memory
RAM and ROM

Load memory
RAM

FEPROM
Load memory

Load memory
RAM

1.2 Distributed I/O

31

The DP master and all the slaves it controls
form a DP master system. There can be up to
32 stations in one segment and up to 127 sta-
tions in the entire network. A DP master can
control a number of DP slaves specific to itself.
You can also connect programming devices to
the PROFIBUS DP network as well as, for
example, devices for human machine interface,
ET 200 devices or SIMATIC S5 DP slaves.

DP master system

PROFIBUS DP is usually operated as a “mono
master system”, that is, one DP master controls
several DP slaves. The DP master is the only
master on the bus, with the exception of a tem-
porarily available programming device (diag-
nostics and service device). The DP master and
the DP slaves assigned to it form a DP master
system (Figure 1.4).

You can also install several DP master systems
on one PROFIBUS subnet (multi master sys-
tem). However, this increases the response time
in individual cases because when a DP master
has initialized “its” DP slaves, the access rights
fall to the next DP master that in turn initializes
“its” DP slaves, etc.

You can reduce the response time if a DP mas-
ter system contains only a few DP slaves. Since

it is possible to operate several DP masters in
one S7 station, you can distribute the DP slaves
of a station over several DP master systems. In
multiprocessor mode, every CPU has its own
DP master systems.

DP master

The DP master is the active node on the PRO-
FIBUS network. It exchanges cyclic data with
“its” DP slaves. A DP master can be

b A CPU with integral DP master interface or
plug-in interface submodule (e.g. CPU 315-
2DP, CPU 417)

b An interface module in conjunction with a
CPU (e.g. IM 467)

b A CP in conjunction with a CPU (e.g.
CP 342-5, CP 443-5)

There are “Class 1 masters” for data exchange
in process operation and “Class 2 masters” for
service and diagnostics (e.g. a programming
device).

DP slaves

The DP slaves are the passive nodes on
PROFIBUS. In SIMATIC S7, a distinction is
made between

Figure 1.4 Components of a PROFIBUS DP Master System in an RS485 Segment

1 SIMATIC S7-300/400 Programmable Controller

32

b Compact DP slaves
They behave like a single module towards
the DP master

b Modular DP slaves
They comprise several modules (submod-
ules

b Intelligent DP slaves
They contain a control program that con-
trols the lower-level (own) modules

Compact PROFIBUS DP slaves

Examples of compact DP slaves are the
ET 200L, the ET 200R, and the ET 200eco. Bus
gateways such as the DP/AS-i Link also behave
like a compact slave on the PROFIBUS DP.

Modular PROFIBUS DP slaves

Examples of modular DP slaves are the
ET 200iSP, the ET 200M, the ET 200S, and the
ET 200pro.

Intelligent PROFIBUS DP slaves

Intelligent DP slaves are, for example, CPUs
with integrated DP (slave) interface, or an S7-
300 station with the CP 342-5 communications
processor. Equally, an ET 200pro station with
the IM 154-8 PN/DP CPU interface module or
an ET 200S station with the IM 151-7 CPU in-
terface module can be operated as intelligent
DP slaves.

RS 485 repeater

The RS 485 repeater combines two bus seg-
ments in a PROFIBUS subnet. The number of
bus stations and the size of the subnet can then
be increased.

The repeater provides signal regeneration and
electrical isolation. It can be operated at trans-
mission rates up to 12 Mbit/s – including
45.45 kbit/s for PROFIBUS PA.

The RS 485 repeater is not configured; it need
only be considered when calculating the bus
parameters.

Diagnostics repeater

You can use a diagnostics repeater to determine
the topology in a PROFIBUS segment (RS 485
copper cable) during operation, and to carry out

line diagnostics. The diagnostics repeater pro-
vides signal regeneration and electrical isola-
tion for the connected segments. The maximum
segment length is 100 m in each case; the trans-
mission rate can be between 9.6 kbit/s and
12 Mbit/s.

The diagnostics repeater has connections for 3
bus segments. The line from the DP master is
connected to the feed terminals of the bus seg-
ment DP1. The two other connections DP2 and
DP3 contain the measuring circuits for determi-
nation of the topology and line diagnostics on
the bus segments connected here. Up to 9 fur-
ther diagnostics repeaters can be connected in
series.

The diagnostics repeater is handled in the mas-
ter system like a DP slave. In the event of a
fault, it transmits the determined diagnostics
data to the DP master. These data are the topol-
ogy of the bus segment (bus station and cable
lengths), the contents of the segment diagnos-
tics buffer (last 10 events with fault informa-
tion, location and cause) and the statistics data
(comments on the quality of the bus system). In
addition, the diagnostics repeater provides
monitoring functions for isochronous mode.

The diagnostics data can be fetched using a
programming device with STEP 7 V5.2 or
higher, and also displayed graphically. From
the user program, the line diagnostics is trig-
gered using the system function SFC 103 DP_
TOPOL, and read using SFC 59 RD_REC or
SFB 52 RDREC. To adjust the clock on the
diagnostics repeater, read the CPU time using
the system function SFC 1 READ_CLK and
transmit it using SFC 58 WR_REC or SFB 53
WRREC.

The diagnostics repeater is configured and
parameterized using STEP 7. A GSD file is
available for operation on non-Siemens mas-
ters.

1.2.2 PROFINET IO

PROFINET IO offers a standardized interface
for transmitting mainly binary process data
over Industrial Ethernet between an “interface
module” in the (central) programmable control-
ler and the field devices. This “interface mod-
ule” is referred to as the IO controller, and the

1.2 Distributed I/O

33

field devices as the IO devices. The IO control-
ler and all IO devices controlled by it constitute
a PROFINET IO system.

PROFINET IO System

A PROFINET IO system comprises the IO con-
troller in the central station and the IO devices
(field devices) assigned to it. The connecting
Industrial Ethernet subnet can be shared with
other nodes and applications (Figure 1.5).

IO controller

The IO controller is the active node on the
PROFINET. It exchanges data cyclically with
“its” IO devices. An IO controller can be:

b A CPU with integrated PROFINET inter-
face (e.g. CPU 317-2PN/DP)

b A CP module in association with a CPU
(e.g. CP 343-1)

IO device

IO devices are the passive stations on the PRO-
FINET. In SIMATIC S7, a distinction is made
between

b Compact IO devices
These behave like a single module with
regard to the IO controller

b Modular IO devices
These comprise several modules
(submodules)

b Intelligent IO devices
These contain a control program that con-
trols the lower-level (own) modules

Compact PROFINET IO devices

An example of a compact IO device is the
ET 200eco. Bus gateways such as the IE/AS-i
Link PN IO also behave like a compact slave on
the PROFINET IO.

Modular PROFINET IO devices

Examples of modular IO devices are the
ET 200M, the ET 200S, and the ET 200pro.

Intelligent PROFINET IO devices

Intelligent IO devices are, for example, CPUs
with integrated PN interface. Equally, an
ET 200pro station with the IM 154-8 PN/DP
CPU interface module or an ET 200S station
with the IM 151-8 PN/DP CPU interface mod-
ule can be operated as intelligent IO devices.

IO supervisor

Devices for parameterization, commissioning,
diagnostics, and operator control and monitor-
ing, e.g. programming or HMI devices, are
referred to as IO supervisors.

1.2.3 Actuator/Sensor Interface

The actuator/sensor interface (AS-i) is a net-
working system for the lowest process level in
automation plants in accordance with the open

Figure 1.5 Components of a PROFINET IO system

S7 station with IO-Controller,
e.g. CPU 317-2PN/DP

IO Device,
e.g. ET 200S

IO Supervisor,
e.g. a programming device

Industrial Ethernet Industrial Ethernet
PN/PN coupler

IE/PB Link

PROFIBUS DP

IE/AS i Link

AS Interface

1 SIMATIC S7-300/400 Programmable Controller

34

international standard EN 50295. An AS-i mas-
ter controls up to 62 AS-i slaves over a two-
wire AS-i cable which transmits both the con-
trol signals and the supply voltage (Figure 1.6).

An AS-i segment can have a maximum length
of 100 m; when combined with repeaters and
extension plugs, a maximum length of 600 m
can be achieved.

With the ASIsafe safety concept, you can con-
nect safety sensors such as emergency-off
switches, door contact switches, or safety light
arrays directly to the AS-i network up to Catego-
ry 4 in accordance with EN 954-1 or SIL3 in ac-
cordance with IEC 61508. This requires safe
AS-i slaves for connecting the safety sensors and
a safety monitor that combines the safe inputs
with parameterizable logic and ensures safe
shutdown.

AS-i master

Standard AS-i masters can control up to 31
standard AS-i slaves with a cycle time of max.
5 ms. With enhanced AS-i masters, the quantity
framework is increased to a maximum of 62
AS-i slaves with extended addressing range and
a cycle time of max. 10 ms. Pairs of slaves with
extended addressing range occupy one address;

if standard slaves are connected to an enhanced
master, they each occupy one address.

The AS-i master CP 343-2 is used in an S7-
300 station or in an ET-200M station. It sup-
ports the following AS-i slaves:

b Standard slaves

b Slaves with extended addressing range, A/B
slaves)

b Analog slaves in accordance with slave pro-
file 7.3 or 7.4

In standard mode, the CP 343-2 responds like an
I/O module: it occupies 16 input bytes and 16 out-
put bytes in the analog address space (128 and
upwards). Up to 31 standard slaves or up to 62
A/B slaves (slaves with extended addressing
range) can be used with a CP 343-2. The AS-i
slaves are parameterized with default values
stored in the CP.

In extended mode, the complete scope of func-
tions is available in accordance with the AS-i
master specification. When using the provided
FC block, master calls from the user program
(transmission of parameters during ongoing
operation, checking of the reference/actual con-
figuration, testing and diagnostics) can be car-
ried out in addition to standard operation.

Figure 1.6 Connecting the AS-i Bus System to SIMATIC S7

S7-300 station
CP
343-2

AS i actuator

AS i
power supply

AS i sensor AS i distributor

or: or:

DP/AS i
Link

IE/AS i
Link

PROFIBUS DP Industrial Ethernet

AS-Interface

further
AS i devices

binary actuators
ans sensors
with AS i ASIC

up to 8 actuators
or sensorsup to 4 slaves

passive
AS i module AS i module

active

binary actuators
ans sensors
without AS i ASIC

1.2 Distributed I/O

35

AS-i slaves

AS-i slaves can be bus-capable actuators or
sensors with AS-i ASIC, or also AS-i modules.
Actuators and sensors with AS-i ASIC are con-
nected to a passive module. Conventional actu-
ators and sensors can be connected to an active
module.

AS-i slaves are available in the standard version
where a standard slave occupies one of the max.
31 possible addresses. The standard slaves are
addressed by the user program like binary
inputs and outputs.

AS-i slaves with extended addressing range
(A/B slaves) occupy one address in pairs, so
that max. 62 slaves can be operated on one mas-
ter. “A slaves” are handled like standard slaves,
“B slaves” are addressed using data records.
AS-i A/B slaves can also be used to record and
transmit analog values.

1.2.4 Routers

Routers permit data exchange between devices
on different subnets as well as the passing on of
configuration and parameterization informa-
tion between different subnets (Figure 1.7).

Connection of two PROFIBUS subnets

You can use the DP/DP coupler (revision level
2) to connect two PROFIBUS subnets together,
and can then exchange data between the DP
masters. The two subnets are electrically iso-
lated, and can be operated at different transmis-
sion rates up to max. 12 Mbit/s. In both subnets,
the DP/DP coupler is assigned to the respective
DP master as a DP slave with a freely selectable
station address in each case.

The maximum size of the transfer memory is
244 byte input data and 244 byte output data,
divided in up to 16 areas. Input areas in one
subnet must correspond to output areas in the
other. Up to 128 byte can be consistently trans-
mitted. If the page with input data fails, the cor-
responding output data on the other page are
held at their last value.

The DP/DP coupler is configured and parame-
terized using STEP 7. A GSD file is available
for operation on non-Siemens masters.

Connection of PROFIBUS DP
to PROFIBUS PA

PROFIBUS PA (Process Automation) is a bus
system for process engineering in intrinsically-
safe areas (Ex area Zone 1) e.g. in the chemical
industry, as well as in non-intrinsically-safe
areas such as the food and drinks industry.

The protocol for PROFIBUS PA is based on the
EN 50170 standard, Volume 2 (PROFIBUS
DP), and the transmission method is based on
IEC 1158-2.

There are two possible methods of connecting
PROFIBUS DP to PROFIBUS PA:

b DP/PA coupler, if the PROFIBUS DP net-
work can be operated at 45.45 kbits/s

b DP/PA link that converts the data transfer
rates of PROFIBUS DP to the transfer rate
of PROFIBUS PA

The DP/PA coupler enables connection of PA
field devices to PROFIBUS DP. On PROFI-
BUS DP, the DP/PA coupler is a DP slave oper-
ated at 45.45 kbits/s. Up to 31 PA field devices
can be connected to one DP/PA coupler. These
field devices form a PROFIBUS PA segment
with a data transfer rate of 31.25 kbits/s. Taken
together, all PROFIBUS PA segments form a
shared PROFIBUS PA bus system.

The DP/PA coupler is available in two variants:
a non-Ex version with up to 400 mA output cur-
rent and an Ex version with up to 100 mA out-
put current.

The DP/PA link enables connection of PA field
devices to PROFIBUS DP at a data transfer rate
of 9.6 kbits/s to 12 Mbits/s. A DP/PA link con-
sists of an IM 157 interface module and up to 5
DP/PA couplers linked together via SIMATIC
S7 bus connectors. It takes the bus system com-
prising all the PROFIBUS PA segments and
maps it to a PROFIBUS DP slave. You can con-
nect up to 31 PA field devices per DP/PA link.

SIMATIC PDM (Process Device Manager,
previously SIPROM) is a vendor-independent
tool for parameterizing, startup and diagnostics
of intelligent field devices with PROFIBUS PA
or HART functionality. The DDL (Device
Description Language) is available for parame-
terizing HART transducers (Highway Address-
able Remote Transducers).

1 SIMATIC S7-300/400 Programmable Controller

36

With STEP 7 V5.1 SP3 and higher, the I&C
modules are parameterized with the hardware
configuration; you must not use SIMATIC
PDM any more.

Connection of PROFIBUS DP
to AS-Interface

A DP/AS-Interface link enables connection of
the PROFIBUS DP to the AS-Interface. On
PROFIBUS DP, the link is a modular DP slave
with a transmission rate of up to 12 Mbit/s and
IP 20 degree of protection. On the AS-Interface,
it is an AS-i master which controls the AS-i
slaves. The link is available in the versions
DP/AS-i Link 20E and DP/AS-i Link Advanced.
The following AS-i slaves can be controlled:

b Standard slaves, AS-i analog slaves

b Slaves with extended addressing mode (A/B
slaves)

b Slaves with data transfer mechanisms ac-
cording to AS-i specification V3.0 (DP/AS-i
Link Advanced)

Connection of PROFIBUS DP to a Serial
Interface

The PROFIBUS DP/RS 232C link is a con-
verter between an RS 232C (V.24) interface and
PROFIBUS DP. Devices with an RS 232C
interface can be connected to PROFIBUS DP
with the DP/RS 232C link. The DP/RS 232C
link supports the 3964R and free ASCII proto-
col procedures.

The PROFIBUS DP/RS 232C link is connected
to the device via a point-to-point connection.
Conversion to the PROFIBUS DP protocol
takes place in the PROFIBUS DP/RS 232C
link. The data are transferred consistently in
both directions. Up to 224 bytes of user data are
transmitted per frame.

The data transfer rate on PROFIBUS DP can be
up to 12 Mbits/s; RS 232C can be operated at
up to 38.4 kbits/s with no parity, even or odd
parity, 8 data bits and 1 stop bit.

Connection of two PROFINET subnets

With the PN/PN coupler, you interconnect two
Ethernet subnets in order to exchange data be-
tween the IO controllers of both subnets. There
is galvanic isolation between the subnets.

The PN/PN coupler is a 120-mm-wide module
that is installed on a DIN rail. The subnets are
connected using RJ45 connectors. Two connec-
tions with internal switch function are available
for each subnet.

From the viewpoint of the relevant IO control-
ler, the PN/PN coupler is an IO device in its
own PROFINET IO system. Both IO devices
are linked by a data transfer area with 256 input
bytes and 256 output bytes, divisible into a
maximum of 16 areas. Input areas in one subnet
must correspond to output areas in the other.

The PN/PN coupler is configured and parame-
terized with STEP 7. A GSDML file is avail-
able for other configuring tools.

Figure 1.7 Routers

DP/PA
Link

DP/DP
coupler

IE/AS i
Link

DP/AS i
Link

PROFIBU S DP

PROFIBUS DP PROFINET IO PROFINET IO

PROFIBUS PA serial couplingPROFIBUS PA AS-Interface AS-Interface

IE/PB
Link

PN/PN coupler

DP/PA
coupler

DP/RS232C
Link

1.3 Communications

37

Connection of PROFINET IO
to PROFIBUS DP

You can use the IE/PB Link PNIO to connect
the Industrial Ethernet and PROFIBUS sub-
nets. If you are using PROFINET IO, the IE/PB
Link PNIO takes over the role of a proxy for the
DP slaves on the PROFIBUS. An IO controller
can access both DP slaves and IO devices over
the IE/PB Link. In standard mode, the IE/PB
Link allows PG/OP communication and S7
routing between subnets.

The IE/PB Link PNIO is a double-width mod-
ule of S7-300 design. You can connect the
IE/PB Link to Industrial Ethernet using an 8-
pole RJ45 female connector and to PROFIBUS
using a 9-pole SUB-D female connector.

The IE/PB Link is configured using STEP 7 as
the IO device, to which a DP master system is
connected. When switching on, the IO control-
ler also provides the subordinate DP slaves with
the configuration data.

Please note that limitations exist on the PROFI-
BUS DP following an IE/PB Link. For exam-
ple, you cannot connect a DP/PA Link, the DP
segment has no CiR capability, and isochronous
mode cannot be configured.

Connection of PROFINET IO to
AS-Interface

An IE/AS-i Link enables the connection of
PROFINET IO to the AS-Interface. On PROFI-
NET IO, the link is an IO Device. On the AS-In-
terface, it is the AS-i master that controls the
AS-i slaves. The IO controller can access the
individual binary and analog values of the AS-
i slaves directly.

Connection to PROFINET is made via two
RJ45 connectors with internal switch function.
The AS-Interface bus is connected to 4-pin
plug-in screw-type contacts.

The link is available in single or double master
versions (in accordance with AS-Interface
specification V3.0) for connection of 62 AS-i
slaves each plus integral analog value transmis-
sion. The following AS-i slaves can be con-
trolled:

b Standard slaves, AS-i analog slaves

b Slaves with extended addressing range (A/B
slaves)

b Slaves with data transfer mechanisms in ac-
cordance with AS-i specification V3.0

The IE/AS-i link is configured and parameter-
ized using STEP 7. A GSDML file is available
for other configuration tools.

1.3 Communications

Communications – data exchange between pro-
grammable modules – is an integral component
of SIMATIC S7. Almost all communications
functions are handled via the operating system.
You can exchange data without any additional
hardware and with just one connecting cable
between the two CPUs. If you use CP modules,
you can achieve powerful network links and the
facility of linking to non-Siemens systems.

SIMATIC NET is the umbrella term for
SIMATIC communications. It represents infor-
mation exchange between programmable con-
trollers and between programmable controllers
and human machine interface devices. There
are various communications paths available
depending on performance requirements.

1.3.1 Introduction

The most significant communications objects
are initially SIMATIC stations or non-Siemens
devices between which you want to exchange
data. You require modules with communica-
tions capability here. With SIMATIC S7, all
CPUs have an MPI interface over which they
can handle communications.

In addition, there are communications proces-
sors (CPs) available that enable data exchange
at higher throughput rates and with different
protocols. You must link these modules via net-
works. A network is the hardware connection
between communication nodes.

Data is exchanged via a “connection” in accor-
dance with a specific execution plan (“commu-
nications service”) which is based, among other
things, on a specific coordination procedure
(“protocol”). S7 connection is the standard
between S7 modules with communications
capability, for example.

1 SIMATIC S7-300/400 Programmable Controller

38

Figure 1.8 uses the example of an S7 connec-
tion to show the objects involved in communi-
cation between two stations. In the user pro-
gram of the left station, the data to be transmit-
ted are present in a data block (DB). In the ex-
ample, the communications function is a
system function block (SFB). You assign a
pointer to the RD parameter for the data to be
transmitted, and trigger the transmission from
the program. The communications function is
additionally assigned a connection ID with
which the used connection is specified. The
connection occupies one connection resource
in the CPU’s system memory. The data are sent
via the module’s bus interface, e.g. to a CP
module in another station. Connection resourc-
es are occupied in both the CP module and the
CPU. As a result of the connection ID (and the
configured connection path), the communica-
tions function “recognizes” the data addressed
to it in the receiver station, and writes these by
means of the pointer in the RD parameter to the
data block of the user program.

Network

A network is a connection between several
devices for the purpose of communication. It
comprises one or more identical or different
subnets linked together.

Subnet

In a subnet, all the communications nodes are
linked via a hardware connection with uniform
physical characteristics and transmission
parameters, such as the data transfer rate, and
they exchange data via a shared transmission
procedure. SIMATIC recognizes MPI,
PROFIBUS, Industrial Ethernet and point-to-
point connection (PTP) as subnets.

Communications service

A communications service determines how the
data are exchanged between communications
nodes and how the data are to be handled. It is
based on a protocol that describes, amongst
other things, the coordination procedure
between the communications nodes.

The services most frequently used with SI-
MATIC are: PG communication, OP communi-
cation, S7 basic communication, S7 communi-
cation, global data communication, PtP com-
munication, S5-compatible communication
(SEND/RECEIVE interface).

Connection

A connection defines the communications rela-
tionships between two communications nodes.
It is the logical assignment of two nodes for the
execution of a specific communications service
and also contains special characteristics such as

Figure 1.8 Data Exchange Between Two SIMATIC S7 Stations

1.3 Communications

39

the type of connection (dynamic, static) and
how it is established.

SIMATIC recognizes the following connection
types: S7 connection, S7 connection (fault-tol-
erant), point-to-point connection, FMS and
FDL connection, ISO transport connection,
ISO-on-TCP and TCP connection, UDP con-
nection and e-mail connection.

Communications functions

The communications functions are the user pro-
gram’s interface to the communications ser-
vice. For SIMATIC S7-internal communica-
tions, the communications functions are inte-
grated in the operating system of the CPU and
they are called via system blocks. Loadable
blocks are available for communication with
non-Siemens devices via communications pro-
cessors.

Overview of communications objects

Table 1.1 shows the relationships between sub-
nets, modules with communications capability
and communications services. PG/OP commu-
nication over the MPI, PROFIBUS and Indus-
trial Ethernet subnets is possible in addition to
the communications services shown.

1.3.2 Subnets

Subnets are communications paths with the
same physical characteristics and the same
communications procedure. Subnets are the
central objects for communication in the
SIMATIC Manager.

The subnets differ in their performance capabil-
ity:

b MPI
Low-cost method of networking a few
SIMATIC devices with small data volumes.

b PROFIBUS
High-speed exchange of small and mid-
range volumes of data, used primarily with
distributed I/O

b Industrial Ethernet
Communications between computers and
programmable controllers for high-speed
exchange of large volumes of data, also
used with distributed I/O (PROFINET IO)

b Point-to-point (PTP)
Serial link between two communications
partners with special protocols

From STEP 7 V5, you can use a programming
device to reach SIMATIC S7 stations via sub-
nets, for the purposes of, say, programming or
parameterizing. The gateways between the sub-
nets must be located in an S7 station with “rout-
ing capability”.

MPI

Every CPU has an “interface with multipoint
capability” (multipoint interface, or MPI). It
enables establishment of subnets in which
CPUs, human machine interface devices and
programming devices can exchange data with
each other. Data exchange is handled via a
Siemens proprietary protocol.

The maximum number of nodes on the MPI
network is 32. Each node has access to the bus
for a specific length of time and may send data
frames. After this time, it passes the access
rights to the next node (“token passing” access
procedure).

As transmission medium, MPI uses either a
shielded twisted-pair cable or a glass or plastic
fiber-optic cable. The maximum cable length in
a bus segment with non-electrically isolated
interfaces can be up to 50 m depending on the
transmission rate, and up to 1000 m with electri-
cally isolated interfaces. This can be increased
by inserting RS-485 repeaters (up to 1100 m) or
optical link modules (up to > 100 km). The data
transfer rate is usually 187.5 kbits/s.

Over the MPI network, you can exchange data
between CPUs with global data communica-
tions, station-external S7 basic communica-
tions or S7 communications. No additional
modules are required.

PROFIBUS

PROFIBUS stands for “Process Fieldbus” and
is a vendor-independent standard complying
with IEC 61158/EN 50170 for universal auto-
mation (PROFIBUS DP and PROFIBUS FMS)
and IEC 61158-2 for process automation (PRO-
FIBUS PA).

The maximum number of nodes in a PROFI-
BUS network is 127, where the network is

1 SIMATIC S7-300/400 Programmable Controller

40

Table 1.1 Communications Objects

Subnet Modules Communications Service, Connection Configuring, Interface

MPI All CPUs Global data communication GD table

Station-external S7 basic communications SFC calls

S7 communications Connection table,
FB/SFB calls

PROFI-
BUS

CPUs with
DP interface

PROFIBUS DP
(DP master or DP slave)

Hardware configuration,
SFB/SFC calls,
inputs/outputs

Station-internal S7 basic communications SFC calls

IM 467 PROFIBUS DP (DP master) Hardware configuration,
SFB/SFC calls,
inputs/outputs

Station-internal S7 basic communications SFC calls

CP 342-5
CP 443-5 Extended

CP 342-5: PROFIBUS DP-V0
CP 433-5 Ext.: PROFIBUS DP-V1
(DP master or DP slave)

Hardware configuration,
SFB/SFC calls,
inputs/outputs

Station-internal S7 basic communications SFC calls

S7 communications Connection table,
FB/SFB calls

S5-compatible communications NCM, connection table,
SEND/RECEIVE

CP 343-5
CP 443-5 Basic

Station-internal S7 basic communications SFC calls

S7 communications Connection table,
FB/SFB calls

S5-compatible communications NCM, connection table,
SEND/RECEIVE

PROFIBUS FMS NCM, connection table,
FMS interface

Industrial
Ethernet

CPUs with
PN interface

PROFINET IO
(IO controller)

Hardware configuration,
SFB/SFC calls,
inputs/outputs

IE communications FB calls

CP 343-1 Lean
CP 343-1
CP 443-1

S7 communications Connection table,
FB/SFB calls

S5-compatible communications
Transport protocols TCP/IP and UDP,
also ISO with CP 443-1

NCM, connection table,
SEND/RECEIVE

CP 343-1 IT
CP 443-1 Advanced
CP 443-1 IT

S7 communications Connection table,
FB/SFB calls

S5-compatible communications
Transport protocols TCP/IP and UDP
also ISO with CP 443-1

NCM, connection table,
SEND/RECEIVE

IT communication
(HTTP, FTP, e-mail)

NCM, connection table,
SEND/RECEIVE

CP 343-1 PN S7 communications Connection table,
FB/SFB calls

S5-compatible communications
Transport protocols TCP and UDP

NCM, connection table,
SEND/RECEIVE

NCM is the configuring software for the CP modules (integrated in STEP 7 from V5 2 and higher)

1.3 Communications

41

divided into segments with up to 32 nodes. A
distinction is made between active and passive
nodes. An active node receives access rights to
the bus for a specific length of time and may
send data frames. After this time, it passes the
access rights to the next node (“token passing”
access procedure). If passive nodes (slaves) are
assigned to an active node (master), the master
executes data exchange with the slaves
assigned to it while it is in possession of the
access rights. A passive node does not receive
access rights.

The physical connection of the PROFIBUS net-
work can be electrical, optical or wireless with
various data transmission rates. The length of a
segment depends on the transmission rate. The
electrical network can have a bus or tree topolo-
gy. It uses a shielded, twisted two-wire cable
(RS485 interface). The transmission rate can be
adjusted in steps from 9.6 kbit/s to 12 Mbit/s
(31.25 kbit/s with PROFIBUS PA).

The optical network uses either plastic, PCF or
glass fiber-optic cables. This is suitable for
large distances, provides electrical isolation,
and is insensitive to electromagnetic influenc-
es. The transmission rate can be adjusted in
steps from 9.6 kbit/s to 12 Mbit/s. With optical
link modules (OLMs), it is possible to produce
a line, ring or star topology. An OLM also en-
ables connection between electrical and optical
networks with a mixed design. A cost-opti-
mized version is the design as a line topology
with integral interface and optical bus terminal
(OBT).

Single or multiple PROFIBUS slaves or seg-
ments with PROFIBUS slaves can be linked by
a wireless connection when using the PROFI-
BUS infrared link module (ILM). With a maxi-
mum transmission rate of 1.5 Mbit/s and a max-
imum range of 15 m, communication is possi-
ble with moving parts.

You implement connection of distributed I/O
via a PROFIBUS network; the relevant PROFI-
BUS DP communications service is implicit.
You can use either CPUs with integral or plug-
in DP master, or the relevant CPs. You can also
operate station-internal S7 basic communica-
tions or S7 communications via this network.

You can transfer data with PROFIBUS-FMS
and PROFIBUS-FDL using the relevant CPs.

There are loadable blocks (FMS interface or
SEND/RECEIVE interface) available as the
interface to the user program.

Industrial Ethernet

Industrial Ethernet is the subnet for connecting
computers and programmable controllers, with
focus on the industrial area, defined by the in-
ternational standard IEEE 802.3/802.3u. The
standards IEEE 802.11 a/b/g/h define the con-
nection to wireless local area networks (WLAN)
and Industrial Wireless LANs (IWLAN).

The number of nodes which can be networked
with Industrial Ethernet is unlimited; up to
1024 nodes are permitted per segment. Before
accessing, each node checks to see if another
node is currently transmitting. If this is the case,
the node waits for a random time before at-
tempting another access (CSMA/CD access
procedure). All nodes have equal access rights.

The physical connections with Industrial Ether-
net consist of point-to-point connections
between the communication nodes: each node
is connected to exactly one peer. To enable sev-
eral nodes to communicate with one another,
they are connected to a “distributor” (switch or
hub) which has several connections.

A switch is an active bus element which regen-
erates the received signals, assigns them priori-
ties, and only distributes them to the devices
connected to it. A hub adjusts itself to the low-
est transmission rate at the connections and
passes on all signals without priority to all con-
nected devices.

The network can be configured as a line, star,
tree, or ring topology. The transmission rates
are 10 Mbit/s, 100 Mbit/s (Fast Ethernet) or
1000 Mbit/s (Gigabit Ethernet, not with PRO-
FINET).

Industrial Ethernet can be designed physically
as an electrical, optical, or wireless network.
FastConnect Twisted Pair cables (FC TP) with
RJ45 connections or Industrial Twisted Pair
cables (ITP) with sub-D-connections are avail-
able for electrical cabling. Fiber-optic cables
(FOC) can be glass-fiber, PCF, or POF. These
offer galvanic isolation, are insensitive to elec-
tromagnetic interferences, and are suitable for
long distances. Wireless transmission uses fre-
quencies of 2.4 GHz and 5 GHz, with transmis-

1 SIMATIC S7-300/400 Programmable Controller

42

sion rates up to 54 Mbit/s (depending on coun-
try approval).

You can exchange data with S7 and IE commu-
nications via Industrial Ethernet and you can
use the S7 functions. With appropriately
designed modules, you can also establish ISO
transport connections, ISO-on-TCP connec-
tions, TCP, UDP and e-mail connections.

PROFINET

PROFINET is the open Industrial Ethernet
standard of PROFIBUS International (PNO).
PROFINET uses the Industrial Ethernet subnet
as the physical medium for data transmission,
and takes into account the requirements of in-
dustrial automation. For example, PROFINET
provides real-time (RT) communication with
field devices, and isochronous real-time (IRT)
properties for motion control. Compatibility
with TCP/IP and the IT standards of Industrial
Ethernet is retained.

Siemens applies PROFINET in two automation
concepts:

b Component Based Automation (CBA) uses
PROFINET for communication between
control devices as components in distribut-
ed systems. The configuration tool is
SIMATIC iMap.

b PROFINET IO uses PROFINET to transmit
data to and from field devices (distributed
I/O. The configuration tool is SIMATIC
STEP 7.

Point-to-point connection

A point-to-point connection (PTP) enables data
exchange via a serial link. A point-to-point con-
nection is handled by the SIMATIC Manager as
a subnet and configured similarly.

The transmission medium is an electrical cable
with interface-dependent assignment. RS 232C
(V.24), 20 mA (TTY) and RS 422/485 are avail-
able as interfaces. The data transfer rate is in the
range 300 bits/s to 19.2 kbits/s with a 20 mA
interface or 76.8 kbits/s with RS 232C and RS
422/485. The cable length depends on the phys-
ical interface and the data transfer rate; it is
10 m with RS 232C, 1000 m with a 20 mA
interface at 9.6 kbits/s and 1200 with RS
422/485 at 19.2 kbits/s.

3964 (R), RK 512, printer drivers and an ASCII
driver are available as protocols (procedures),
the latter enabling definition of user-specific
procedures.

AS-Interface

The AS-Interface (actuator/sensor interface,
AS-i) networks the appropriately designed
binary sensors and actuators in accordance with
the AS-Interface specification IEC TG 178.
The AS-Interface does not appear in the
SIMATIC Manager as a subnet; only the AS-I
master is configured with the hardware config-
uration or with the network configuration.

The transmission medium is an unshielded
twisted-pair cable that supplies the actuators
and sensors with both data and power (power
supply required). Network range can be up to
600 m with repeaters and extension plugs. The
data transfer rate is set at 167 kbits/s.

A master controls up to 62 slaves through
cyclic scanning and so guarantees a defined
response time.

1.3.3 Communications Services

Data exchange over the subnets is controlled by
different communications services – depending
on the connection selected. The services are
provided by the CPU or CP modules. In addi-
tion to communication with field devices
(PROFIBUS DP, PROFIBUS PA and PROFI-
NET IO, see Chapters 1.2.1 “PROFIBUS DP”
and 1.2.2 “PROFINET IO”), the services de-
scribed below are available depending on the
module used.

PG communication

PG communication is used to exchange data
between an engineering station and a
SIMATIC station. It is used, for example, by
a programming device in online mode to ex-
ecute the “Monitor variables” or “Read diag-
nostics buffer” functions or to download user
programs. The communications functions re-
quired for PG communication are integrated in
the operating system of the SIMATIC modules.
PG communication can be executed over the
MPI, PROFIBUS and Industrial Ethernet sub-

1.3 Communications

43

nets. Using S7 routing, PG communication can
also be used cross-subnet.

OP communication

OP communication is used to exchange data
between an operator station and a SIMATIC
station. It is used, for example, by an HMI
device for operation and monitoring or for
reading and writing variables. The communi-
cations functions required for OP communica-
tion are integrated in the operating system of
the SIMATIC modules. OP communication can
be executed over the MPI, PROFIBUS and In-
dustrial Ethernet subnets.

S7 basic communication

S7 basic communication is an event-driven ser-
vice for exchanging smaller quantities of data
between a CPU and a module in the same SI-
MATIC station (“station-internal”) or between a
CPU and a module in a different SIMATIC sta-
tion (“station-external”). The connections are es-
tablished dynamically as required. The commu-
nications functions required for S7 basic com-
munication are integrated in the CPU’s operating
system. They can trigger data transmission, for
example using system functions SFC in the user
program. Station-internal S7 basic communica-
tion is executed over PROFIBUS, station-exter-
nal over MPI.

S7 communication

S7 communication is an event-driven service for
exchanging larger quantities of data between
CPU modules with control and monitoring func-
tions. The connections are static, and are config-
ured using STEP 7. The communications func-
tions required for S7 communication are either
integrated in the CPU’s operating system (sys-
tem function blocks SFB) or are loadable func-
tion blocks (FB). S7 communication can be ex-
ecuted over the MPI, PROFIBUS and Industri-
al Ethernet subnets.

IE communication

By means of “Open communication over
Industrial Ethernet” (in short IE communica-
tion), you can transmit data between two

devices connected to the Ethernet subnet. Com-
munication can be implemented using the pro-
tocols TCP native in accordance with RFC 793,
ISO-on-TCP in accordance with RFC 1006, or
UDP in accordance with RFC 768. The com-
munication functions are loadable function
blocks (FB) which are available in STEP 7 in
the Standard Library under Communication
Blocks. The function blocks are called in the
main program and control the establishment
and clearance of connections as well as data
transmission.

Global data communication

Global data communication enables exchange
of small volumes of data between several CPUs
without additional programming overhead in
the user program. Transfer can be cyclic or
event-driven. The communications functions re-
quired are integrated in the CPU’s operating sys-
tem. Global data communication is possible
over the MPI bus or C bus.

PTP communication

PTP communication (point-to-point) transmits
data over a serial interface, e.g. between a
SIMATIC station and a printer. The communi-
cations functions required are integrated in the
operating system, e.g. as system function
blocks SFB. Data exchange is possible using
various transmission procedures.

S5-compatible communication

S5-compatible communication is an event-
driven service for data transmission between
SIMATIC stations and third-party stations. The
connections are static, and are configured using
STEP 7. The communications functions are
usually loadable functions FC with which you
can control the transmission from the user pro-
gram. Data are sent and received over the
SEND/RECEIVE interface, and can be fetched
and written over the FETCH/WRITE interface
(S7 is the passive partner). S5-compatible com-
munication with Industrial Ethernet can take
place over the TCP, ISO-on-TCP, ISO-Trans-
port and UDP connections, and with
PROFIBUS over FDL.

1 SIMATIC S7-300/400 Programmable Controller

44

Standard communication

Standard communication is carried out with
standardized, cross-vendor protocols for data
transmission.

PROFIBUS FMS (Fieldbus Message Specifi-
cation) provides services for program-driven,
device-independent transfer of structured vari-
ables (FMS variables) in accordance with
EN 50170 Volume 2. Data exchange takes
place with static FMS connections over a PRO-
FIBUS subnet. The communications functions
are loadable function blocks FB with which you
can control the transmission from the user pro-
gram.

An IT communications processor provides a
SIMATIC station with interfacing to the IT
communication. Transmission over Industrial
Ethernet comprises PG/OP/S7 communication
and S5-compatible communication (SEND/
RECEIVE) with the ISO, TCP/IP and UPD
transport protocols. SMTP (Simple Mail Trans-
fer Protocol) for e-mail, HTTP (Hyper Text
Transfer Protocol) for access with Web brows-
ers, and FTP (File Transfer Protocol) can addi-
tionally be used for program-driven data ex-
change with devices with different operating
systems.

1.3.4 Connections

A connection is either dynamic or static
depending on the communications service
selected. Dynamic connections are not config-
ured; their buildup or cleardown is event-driven
(“Communications via non-configured connec-
tions”). There can only ever be one non-config-
ured connection to a communications partner.

Static connections are configured in the con-
nection table; they are built up at startup and
remain throughout the entire program execu-
tion (“communications via configured connec-
tions”). Several connections can be established
in parallel to one communications partner. You
use a “Connection type” to select the desired
communications service in the network config-
uration (see Chapter 2.4 “Configuring the Net-
work”).

You do not need to configure connections with
the network configuration for global data com-

munications and PROFIBUS DP or for SFC
communications in the case of S7 functions.
You define the communications partners for
global data communications in the global data
table; in the case of PROFIBUS DP and S7
basic communications, you define the partners
via the node addresses.

Connection resources

Each connection requires connection resources
on the participating communications partner
for the end point of the connection or the tran-
sition point in a CP module. If, for example, S7
functions are executed via a bus interface of the
CPU, a connection is assigned in the CPU; the
same functions via the MPI interface of the CP
occupy one connection in the CP and one con-
nection in the CPU.

Each CPU has a specific number of possible
connections. Limitations and rules exist with
respect to the usability of the connection
resources. Not every connection resource can
be used e.g. for every type of connection. One
connection is reserved for a programming
device and one connection for an OP (these
cannot be used for any other purpose).

Connection resources are also required tempo-
rarily for the “non-configured connections” in
S7 basic communications.

1.4 Module Addresses

1.4.1 Signal Path

When you wire your machine or plant, you de-
termine which signals are connected where on
the programmable controller (Figure 1.9).

An input signal, for example the signal from
momentary-contact switch +HP01-S10, the one
for “Switch motor on”, is run to an input mod-
ule, where it is connected to a specific terminal.
This terminal has an “address” called the I/O
address (for instance byte 5, bit 2).

Before every program execution start, the CPU
then automatically copies the signal to the pro-
cess input image, where it is then accessed as an
“input” address (I 6.2, for example). The
expression “I 5.2” is the absolute address.

1.4 Module Addresses

45

You can now give this input a name by assign-
ing an alphanumeric symbol corresponding to
this input signal (such as “Switch motor on”) to
the absolute address in the symbol table. The
expression “Switch motor on” is the symbolic
address.

1.4.2 Slot Address

Every slot has a fixed address in the program-
mable controller (an S7 station). This slot
address consists of the number of the mounting
rack and the number of the slot. A module is
uniquely described using the slot address
(“geographical address”).

If the module contains interface cards, each of
these cards is also assigned a submodule

address. In this way, each binary and analog
signal and each serial connection in the system
has its own unique address.

Correspondingly, distributed I/O modules also
have a “geographical address”. In this case, the
number of the DP master system or the PROFI-
NET IO system and the station number replace
the rack number.

You use STEP 7's “Hardware Configuration”
tool to plan the hardware configuration of an S7
station as per the physical location of the mod-
ules. This tool also makes it possible to set the
module start addresses and parameterize the
modules (see Chapter 2.3 “Configuring Sta-
tions”).

Figure 1.9 Correlation between Module Address, Absolute Address and Symbolic Address
(Path of a Signal from Sensor to Scanning in the Program)

+HP01
S10

Automation system

User program (SCL)User program (STL)

A “ Switch on motor ” AND “Switch on motor ”

A I 5.2 AND I 5.2

Symbolic
addressing

Absolute
addressing

SymbolSlot AddressType Data typeI address
Symbol tableConfiguration table

Switch on motor5 I 5.2DI 16 BOOL4

7 6 5 4 3 2 1 0
Byte 4

Byte 5

Absolute
address

Process
image input

00

77
00

77

Byte 4Byte n

Byte 5Byte n+1

I/O
range

Input
module

Module
starting address

Slot
address

1 SIMATIC S7-300/400 Programmable Controller

46

1.4.3 Logical Address

The logical address corresponds to the absolute
address. It is also referred to as the user data ad-
dress, since you can use it to address the user
data of the input/output modules in the user
program, either using the process image (inputs
I and outputs Q) or directly on the modules (pe-
ripheral inputs PI and peripheral outputs PQ).
The range of logical addresses starts at zero and
ends at a CPU-specific upper limit.

In the case of digital modules, the individual
signals (bits) are bundled into groups of eight
called “bytes”. There are modules with one,
two or four bytes. These bytes have the relative
addresses 0, 1, 2 and 3; addressing of the bytes
begins at the module start address. Example: In
the case of a digital module with four bytes and
the start address 8, the individual bytes are ac-
cessed by addresses 8, 9, 10 and 11. In the case
of analog modules, the individual analog sig-
nals (voltages, currents) are called “channels”,
each of which occupies two bytes. Analog
modules are available, depending on design,
with 2, 4, 8 and 16 channels, corresponding to
4, 8, 16 or 32 bytes of address.

By means of the hardware configuration, you
assign a logical address to each byte of a used
module. As standard, addresses are assigned
starting with zero; however, you can change the
proposed address. The logical addresses of the
individual modules must not overlap. The logi-
cal addresses are assigned separately for the in-
put and output modules, meaning that an input
byte can have the same number as an output
byte.

The user data of the distributed I/O can also be
addressed byte-by-byte using a logical address.
In order to guarantee unambiguous assignment
of all user data of a CPU (or more exactly: all us-
er data on a P bus), the logical addresses of the
distributed I/O must not overlap with the logical
addresses of the central modules.

The digital modules are usually arranged
according to address in the process image so
that their signal states can be automatically
updated and they can be accessed with the
address areas “Input” and “Output”. Analog
modules, FMs and CPs receive an address that
is not in the process image.

1.4.4 Module Start Address

The module start address is the smallest logical
(user data) address of a module; it identifies the
relative byte zero of the module. The subse-
quent module bytes are then assigned consecu-
tive addresses.

In the case of mixed modules having input and
output areas, the lower area start address is de-
fined as the module start address. If the input
and output areas have the same start address,
use the input address.

By means of the hardware configuration, you
define the position of the user data addresses in
the CPU’s address volume through specifica-
tion of the module start address. The module
start address is also the lowest logical address
in the modules of the distributed I/O and even
for the virtual slots in the transfer memory of an
intelligent DP slave.

The module start address serves in many cases
to identify a module. It has no particular signif-
icance in addition to this.

1.4.5 Diagnostics Address

Appropriately equipped modules can supply
diagnostics data that you can evaluate in your
program. If centralized modules have a user
data address (module start address), you access
the module via this address when reading the
diagnostics data. If the modules have no user
data address (e.g. power supplies), or if they are
part of the distributed I/O, there is a diagnostics
address for this purpose.

The diagnostics address is always an address in
the I/O input area and occupies one byte. The
user data length of this address is zero; if it is
located in the process image, as is permitted, it
is not taken into account by the CPU when
updating the process image.

STEP 7 automatically assigns the diagnostics
address counting down from the highest possi-
ble I/O address. You can change the diagnostics
address with the Hardware Configuration func-
tion.

The diagnostics data can only be read with
special system functions; accessing this address
with load statements has no effect (see also
Chapter 20.4 “Communication via Distributed
I/O”).

1.5 Address Areas

47

1.4.6 Addresses for Bus Nodes

MPI

Modules that are nodes on an MPI network
(CPUs, FMs and CPs) also have an MPI
address. This address is decisive for the link to
programming devices, human machine inter-
face devices and for global data communica-
tions.

Please note that with older revision levels of the
S7-300 CPUs, the FM and CP modules oper-
ated in the same station receive an MPI address
derived from the MPI address of the CPU. In
the case of newer S7-300 CPUs, the MPI
addresses of FM and CP modules in the same
station can be determined independently of the
MPI address of the CPU.

PROFIBUS DP

Every DP station (e.g. DP master, DP slave,
programming device) on the PROFIBUS also
has a node address (station number) with
which it can be unambiguously addressed on
the bus.

PROFINET IO

Nodes on Industrial Ethernet have a factory-set
MAC address which is unambiguous world-
wide. An IP address is additionally necessary
for identification on the bus, and is configured
for the IO controller. The IP addresses for the
IO devices are derived from the IP address of
the IO controller. The IO controller (the inter-
face) and each IO device is additionally as-
signed a device name. The IO device is ad-
dressed from the user program by means of a
device number (station number).

1.5 Address Areas

The address areas available in every program-
mable controller are

b the peripheral inputs and outputs

b the process input image and the process out-
put image

b the bit memory area

b the timer and counter functions (see Chap-
ters 7 “Timer Functions” and 8 “Counter
Functions”)

b the L stack (see Chapter 18.1.5 “Temporary
Local Data”)

To this are added the code and data blocks with
the block-local variables, depending on the user
program.

1.5.1 User Data Area

In SIMATIC S7, each module can have two
address areas: a user data area, which can be
directly addressed with Load and Transfer state-
ments, and a system data area for transferring data
records.

When modules are accessed, it makes no differ-
ence whether they are in racks with centralized
configuration or used as distributed I/O. All mod-
ules occupy the same (logical) address space.

A module’s user data properties depend on the
module type. In the case of signal modules,
they are either digital or analog input/output
signals, and in the case of function modules and
communications processors, they might, for
example, be control or status information. The
volume of user data is module-specific. There
are modules that occupy one, two, four or more
bytes in this area. Addressing always begins at
relative byte 0. The address of byte 0 is the
module start address; it is stipulated in the con-
figuration table.

The user data represent the I/O address area,
subdivided, depending on the direction of
transfer, into peripheral inputs (PIs) and periph-
eral outputs (PQs). If the user data are in the
area of the process images, the CPU automati-
cally handles the transfers when updating the
process images.

Peripheral inputs

You use the peripheral input (PI) address area
when you read from the user data area on input
modules. Part of the PI address area leads to the
process image. This part always begins at I/O
address 0; the length of the area is CPU-specific.

With a Direct I/O Read operation, you can
access the modules whose interfaces do not

1 SIMATIC S7-300/400 Programmable Controller

48

lead to the process input image (for instance
analog input modules). The signal states of
modules that lead to the process input image
can also be read with a Direct Read operation.
The momentary signal states of the input bits
are then scanned. Please note that this signal
state may differ from the relevant inputs in the
process image since the process input image is
updated at the beginning of the program scan.

Peripheral inputs may occupy the same abso-
lute addresses as peripheral outputs.

Peripheral outputs

You use the peripheral output (PQ) address area
when you write values to the user data area on
an output module. Part of the PQ address area
leads to the process image. This part always
begins at I/O address 0; the length of the area is
CPU-specific.

With a Direct I/O Write operation, you can
access modules whose interfaces do not lead to
the process output image (such as analog output
modules). The signal states of modules con-
trolled by the process output image can also be
directly affected. The signal states of the output
bits then change immediately. Please note that a
Direct I/O Write operation also updates the sig-
nal states of the relevant modules in the process
output image! Thus, there is no difference
between the process output image and the sig-
nal states on the output modules.

Peripheral outputs can reserve the same abso-
lute addresses as peripheral inputs.

1.5.2 Process Image

The process image contains the image of the
digital input and output modules and is there-
fore organized into a process image input and
process image output. You address the process
image input via the operand range I inputs and
the process image output via the operand range
Q outputs. In general, the machine or process is
controlled via the inputs and the outputs.

The process image can be subdivided into sub-
sidiary process images that can be updated
either automatically or via the user program.
Please refer to Chapter 20.2.1 “Process Image
Updating”.

On the S7-300 CPUs and, from 10/98, also on
S7-400 CPUs, you can use the addresses of the
process image not occupied by modules as
additional memory area similar to the bit mem-
ory area. This applies both for the process input
image and the process output image.

On suitably equipped CPUs, say, the CPU 417,
the size of the process image can be parameter-
ized. If you enlarge the process image, you
reduce the size of the work memory accordingly.
Following a change to the size of the process
image, the CPU executes initialization of the
work memory, with the same effect as a cold
restart.

Inputs

An input is an image of the corresponding bit
on a digital input module. Scanning an input is
the same as scanning the bit on the module
itself. Prior to program execution in every pro-
gram cycle, the CPU’s operating system copies
the signal state from the module to the process
input image.

The use of a process input image has many
advantages:

b Inputs can be scanned and linked bit by bit
(I/O bits cannot be directly addressed).

b Scanning an input is much faster than
accessing an input module (for example,
you avoid the transient recovery time on the
I/O bus, and the system memory response
times are shorter than the module’s response
times). The program is therefore executed
that much more quickly.

b The signal state of an input is the same
throughout the entire program cycle (there
is data consistency throughout a program
cycle). When a bit on an input module
changes, the change in the signal state is
transferred to the input at the start of the
next program cycle.

b Inputs can also be set and reset because they
are located in random access memory. Dig-
ital input modules can only be read. Inputs
can be set during debugging or startup to
simulate sensor states, thus simplifying pro-
gram testing.

1.5 Address Areas

49

These advantages are offset by an increased
program response time (please also refer to
Chapter 20.2.4 “Response Time”.

Outputs

An output is an image of the corresponding bit
on a digital output module. Setting an output is
the same as setting the bit on the output module
itself. The CPU’s operating system copies the
signal state from the process output image to
the module.

The use of a process output image has many
advantages:

b Outputs can be set and reset bit by bit (direct
addressing of I/O bits is not possible).

b Setting an output is much faster than access-
ing an output module (for example, you
avoid the transient recovery time on the I/O
bus, and the system memory response times
are shorter than the module response times).
The program is therefore executed that
much more quickly.

b A multiple signal state change at an output
during a program cycle does not affect the
bit on the output module. It is the signal
state of the output at the end of the program
cycle that is transferred to the module.

b Outputs can also be scanned because they
are located in random access memory.
While it is possible to write to digital output
modules, it is not possible to read them. The
scanning and linking of the outputs makes
additional storage of the output bit to be
scanned unnecessary.

These advantages are offset by an increased
program response time. Chapter 20.2.4
“Response Time” describes how a programma-
ble controller’s response time comes about.

1.5.3 Consistent User Data

Data consistency means that data must be han-
dled as an entity. Transmission of the data field
must not be interrupted, and the data source and
target must not be changed from the other side
during the transmission. For example, if you
transmit four bytes individually, the transmitted
program can be interrupted between each byte

by a higher-priority program which modifies
the data in the source or target area.

With direct access to the user data (loading and
transferring), the data are read and written as
byte, word or doubleword. The load and trans-
fer statements, upon which the MOVE box with
LAD/CSF and the assignment of variables with
elementary data types with SCL are based, are
executed without interruption. If you wish to
transmit a data field with more than four bytes
between the system and work memories with-
out interruption, use the system function
SFC 81 UBLKMOV.

Data transmission between DP slave and DP
master is consistent for a complete slave, even
if the transfer area is divided into several con-
sistent blocks, e.g. as with an intelligent DP
slave. The data consistency with direct slave-to-
slave traffic is the same as with direct access
(1-byte, 2-byte and 4-byte consistency). The
same applies to data transmission between IO
controller and IO devices on the PROFINET IO.

When configuring stations of the distributed
I/O with three or more than four bytes of user
data, you can specify the consistent user data
areas. These areas are transmitted with the sys-
tem functions SFC 14 DPRD_DAT and SFC 15
DPWR_DAT consistent to the parameterized
target area (e.g. data area in the work memory
or process image).

Note that the “normal” updating of the process
images can be interrupted following each trans-
mitted doubleword. An exception for newer
CPUs is the transmission of user data blocks
with distributed I/O by means of a partial pro-
cess image if the user data blocks have been
configured in the hardware as consistent. You
can also influence these data blocks in the pro-
cess image by means of a direct access, but it
could be the case that you destroy the data con-
sistency.

CPU-specific data apply to the maximum size
of a consistent area in the case of data transmis-
sion for global data communication, S7 basic
communication and S7 communication by the
operating system (said technical specifications
in the CP manual).

Diagnostics and parameter data are always
transmitted consistent in data sets (e.g. diagnos-
tics data with the SFC 13 DPMRM_DG or SFB

1 SIMATIC S7-300/400 Programmable Controller

50

54 RALRM or parameter data transmitted to
and from modules using the SFB 52 RDREC
and SFB 53 WRREC).

1.5.4 Bit Memories

Bit memories can be regarded as the control-
ler’s “auxiliary contactors”. Bit memories are
used primarily for storing binary signal states.
They can be treated as outputs, but are not
“externalized”. Bit memories are located in the
CPU’s system memory area, and are therefore
available at all times. The number of bit mem-
ories is CPU-specific.

Bit memories are used to store intermediate
results that are valid beyond block boundaries
and are processed in more than one block.
Besides the data in global data blocks, the fol-
lowing are also available for storing intermedi-
ate results

b Temporary local data, which are available in
all blocks but valid for the current block call
only, and

b Static local data, which are available only in
function blocks but valid over multiple
block calls.

Retentive bit memories

Some bit memories may be designated “reten-
tive”, which means that these bit memories
retain their signal states even under off-circuit

conditions. Retentivity always begins with
memory byte 0 and ends at the designated loca-
tion. Retentivity is set when the CPU is param-
eterized. Please refer to Chapter 22.2.4 “Reten-
tivity”.

Clock memories

Many procedures in the controller require a
periodic signal. Such a signal can be imple-
mented using timers (clock pulse generator),
watchdog interrupts (time-controlled program
execution), or simply by using clock memory.

Clock memories are bits whose signal states
change periodically with a mark-to-space ratio
of 1:1. The bits are combined into a byte, and
correspond to fixed frequencies (Figure 1.10).
You specify the number of clock memory bits
when you parameterize the CPU. Please note
that the updating of clock memories is asyn-
chronous to execution of the main program.

Figure 1.10 Contents of the Clock Memory Byte

2 STEP 7 Programming Software

51

2 STEP 7 Programming Software

2.1 STEP 7 Basic Package

This chapter describes the STEP 7 basic pack-
age, Version 5.5. After you have been given an
overview of the properties of the automation
system in the first chapter, you can read here
how these properties are set.

The basic package contains the statement list
(STL), ladder logic (LAD) and function block
diagram (FBD) programming languages. In
addition to the basic package, option packages
such as S7-SCL (Structured Control Lan-
guage), S7-GRAPH (sequence planning) and
S7-HiGraph (state-transition diagram) are also
available.

2.1.1 Installation

STEP 7 V5.5 is a 32-bit application which exe-
cutes with MS Windows XP Professional and
MS Windows 7 Professional, Ultimate and En-
terprise. MS Internet Explorer V6.0 or higher is
required under all operating systems. You re-
quire administration rights in order to install
STEP 7, and to work with STEP 7 you must at
least be logged-on as a main user.

If you wish to work rapidly with STEP 7, or if
you are working on large projects with perhaps
several hundred modules, you should use a pro-
gramming device or PC with up-to-date pro-
cessing power.

STEP 7 V5.5 occupies approximately 650 to
900 MB on the hard disk depending on the
scope of installation and the number of installed
languages. A swap file is also necessary and its
size must be at least twice that of the main
memory.

You should ensure there is sufficient memory
on the drive containing your project data. The
memory requirements may increase for certain
operations, such as copying a project. If there is
insufficient space for the swap-out file, errors

such as program crashes may occur. You are
recommended not to store the project data on
the drive containing the Windows swap-out
file.

The SETUP program on the DVD is used for
the installation, or STEP 7 is already factory-in-
stalled on the programming device. In addition
to STEP 7, the DVD also includes, inter alia,
the Automation License Manager (see Chapter
2.1.2 “Automation License Manager”) and the
STEP 7 electronic manuals with Acrobat Read-
er.

A bus interface is required for the online con-
nection to a programmable controller. This can
be a multi-point interface, a PROFIBUS inter-
face, or an Ethernet interface.

If you want to use PC memory cards or micro
memory cards, you will need a prommer.

STEP 7 V5 has multi-user capability, that is, a
project that is stored, say, on a central server
can be edited simultaneously from several
workstations. You make the necessary settings
in the Windows Control Panel with the
“SIMATIC Workstation” program. In the dia-
log box that appears, you can parameterize the
workstation as a single-user system or a multi-
user system with the protocols used.

You can deinstall STEP 7 using the Setup pro-
gram or in the usual manner for MS Windows
using the “Software” program in the Windows
control panel.

2.1.2 Automation License Manager

You require a license (right of use) in order to
use STEP 7. This consists of the Certificate of
License and the electronic License Key. The
License Key is provided on the License Key
disk or on a USB flash drive.

A License Key can be present on the License
Key Disk, on a USB flash drive, and on local or
networked hard disk drives. A License Key

2 STEP 7 Programming Software

52

only functions if it is present on a hard disk
drive which is not write-protected. You can
transmit and manage the License Keys using
the Automation License Manager. Installation
of the Automation License Manager is a prereq-
uisite for operation of STEP 7. You can install
the Automation License Manager together with
STEP 7 or individually.

The Certificate of License defines the type of
License Keys:

b Single License
This privilege of use is for an unlimited time
and for any computer.

b Floating License
This privilege of use is for an unlimited time
and for access via a network.

b Trial License
This privilege of use is limited to max. 14
days or a particular number of days starting
from the first use. It can be used for test and
validation purposes.

b Upgrade License
This privilege of use permits upgrading of a
License Key from a previous version to the
current one.

Following installation of STEP 7, you will be
prompted for your licensing, if the hard disk
does not already contain a License Key. You
can also provide your licensing later.

The License Key is saved on the hard disk in
particularly identified blocks. Please observe
the notes for handling License Keys provided in
the help text Automation License Manager to
prevent unintentional destruction of the
License Key.

2.1.3 SIMATIC Manager

The SIMATIC Manager is the main tool in
STEP 7; you will find its icon in Windows.

The SIMATIC Manager is started by double-
clicking on its icon.

When first started, the project wizard is dis-
played. This can be used for simple creation of
new projects. You can deactivate it with the
check box “Display Wizard on starting the
SIMATIC Manager” since it can also be called,
if required, via the menu command FILE
‘NEW PROJECT’ WIZARD.

Programming begins with opening or creating a
‘project’. The example projects supplied are a
good basis for familiarization.

When you open example project ZEn01_09_
S7_Zebra with FILE OPEN, you will see the
split project window: on the left is the structure
of the open object (the object hierarchy), and on
the right is the selected object. Clicking on the
box containing a plus sign in the left window
displays additional levels of the structure;
selecting an object in the left half of the window
displays its contents in the right half of the win-
dow (Figure 2.1).

Under the SIMATIC Manager, you work with
the objects in the STEP 7 world. These “logi-
cal” objects correspond to ‘real’ objects in your
plant. A project contains the entire plant, a sta-
tion corresponds to a programmable controller.
A project may contain several stations con-
nected to one another, for example, via an MPI
subnet. A station contains a CPU, and the CPU
contains a program, in our case an S7 program.
This program, in turn, is a ‘container’ for other
objects, such as the object Blocks, which con-
tains, among other things, the compiled blocks.

The STEP 7 objects are connected to one
another via a tree structure. Figure 2.2 shows
the most important parts of the tree structure
(the “main branch”, as it were) when you are
working with the STEP 7 basic package for S7
applications in offline view. The objects shown
in bold type are containers for other objects.

All objects in the Figure are available to you in
the offline view. These are the objects that are
on the programming device’s hard disk. If your
programming device is online on a CPU (nor-
mally a PLC target system), you can switch to
the online view by selecting VIEW ONLINE.
This option displays yet another project win-
dow containing the objects on the destination
device; the objects shown underlined in the Fig-
ure are then no longer included.

2.1 STEP 7 Basic Package

53

You can see from the title bar of the active proj-
ect window whether you are working offline or
online. For clearer differentiation, the title bar
and the window title can be set to a different
color than the offline window. For this purpose,
select OPTIONS CUSTOMIZE and modify the
entries in the “View” tab.

Select OPTIONS CUSTOMIZE to change the
SIMATIC Manager’s basic settings, such as the
session language, the archive program and the
storage location for projects and libraries, and
configuring the archive program.

Editing sequences

The following applies for the general editing of
objects:

To select an object means to click on it once
with the mouse so that it is highlighted (this is
possible in both halves of the project window).

To name an object means to click on the name
of the selected object (a frame will appear
around the name and you can change the name
in the window) or select the menu item EDIT
OBJECT PROPERTIES and change the name in
the dialog box. With some objects such as a

CPU, you can only change the name with the
relevant tool (application), in this case with the
Hardware Configuration.

To open an object, double-click on that object.
If the object is a container for other objects, the
SIMATIC Manager displays the contents of the
object in the right half of the window. If the
object is on the lowest hierarchical level, the
SIMATIC Manager starts the appropriate tool
for editing the object (for instance, double-
clicking on a block starts the editor, allowing
the block to be edited).

In this book, the menu items in the standard
menu bar at the top of the window are described
as operator sequences. Programmers experi-
enced in the use of the operator interface use the
icons from the toolbar. The use of the right
mouse button is very effective. Clicking on an
object once with the right mouse button screens
a menu showing the current editing options.

2.1.4 Projects and Libraries

In STEP 7, the ‘main objects’ at the top of the
object hierarchy are projects and libraries.

Figure 2.1 SIMATIC Manager Example

2 STEP 7 Programming Software

54

Figure 2.2 Object Hierarchy in a STEP 7 Project

2.1 STEP 7 Basic Package

55

Starting with STEP 7 V5.2, you can combine
projects and libraries into multiprojects (see
Chapter 2.1.5 “Multiprojects”).

Projects are used for the systematic storing of
data and programs needed for solving an auto-
mation task. Essentially, these are

b the hardware configuration data,

b the parameterization data for the modules,

b the configuring data for communication via
networks,

b the programs (code and data, symbols,
sources).

The objects in a project are arranged hierarchi-
cally. The opening of a project is the first step
in editing all (subordinate) objects which that
object contains. The following sections discuss
how to edit these objects.

Libraries are used for storing reusable program
components. Libraries are organized hierarchi-
cally. They may contain STEP 7 programs
which in turn may contain a user program (a
container for compiled blocks), a container for
source programs, and a symbol table. With the
exception of online connections (no debugging
possible), the creation of a program or program
section in a library provides the same function-
ality as in an object.

As supplied, STEP 7 V5 includes the Standard
Library containing the following programs:

b System Function Blocks
Contains the call interfaces of the system
blocks for offline programming integrated
in the CPU

b S5-S7 Converting Blocks
Contains loadable functions for the S5/S7
converter (replacement of S5 standard func-
tion blocks in conjunction with program
conversion)

b TI-S7 Converting Blocks
Contains additional loadable functions and
function blocks for the T1-S7 converter

b IEC Function Blocks
Contains loadable functions for editing vari-
ables of the complex data types DATE_
AND_TIME and STRING

b Communication Blocks
Contains loadable functions for controlling
CP modules

b Miscellaneous Blocks
Contains blocks for time tagging and time
synchronization

b PID Control Blocks
Contains loadable function blocks for
closed-loop control

b Organization Blocks
Contains the templates for the organization
blocks (essentially the variable declaration
for the start information)

You will find an overview of the contents of
these libraries in Chapter 33 “Block Libraries”.
Should you, for example, purchase an S7 mod-
ule with standard blocks, the associated instal-
lation program installs the standard blocks as a
library on the hard disk. You can then copy
these blocks from the library to your project. A
library is opened with FILE OPEN, and can
then be edited in the same way as a project. You
can also create your own libraries.

The menu item FILE NEW generates a new
object at the top of the object hierarchy (project,
library). The location in the directory structure
where the SIMATIC Manager is to create a
project or library must be specified under the
menu item OPTIONS CUSTOMIZE or in the
“New dialog” box.

The INSERT menu is used to add new objects to
existing ones (such as adding a new block to a
program). Before doing so, however, you must
first select the object container in which you
want to insert the new object from the left half
of the SIMATIC Manager window.

You copy object containers and objects with
EDIT COPY and EDIT PASTE or, as is
usual with Windows, by dragging the selected
object with the mouse from one window and
dropping it in another. Please note that you can-
not undo deletion of an object or an object con-
tainer in the SIMATIC Manager.

2.1.5 Multiprojects

Projects and libraries are combined into an
entity in a multiproject. The multiproject per-
mits editing of communications connections

2 STEP 7 Programming Software

56

such as S7 connections between the projects.
This means that a multiproject can be handled
almost like an individual project. Limitations:
stations connected together by means of direct
data exchange (“internode communication”) or
global data communication must be present in
the same project.

With a multiproject, it is possible to carry out
independent, parallel editing of individual proj-
ects by different employees. The individual
projects can be in different directories in a net-
worked environment. Cross-project functions,
e.g. the balancing of subnets and connections,
are then carried out centrally by editing the
multiproject.

The generation of a multiproject is also an
advantage if one wishes to make the individual
projects smaller and clearer.

You can archive and retrieve a multiproject just
like a project or library.

2.1.6 Online Help

The SIMATIC Manager’s online help provides
information you need during your program-
ming session without the need to refer to hard-
copy manuals. You can select the topics you
need information on by selecting the HELP

menu. The online help option GETTING

STARTED, for instance, provides a brief sum-
mary on how to use the SIMATIC Manager.

HELP CONTENTS starts the central STEP 7
Help function from any application. This con-
tains all the basic knowledge. If you click the
“Home” symbol in the menu bar, you will be
provided with an introduction to the central top-
ics of STEP 7: Starting with STEP 7, Configu-
ration & programming, Testing & troubleshoot-
ing, as well as SIMATIC on the Internet.

HELP CONTEXT-SENSITIVE HELP F1 pro-
vides context-sensitive help, i.e. if you press
F1, you get information concerning an object
selected by the mouse or concerning the current
error message.

In the symbol bar, there is a button with an
arrow and a question mark. If you click on this
button, a question mark is added to the mouse
pointer. With this “Help” mouse pointer, you

can now click on an object on the screen, e.g. a
symbol or a menu command, and you will get
the associated online help.

2.2 Editing Projects

When you set up a project, you create “contain-
ers” for the resulting data, then you generate the
data and fill these containers. Normally, you
create a project with the relevant hardware,
configure the hardware, or at least the CPU, and
receive in return containers for the user pro-
gram. However, you can also put an S7 pro-
gram directly into the project container without
involving any hardware at all. Note that initial-
izing of the modules (address modifications,
CPU settings, configuring connections) is pos-
sible only with the Hardware Configuration
tool.

We strongly recommend that the entire project
editing process be carried out using the
SIMATIC Manager. Creating, copying or delet-
ing directories or files as well as changing
names (!) with the Windows Explorer within
the structure of a project can cause problems
with the SIMATIC Manager.

2.2.1 Creating Projects

Project wizard

The STEP 7 Wizard helps you in creating a new
project. You specify the CPU used and the wiz-
ard creates for you a project with an S7 station
and the selected CPU as well as an S7 program
container, a source container and a block con-
tainer with the selected organization blocks.
You can start the project wizard using FILE
‘NEW PROJECT’ WIZARD.

Creating a project with the S7 station

If you want to create a project “manually”, this
section outlines the necessary actions for you.
You will find general information on operator
entries for object editing in Chapter 2.1.3
“SIMATIC Manager”.

2.2 Editing Projects

57

Creating a new project

Select FILE NEW, enter a name in the dialog
box “Name”, change the type and storage loca-
tion if necessary, and confirm with “OK” or
RETURN.

Inserting a new station in the project

Select the project and insert a station with
INSERT STATION SIMATIC 300 STA-
TION (in this case an S7-300).

Configuring a station

Click on the plus box next to the project in the
left half of the project window and select the
station; the SIMATIC Manager displays the
Hardware object in the right half of the window.
Double-clicking on Hardware starts the Hard-
ware Configuration tool, with which you edit
the configuration tables.

If the module catalog is not on the screen, call
it up with VIEW CATALOG.

You begin configuring by selecting the rail with
the mouse, for instance under “SIMATIC 300”
and “RACK 300”, “holding” it, dragging it to
the free portion in the upper half of the station
window, and “letting it go” (drag & drop). You
then see a table representing the slots on the
rail.

Next, select the required modules from the
module catalog and, using the procedure
described above, drag and drop them in the
appropriate slots. To enable further editing of
the project structure, a station requires at least
one CPU, for instance the CPU 314 in slot 2.
You can add all other modules later. Editing of
the hardware configuration is discussed in
detail in Chapter 2.3 “Configuring Stations”.

Store and compile the station, then close and
return to the SIMATIC Manager. In addition to
the hardware configuration, the open station
now also shows the CPU.

When it configures the CPU, the SIMATIC
Manager also creates an S7 program with all
objects. The project structure is now complete.

Viewing the contents of the S7 program

Open the CPU; in the right half of the project
window you will see the symbols for the S7
program and for the connection table.

Open the S7 program; the SIMATIC Manager
displays the symbols for the compiled user pro-
gram (the compiled blocks), the container for
the source programs, and the symbol table in
the right half of the window.

Open the user program (Blocks); the SIMATIC
Manager displays the symbols for the compiled
configuration data (System data) and an empty
organization block for the main program
(OB 1) in the right half of the window).

Editing user program objects

We have now arrived at the lowest level of the
object hierarchy. The first time OB 1 is opened,
the window with the object properties is dis-
played and the editor needed to edit the pro-
gram in the organization block is opened. You
add another empty block for incremental edit-
ing by opening INSERT S7 BLOCK ...
(Blocks must be highlighted) and selecting the
required block type from the list provided.

When opened, the System data object shows a
list of available system data blocks. You receive
the compiled configuration data. These system
data blocks are edited via the Hardware object
in the container Station. You can transfer Sys-
tem data to the CPU with PLC DOWNLOAD
and parameterize the CPU in this way.

The object container Source Files is empty.
With Source Files selected, you can select
INSERT S7 SOFTWARE STL SOURCE to
insert an empty source text file or you can select
INSERT EXTERNAL SOURCE to transfer a
source text file created, say, with another editor
in ASCII format to the Source Files container.

Creating a project without an S7 station

If you wish, you can create a program without
first having to configure a station. To do so,
generate the container for your program your-
self. Select the project and generate an S7 pro-
gram with INSERT PROGRAM S7 PRO-
GRAM. Under this S7 program, the SIMATIC
Manager creates the object Symbols and the
object containers Sources and Blocks. Blocks
contains an empty OB 1.

Creating a library

You can also create a program under a library,
for instance if you want to use it more than

2 STEP 7 Programming Software

58

once. In this way, the standard program is
always available and you can copy it entirely or
in part into your current program.

Please note that you cannot establish online
connections in a library, which means that you
can debug a STEP 7 program only within a
project.

2.2.2 Managing, Rearranging and
Archiving

The SIMATIC Manager maintains a list of all
known “main objects”, arranged according to
user projects, libraries, example projects and
multiprojects. You install the example projects
and the standard libraries in conjunction with
STEP 7 and you install the user projects, the
multiprojects and your own libraries yourself.

When it executes FILE MANAGE, the
SIMATIC Manager shows you all the projects
and libraries known to it with name and path.
You can now delete (“Hide”) projects or librar-
ies from the list which you no longer wish to
display, or incorporate new projects and librar-
ies into the list (“Display”).

When it executes FILE REORGANIZE, the
SIMATIC Manager eliminates the gaps created
by deletions and optimizes data memory simi-
larly to the way a defragmentation program
optimizes the data memory on the hard disk.
The reorganization can take some time,
depending on the data movements involved.

You can also archive a project or library (FILE
 ARCHIVE). In this case, the SIMATIC Man-
ager stores the selected object (the project or
library directory with all subdirectories and
files) in compressed form in an archive file.

Projects and libraries cannot be edited in the
archived (compressed) state. You can unpack
an archived object with FILE RETRIEVE and
then you can edit it further. The retrieved
objects are automatically accepted into the
project or library management system.

You make the settings for archiving and re-
trieving on the "Archive" tab under OPTIONS
 CUSTOMIZE. You select the archiving pro-

gram from a drop-down list: Arj (*.arj), PKZip
12.4 (*.zip), or WinZip (*.zip).

You then set the options for archiving on this
tab, for example the target directory for ar-
chiving and retrieving or "Automatically create
archive path" (no further inputs are then re-
quired when archiving, since the name of the
archive file is generated from the project
name).

Archiving a project in the CPU

With the appropriately designed CPUs, you can
store a project in archived (compressed) form in
the load memory of the CPU, that is, on the
memory card or micro memory card. In this
way, you can save all project data required for
complete execution of the user program, such
as symbols or source files, direct at the machine
or plant. If it becomes necessary to modify or
supplement the program, you load the locally
stored data onto the programming device, cor-
rect the user program and save the up-to-date
project data again to the CPU.

When loading the project data onto a memory
card or micro memory card plugged into the
CPU, open the project, mark the CPU and
select PLC SAVE TO MEMORY CARD. In the
reverse direction, transfer the stored data back
to the programming device with PLC
RETRIEVE FROM MEMORY CARD. Please note
that when you write to a memory card plugged
into the CPU, the entire contents of the load
memory are written to the CPU, including the
system data and the user programs.

If you want to fetch back the project data stored
on the CPU without creating a project on the
programming device, select the relevant CPU
with PLC DISPLAY ACCESSIBLE NODES. If
the memory card is plugged into the module
receptacle of the programming device, select
the memory card with FILE S7 MEMORY

CARD OPEN before transferring.

2.2.3 Project Versions

Since STEP 7 V5 has become available, there
are three different versions of SIMATIC proj-
ects. STEP 7 V1 creates version 1 projects,
STEP 7 V2 version 2 projects, and STEP 7

2.2 Editing Projects

59

V3/V4/V5.0 can be used to create and edit both
version 2 and version 3 projects. With STEP 7
from version V5.1, you can create and edit V3
projects and V3 libraries.

If you have a version 1 project, you can convert
it into a version 2 project with FILE OPEN

VERSION 1 PROJECT. The project structure with
the programs, the compiled version 1 blocks,
the STL source programs, the symbol table and
the hardware configuration remain unchanged.

You can create and edit version 2 projects with
STEP 7 versions V2, V3, V4 and V5.0 (Figure
2.3). STEP 7 version V5.1 and higher works ex-
clusively with version 3 projects.

Up to STEP 7 version 5.3 you can convert a V1
project to a V2 project with FILE OPEN VER-
SION 1 PROJECT. With FILE OPEN you can
open a V2 project and convert it to a V3 project.
It is not possible to create a V2 project or save
a project as a V2 project.

2.2.4 Creating and Editing Multiprojects

Use FILE NEW to create a new multiproject
in the SIMATIC Manager by selecting “Multi-
project” as the type in the displayed dialog box.
With the multiproject selected, use FILE
MULTIPROJECT CREATE IN MULTIPROJECT

to create a new project or a new library in the
multiproject. The newly created project or the
newly created library can be edited as described
in the previous chapters. Use FILE MULTI-
PROJECT INSERT INTO MULTIPROJECT to
incorporate projects and libraries which already
exist into the multiproject.

You can also delete projects and libraries again
from the multiproject: Mark the project or
library, and then select FILE MULTIPROJECT

 REMOVE FROM MULTIPROJECT. This does
not delete the project or the library itself.

Figure 2.3 Editing Projects with Different Versions

2 STEP 7 Programming Software

60

Use FILE MULTIPROJECT ADJUST PROJ-
ECTS to start a wizard which supports you when
adjusting cross-project connections and when
combining subnets (Chapter 2.4.6 “Adjusting
Projects in the Multiproject”).

Using FILE MULTIPROJECT DEFINE AS

MASTER DATA LIBRARY you can identify one of
the libraries in a multiproject as the “Master
data library” which e.g. is to accommodate the
common blocks of the projects in this multipro-
ject. This library must then only contain one
single S7 program.

The menu commands FILE SAVE AS, FILE
REARRANGE, FILE MANAGE and FILE
ARCHIVE can also be used on a multiproject,
and function just like with a project (see Chap-
ter 2.2.2 “Managing, Rearranging and
Archiving”). In addition, archived multiproj-
ects can be transferred to the load memory of a
correspondingly designed CPU. Limitations
exist when archiving a multiproject whose
components are distributed among network
drives.

2.3 Configuring Stations

You use the Hardware Configuration tool to
plan your programmable controller’s configu-
ration. Configuring is carried out offline with-
out connection to the CPU. You can also use
this tool to address and parameterize the mod-
ules. You can create the hardware configuration
at the planning stage or you can wait until the
hardware has already been installed.

You start the Hardware Configuration by
selecting the station and then EDIT OPEN

OBJECT or by double-clicking on the Hardware
object in the opened container SIMATIC
300/400-STATION. You make the basic settings
of the Hardware Configuration with OPTIONS

 CUSTOMIZE.

When configuring has been completed, STA-
TION CONSISTENCY CHECK will show you
whether your entries were free of errors. STA-
TION SAVE stores the configuration tables
with all parameter assignment data in your proj-
ect on the hard disk.

STATION SAVE AND COMPILE not only
saves but also compiles the configuration tables

and stores the compiled data in the System data
object in the offline container Blocks. After
compiling, you can transfer the configuration
data to a CPU with PLC DOWNLOAD. The
object System data in the online container
Blocks represents the current configuration data
on the CPU. You can ‘return’ these data to the
hard disk with PLC UPLOAD.

You export the data of the hardware configura-
tion with STATION EXPORT. STEP 7 then
creates a file in ASCII format that contains the
configuration data and parameterization data of
the modules. You can choose between a text
format that contains the data in “readable” Eng-
lish characters, or a compact format with hexa-
decimal data. You can also import a corre-
spondingly structured ASCII file.

Checksum

The Hardware Configuration generates a
checksum via a correctly compiled station and
stores it in the system data. Identical system
configurations have the same checksum so that
you can, for example, easily compare an online
configuration with an offline configuration.

The checksum is a property of the System data
object. To read the checksum, open the Blocks
container in the S7 program, select the System
data object and open it with EDIT OPEN

OBJECT.

The user program also has an appropriate
checksum. You can find this along with the
checksum of the system data in the properties
of Blocks: select the Blocks container and then
EDIT OBJECT PROPERTIES on the “Check-
sums” tab.

Station window

When opened, the Hardware Configuration dis-
plays the station window and the hardware cat-
alog (Figure 2.4). Enlarge or maximize the sta-
tion window to facilitate editing. In the upper
section, it shows the S7 stations in the form of
tables (one per rack) which are connected
together via the interface modules if several
racks are used. If distributed I/O is connected
the structure of the DP master system or of the
PROFINET IO system is shown. The DP sta-
tions and IO devices are displayed as symbols.

2.3 Configuring Stations

61

The lower section of the station window shows
the configuration table that gives a detailed
view of the rack, DP slave or IO device selected
in the upper section.

Hardware catalog

You can fade the hardware catalog in and out
with VIEW CATALOG. It contains all avail-
able mounting racks, modules and interface
submodules known to STEP 7. With OPTIONS

 EDIT CATALOG PROFILE, you can compile
your own hardware catalog that shows only the
modules you want to work with – in the struc-
ture you select. By double-clicking on the title
bar, you can “dock” the hardware catalog onto
the right edge of the station window or release
it again.

Installing a hardware update

You can update components for the hardware
catalog using OPTIONS INSTALL HW
UPDATES. In the following dialogs, select

whether you wish to download the update from
the Internet or copy it from a CD. Enter the
Internet address and the storage path. When
you click the “Install” button, the Hardware
Configuration tool transfers the data to the
hardware catalog.

Product support information

Use HELP PRODUCT SUPPORT INFORMATION

to display information from the Internet on the
marked module. You must first enable this
function using OPTIONS CUSTOMIZE and by
setting a valid Internet address. The marked
module can be present in the hardware catalog
or already in the configured rack.

Configuration table

The Hardware Configuration tool works with
tables that each represent an S7 station (a
mounting rack), a DP station or an IO-Device.
A configuration table shows the slots with the
modules arranged in the slots or the properties

Figure 2.4 Example of a Station Window in the Hardware Configuration

2 STEP 7 Programming Software

62

of the modules such as their addresses and
order numbers. A double-click on a module line
opens the properties window of the module and
allows parameterization of the module.

2.3.1 Arranging Modules

You have created for example, a SIMATIC
300/400 station using the SIMATIC Manager
and wish to equip this station with an S7 CPU
and the associated modules. To do this, open the
station (select the station in the SIMATIC Man-
ager followed by EDIT OPEN OBJECT or dou-
ble-click on the Hardware object in the opened
folder SIMATIC 300/400 STATION).

First define the rack. You can find it for S7-400
stations in the hardware catalog under
“SIMATIC 400” and “RACK-400” and for S7-
300 stations under “SIMATIC 300” and
“RACK-300”. Select and “hold” the rack or
DIN rail using the mouse, drag it into the top
part of the station window, and drop it at any
position (drag & drop). An empty configuration
table is displayed for the central rack.

To create a station with an ET 200 CPU, select
and open the SIMATIC 300 station in the SI-
MATIC Manager. In the Hardware Catalog un-
der "PROFIBUS DP" or "PROFINET IO" and
"I/O", you can then drag the desired CPU, e.g.
IM154-8 CPU under ET 200pro, into the top
part of the station window using the mouse or
select it using a double-click. The configuration
table is then equipped with the CPU.

Next, select the required modules from the
module catalog and, in the manner described
above, drag and drop them in the appropriate
slots. The permissible slots have a green back-
ground. A “No Parking” symbol tells you can-
not drop the selected module at the intended
slot.

Please note for stations with an ET 200 CPU
that you may only use the modules which are
present under the respective CPU in the Hard-
ware Catalog.

You can also mark the slots to be fitted and
select INSERT INSERT OBJECT. The Hard-
ware Configuration then shows you in a popup
window all modules permissible for this slot, of
which you can select one.

In the case of single-tier S7-300 stations, slot 3
remains empty; it is reserved for the interface
module to the expansion rack.

You can generate the configuration table for
another rack by dragging the selected rack from
the catalog and dropping it in the station win-
dow. In S7-400 systems, a non-interconnected
rack (or more precisely: the relevant receive
interface module) is assigned an interface via
the “Link” tab in the Properties window of a
Send IM (select module and EDIT OBJECT

PROPERTIES).

The arrangement of distributed I/O stations is
described in Chapter 20.4 “Communication via
Distributed I/O”.

2.3.2 Addressing Modules

When arranging modules, the Hardware Con-
figuration tool automatically assigns a module
start address. You can view this address in the
lower half of the station window or in the object
properties for the relevant modules in the tab
“Addresses”. If you deselect the option “Sys-
tem selection” for S7-300 modules in this tab,
you can change the module addresses. When
doing so, please observe the addressing rules
for S7-300 and S7-400 systems as well as the
addressing capacity of the individual modules.

There are modules that have both inputs and
outputs for which you can (theoretically)
reserve different start addresses. However,
please note carefully the special information
provided in the product manuals; the large
majority of function and communications mod-
ules require the same start address for inputs
and outputs.

When assigning the module start address on
correspondingly designed CPUs, you can also
make the assignment to a subsidiary process
image. If there is more than one CPU in the cen-
tral rack of an S7-400, multiprocessor mode is
automatically set and you must assign the mod-
ule to a CPU.

With VIEW ADDRESS OVERVIEW, you get a
window containing all the module addresses
currently in use for the CPU selected.

Modules on the MPI bus or communications
bus have an MPI address. You may also change
this address. Note, however, that the new MPI

2.3 Configuring Stations

63

address becomes effective as soon as the con-
figuration data are transferred to the CPU.

Symbols for user data addresses

In the Hardware Configuration tool, you can
assign to the inputs and outputs symbols
(names) that are transferred to the Symbol
Table.

After you have arranged and addressed the dig-
ital and analog modules, you save the station
data. Then you select the module (line) and
EDIT SYMBOLS. In the window that then
opens, you can assign a symbol, a data type and
a comment to the absolute address for each
channel (bit-by-bit for digital modules and
word-by-word for analog modules.

The “Add Symbol” button enters the absolute
addresses as symbols in place of the absolute
addresses without symbols. The “Apply” but-
ton transfers the symbols into the Symbol
Table. “OK” also closes the dialog box.

2.3.3 Parameterizing Modules

When you parameterize a module, you define
its properties. It is necessary to parameterize a
module only when you want to change the
default parameters. A requirement for parame-
terization is that the module is located in a con-
figuration table.

Double-click on the module in the configura-
tion table or select the module and then EDIT
OBJECT PROPERTIES. Several tabs with the
specifiable parameters for this module are dis-
played in the dialog box. When you use this
method to parameterize a CPU, you are speci-
fying the run characteristics of your user pro-
gram.

Some modules allow you to set their parameters
at runtime via the user program with system
functions (see Chapter 22.5.2 “System Blocks
for Module Parameterization”).

Module identification

Innovated S7 CPUs, PROFIBUS DPV1 slaves,
and PROFINET IO devices can support func-
tions for identification and maintenance (I&M
functions). For example, you can assign a plant
identifier and a location identifier to a station

for subsequent evaluation in the program.
Using the plant identifier, you can assign a
name to parts of the plant in accordance with
functional aspects. The location identifier is
part of the equipment identifier and describes
e.g. the exact position of a SIMATIC device in
the process engineering plant.

To enter the I&M data, select the module in the
Hardware Configuration and select EDIT
OBJECT PROPERTIES. You can then – with a cor-
respondingly equipped module – enter the plant
identifier and the location identifier in the
“General” tab or in the “Identification” tab. In
online mode, select the module, and you can
then exchange the I&M data between offline
data management and module using PLC
DOWNLOAD MODULE IDENTIFICATION or PLC
 DOWNLOAD MODULE IDENTIFICATION IN

PG.

To evaluate the I&M data, use SFC 51
RDSYSST to read the system state list with the
ID 16#011C index 16#0003 for the plant
identifier and index 16#000B for the location
identifier.

2.3.4 Networking Modules with MPI

You define the nodes for the MPI subsidiary
(subnet) with the Module Properties. Select the
CPU, or the MPI interface card, if the CPU is
equipped with one, in the configuration table
and open it with EDIT OBJECT PROPERTIES.
The dialog box that then appears contains the
“Properties” button in the “Interface” box of the
“General” tab. If you click on this button you
are taken to another dialog box with a “Param-
eter” tab where you can find the suitable subnet.

This is also an opportunity to set the MPI
address that you have provided for this CPU.
Please note that on older S7-300 CPUs, FMs or
CPs with MPI connection automatically
receive an MPI address derived from the CPU.

The highest MPI address must be greater than
or equal to the highest MPI address assigned in
the subnet (take account of automatic assign-
ment of FMs and CPs!). It must have the same
value for all nodes in the subnet.

Tip: if you have several stations with the same
type of CPUs, assign different names (identifi-

2 STEP 7 Programming Software

64

ers) to the CPUs in the different stations. They
all have the name “CPUxxx(1)” as default so in
the subnet they can only be differentiated by
their MPI addresses. If you do not want to
assign a name yourself, you can, for example,
change the default identifier from
“CPUxxx(1)” to “CPUxxx(n)” where “n” is
equal to the MPI address.

When assigning the MPI address, please also
take into account the possibility of connecting a
programming device or operator panel (OP) to
the MPI network at a later date for service or
maintenance purposes. You should connect per-
manently installed programming devices or
OPs direct to the MPI network; for plug-in
devices via a spur line, there is an MPI connec-
tor with a heavy-gauge threaded-joint socket.
Tip: reserve address 0 for a service program-
ming device, address 1 for a service OP and
address 2 for a replacement CPU (corresponds
to the default addresses).

2.3.5 Monitoring and Modifying Modules

With the Hardware Configuration, you can
carry out a wiring check of the machine or plant
without the user program. A requirement for
this is that the programming device is con-
nected to a station (online) and the configura-
tion has been saved, compiled and loaded into
the CPU. Now you can address every digital
and analog module. Select a module and then
PLC MONITOR/MODIFY, and set the Monitor
and Modify operating modes and the trigger
conditions.

With the “Status Value” button, the Hardware
Configuration shows you the signal states or the
values of the module channels. The “Modify
Value” button writes the value specified in the
Modify Value column to the module.

If the “I/O Display” checkbox is active, the
peripheral inputs/outputs (module memory) are
displayed instead of the inputs/outputs (process
image). The “Enable Periph. Outputs” check-
box revokes the output disable of the output
modules if the CPU is in STOP mode (see
Chapter 2.7.5 “Enabling Peripheral Outputs”).

You can find other methods of monitoring and
modifying inputs and outputs in Chapters 2.7.3

“Monitoring and Modifying Variables” and
2.7.4 “Forcing Variables”.

2.4 Configuring the Network

The basis for communications with SIMATIC
is the networking of the S7 stations. The
required objects are the subnets and the mod-
ules with communications capability in the sta-
tions. You can create new subnets and stations
with the SIMATIC Manager within the project
hierarchy. You then add the modules with com-
munications capability (CPUs and CPs) using
the Hardware Configuration tool; at the same
time, you assign the communications interfaces
of these modules to a subnet. You then define
the communications relationships between
these modules – the connections – with the Net-
work Configuration tool in the connection
table.

The Network Configuration tool allows graph-
ical representation and documentation of the
configured networks and their nodes. You can
also create all necessary subnets and stations
with the Network Configuration tool; then you
assign the stations to the subnets and parame-
terize the node properties of the modules with
communications capability.

You can proceed as follows to define the com-
munications relationships via the networking
configuration tool:

b Open the MPI subnet created as standard in
the project container (if it is no longer avail-
able, simply create a new subnet with
INSERT SUBNET).

b Use the Network Configuration tool to cre-
ate the necessary stations and – if required –
further subnets.

b Open the stations and provide them with the
modules with communications capability.

b Connect the modules with the relevant sub-
nets.

b Adapt the network parameters, if necessary.

b Define the communication connections in
the connection table, if required.

You can also configure global data communica-
tions within the Network Configuration: select

2.4 Configuring the Network

65

the MPI subnet and then select OPTIONS
DEFINE GLOBAL DATA (see Chapter 20.5
“Global Data Communication”).

NETWORK SAVE saves an incomplete Net-
work Configuration. You can check the consis-
tency of a Network Configuration with NET-
WORK CHECK CONSISTENCY. You close the
Network Configuration with NETWORK
SAVE AND COMPILE.

Network window

To start the Network Configuration, you must
have created a project. Together with the proj-
ect, the SIMATIC Manager automatically cre-
ates an MPI subnet.

A double-click on this or any other subnet starts
the Network Configuration. You can also reach
the Network Configuration if you open the
object Connections in the CPU container.

In the upper section, the Network Configura-
tion window shows all previously created sub-
nets and stations (nodes) in the project with the
configured connections (Figure 2.5).

The connection table is displayed in the lower
section of the window if a module with “com-
munications capability”, e.g. an S7-400 CPU, is
selected in the upper section of the window.

A second window displays the network object
catalog with a selection of the available
SIMATIC stations, subnets and DP stations.
You can fade the catalog in and out with VIEW

 CATALOG and you can “dock” it onto the
right edge of the network window (double-click
on the title bar). With VIEW ZOOM IN, VIEW

 ZOOM OUT and VIEW ZOOM FACTOR…,
you can adjust the clarity of the graphical rep-
resentation.

Figure 2.5 Network Configuration Example

2 STEP 7 Programming Software

66

2.4.1 Configuring the Network View

Selecting and arranging the components

You begin the Network Configuration by
selecting a subnet that you select in the catalog
with the mouse, hold and drag to the network
window. The subnet is represented in the win-
dow as a horizontal line. Impermissible posi-
tions are indicated with a ‘prohibited’ sign on
the mouse pointer.

You proceed in the same way for the desired
stations, at first without connection to the sub-
net. The stations are still “empty”. A double-
click on a station opens the Hardware Configu-
ration tool allowing you to configure the station
or at least the module(s) with network connec-
tion. Save the station and return to the Network
Configuration.

The interface of a module with communica-
tions capability is represented in the Network
Configuration as a small box under the module
view. Click on this box, hold and drag it to the
relevant subnet. The connection to the subnet is
represented as a vertical line.

Proceed in exactly the same way with all other
nodes.

You can move created subnets and stations in
the network window. In this way, you can also
represent your hardware configuration visually.
You may obtain a clearer and more compact
arrangement if you reduce the displayed
lengths of the subnets using VIEW
REDUCED SUBNET LENGTHS.

Setting communications properties

After creating the graphical view, you parame-
terize the subnets: select the subnets and then
EDIT OBJECT PROPERTIES. The properties
window that then appears includes the S7 sub-
net ID in the “General” tab. The ID consists of
two hexadecimal numbers, the project number
and the subnet number. You require this S7 sub-
net ID if you want to go online with the pro-
gramming device without a suitable project in
order to reach other nodes via the subnet. You
set the network properties in the “Network Set-
tings” tab, e.g. the data transfer rate or the high-
est node address.

When you select the network connection of a
node, you can define the network properties of
the node with EDIT OBJECT PROPERTIES,
e.g., the node address and the subnet it is con-
nected to, or you can create a new subnet.

On the “Interfaces” tab of the station properties,
you can see an overview of all modules with
communications capability, with the node
addresses and the subnet types used.

You define the module properties of the nodes
in a similar way (with the same operator inputs
as in the Hardware Configuration tool).

2.4.2 Configuring Distributed I/O with
the Network Configuration

You can also use the Network Configuration to
configure the distributed I/O with PROFIBUS
DP or PROFINET IO. Select VIEW WITH DP
SLAVES/IO DEVICES to display or fade out DP
slaves and IO devices in the network view.

PROFIBUS DP

You require the following in order to configure
a DP master system:

b A PROFIBUS subnet (if not already avail-
able, drag the PROFIBUS subnet from the
network object catalog to the network win-
dow),

b A DP master in a station (if not already
available, drag the station from the network
object catalog to the network window, open
the station and select a DP master with the
Hardware Configuration tool, either inte-
grated in the CPU or as an autonomous
module),

b The connection from the DP master to the
PROFIBUS subnet (either select the subnet
in the Hardware Configuration tool or click
on the network connection to the DP master
in the Network Configuration, “hold” and
drag to the PROFIBUS network).

In the network window, select the DP master to
which the slave is to be assigned. Find the DP
slave in the network object catalog under
“PROFIBUS DP” and the relevant sub-catalog,
drag it to the network window and fill out the
properties window that appears.

2.4 Configuring the Network

67

You parameterize the DP slave by selecting it
and then selecting EDIT OPEN OBJECT. The
Hardware Configuration is started. Now you
can set the user data addresses or, in the case of
modular slaves, select the I/O modules (see
Chapter 2.3 “Configuring Stations”).

You can only connect an intelligent DP slave to
a subnet if you have previously created it (see
Chapter 20.4.2 “Configuring PROFIBUS
DP”). In the network object catalog, you can
find the type of intelligent DP slave under
“Configured Stations”; drag it, with the DP
master selected, to the network window and fill
out the properties window that then appears (as
in the Hardware Configuration tool).

With VIEW HIGHLIGHT MASTER SYS-
TEM, you graphically emphasize the assign-
ment of the nodes of a DP master system. First
select the master or a slave of this master sys-
tem. With VIEW REARRANGE, the DP slaves
are optically assigned to their DP master.

PROFINET IO

You require the following in order to configure
a PROFINET IO system:

b An Industrial Ethernet subnet (if not already
available, drag the Industrial Ethernet sub-
net from the network object catalog to the
network window),

b An IO controller in a station (if not already
available, drag the station from the network
object catalog to the network window, open
the station and select an IO controller with
the Hardware Configuration tool, either in-
tegrated in the CPU or as an autonomous
module),

b The connection from the IO controller to the
Industrial Ethernet subnet (either select the
subnet in the Hardware Configuration tool
or click on the network connection to the IO
controller in the Network Configuration,
“hold” and drag to the Industrial Ethernet
network).

In the network window, select the IO controller
to which the IO device is to be assigned. Find
the IO device in the network object catalog un-
der “PROFINET IO” and the relevant sub-cat-
alog, drag it to the network window and fill out
the properties window that appears.

You parameterize the IO device by selecting it
and then selecting EDIT OPEN OBJECT. The
Hardware Configuration is started. Now you
can set the user data addresses or select the I/O
modules (see Chapter 2.3 “Configuring Sta-
tions”).

With VIEW HIGHLIGHT PROFINET IO
SYSTEM, you graphically emphasize the assign-
ment of the nodes of a PROFINET IO system.
First select the IO controller or an IO device.
With VIEW REARRANGE, the IO devices are
optically assigned to their IO controller.

2.4.3 Configuring Connections

Connections describe the communications rela-
tionships between two devices. Connections
must be configured if

b you want to establish S7 communications
between two SIMATIC S7 devices (“Com-
munication via configured connections”) or

b the communications partner is not a device
from the SIMATIC S7 family.

Note: you do not require a configured connec-
tion for direct online connection of a program-
ming device to the MPI network for program-
ming or debugging. If you want to reach other
nodes arranged in other connected subnets with
the programming device, you must configure
the connection of the programming device: in
the Network Object Catalog, select the object
PG/PC under Stations by double-clicking, open
PG/PC in the network window by double-
clicking, and select the interface and assign it to
a subnet.

Connection table

The communications connections are config-
ured in the connection table. Requirement: you
have created a project with all stations that are
to exchange data with each other, and you have
assigned the modules with communications
capability to a subnet.

The object Connections in the CPU container
represents the connection table. A double-click
on Connections starts the Network Configura-
tion in the same way as a double-click on a sub-
net in the project container.

2 STEP 7 Programming Software

68

To configure the connections, select e.g. an S7-
400 CPU in the Network Configuration. In the
lower section of the network window, you get
the connection table (Table 2.1; if it is not visi-
ble, place the mouse pointer on the lower edge
of the window until it changes shape and then
drag the window edge up). You enter a new
communication connection with INSERT
NEW CONNECTION or by double-clicking on an
empty line.

You create a connection for each “active” CPU.
Please note that you cannot create a connection
table for an S7-300 CPU; S7-300 CPUs can
only be “passive” partners in an S7 connection.

In the “Insert New Connection” window, you
select in the graphics the communications part-
ner or enter it in the “Station” and “Module” dia-
log boxes (Figure 2.6); the station and the mod-
ule must already exist. You also determine the
connection type in this window.

If you want to set more connection properties,
activate the check box “Before Inserting: Show
Properties Dialog”.

The connection table contains all data of the
configured connections. To be able to display
this clearly, use VIEW OPTIMIZE COLUMN

WIDTH and VIEW DISPLAY COLUMNS.

Table 2.1 Connection Table Example

Local
ID

Partner
ID

Partner Type Active Connec-
tion Buildup

Send Operating
Mode Messages

1 1 Station 416 / CPU416(5) S7 connection Yes No

2 2 Station 416 / CPU416(5) S7 connection Yes No

3 Station 315 / CPU315(7) S7 connection Yes No

4 1 Station 417 / CPU414(4) S7 connection Yes No

Figure 2.6 Configuring Communications Connections

2.4 Configuring the Network

69

Connection ID

The number of possible connections is CPU-
specific. STEP 7 defines a connection ID for
every connection and for every partner. You
require this specification when you use com-
munications blocks in your program.

You can modify the local ID (the connection ID
of the currently opened module). This is neces-
sary if you have already programmed commu-
nications blocks and you want to use the local
ID specified there for the connection.

You enter the new local ID as a hexadecimal
number. It must be within the following value
ranges, depending on the connection type, and
must not already be assigned:

b Value range for S7 connections:
0001hex to 0FFFhex

b Value range for S7 connections with load-
able S7 communication (S7-300):
0001hex to 008Fhex

b Value range for PtP connections:
1000hex to 1400hex

You change the partner ID by going to the con-
nection table of the partner CPU and changing
(what is then) the local ID: select the connec-
tion line and then EDIT OBJECT PROPERTIES.
If STEP 7 does not enter a partner ID, it is a
one-way connection (see below).

Partner

This column displays the connection partner. If
you want to reserve a connection resource with-
out naming a partner device, enter “unspeci-
fied” in the dialog box under Station.

In a one-way connection, communication can
only be initiated from one partner; example: S7
communications between an S7-400 and S7-
300 CPU. Even without S7 communications
functions in the S7-300 CPU, data can be
exchanged by an S7-400 CPU with SFB 14
GET and SFB 15 PUT. In the S7-300, no user
program runs for this communication but the
data exchange is handled by the operating sys-
tem.

A one-way connection is configured in the con-
nection table of the “active” CPU. Only then
does STEP 7 assign a “Local ID”. You also load
this connection only in the local station.

With a two-way connection, both partners can
assume communication actively; e.g. two S7-
400 CPUs with the communications functions
SFB 8 SEND and SFB 9 BRCV.

You configure a two-way connection only once
for one of the two partners. STEP 7 then assigns
a “Local ID” and a “Partner ID” and generates
the connection data for both stations. You must
load each partner with its own connection table.

Connection type

The STEP 7 Basic Package provides you with
the following connection types in the Network
Configuration:

PtP connection, approved for the subnet PTP
(3964(R) and RK 512 procedures) with S7
communications. A PtP (point-to-point) con-
nection is a serial connection between two part-
ners. These can be two SIMATIC S7 devices
with the relevant interfaces or CPs, or a
SIMATIC S7 device and a non-Siemens device,
e.g. a printer or a barcode reader.

S7 connection, approved for the subnets MPI,
PROFIBUS and Industrial Ethernet with S7
communications. An S7 connection is the con-
nection between SIMATIC S7 devices and can
include programming devices and human
machine interface devices. Data are exchanged
via the S7 connection, or programming and
control functions are executed.

Fault-tolerant S7 connection, approved for
the subnets PROFIBUS and Industrial Ethernet
with S7 communications. A fault-tolerant S7
connection is made between fault-tolerant
SIMATIC S7 devices and it can also be estab-
lished to an appropriately equipped PC.

The software component “SIMATIC NCM”,
which is part of STEP 7, is available for
parameterizing CPs. You can select the fol-
lowing types of connection: FMS connection,
FDL connection, ISO transport connection,
ISO-on-TCP connection, TCP connection,
UDP connection and e-mail connection.

Active connection buildup

Prior to the actual data transfer, the connection
must be built up (initialized). If the connection
partners have this capability, you specify here
which device is to establish the connection. You

2 STEP 7 Programming Software

70

do this with the check box “Active Connection
Buildup” in the properties window of the con-
nection (select the connection and then EDIT
OBJECT PROPERTIES).

Sending operating state messages

Connection partners with a configured two-
way connection can exchange operating state
messages. If the local node is to send its operat-
ing state messages, activate the relevant check
box in the properties window of the connec-
tion. In the user program of the partner CPU,
these messages can be received with SFB 23
USTATUS.

Connection path

As the connection path, the properties window
of the connection displays the end points of the
connection and the subnets over which the con-
nection runs. If there are several subnets for
selection, STEP 7 selects them in the order
Industrial Ethernet before Industrial Ether-
net/TCP-IP before MPI before PROFIBUS.

The local and partner stations with the CPU
over which the connection runs are displayed as
the end points of the connection.

The modules with communications capability
are listed under “Interface”, with specification
of the interface module, the rack number and
the slot. If both peers can be accessed over sev-
eral connection paths, you can set the preferred
path here. STEP 7 automatically adapts the re-
maining settings. If both CPUs are located in
the same rack (e.g. S7-400 CPUs in multipro-
cessor mode), the display box shows “PLC in-
ternal”.

“Subnet” and “Address” then identify the sub-
net used and the node address set.

Connections between projects

For data exchange between two S7 modules
belonging to different SIMATIC projects, you
enter “unspecified” for connection partner in
the connection table (in the local station in both
projects).

Please ensure that the connection data agree in
both projects (STEP 7 does not check this).
After saving and compiling, you load the con-

nection data into the local station in each proj-
ect.

If a project is to subsequently be part of a mul-
tiproject, and if the connection partner is also in
a project of the multiproject, select “In
unknown project” as the connection partner,
and enter an unambiguous connection name
(reference) in the properties window.

Connection to non-S7 stations

Within a project, you can also specify stations
other than S7 stations as connection partners:

b Other stations (non-Siemens devices and
also S7 stations in another project)

b Programming devices/PCs

b SIMATIC S5 stations

A requirement for configuring the connection is
that the non-S7 station exists as an object in the
project container and you have connected the
non-S7 station to the relevant subnet in the sta-
tion properties (e.g. select the station in the Net-
work Configuration, select EDIT OBJECT

PROPERTIES and connect the station with the
desired subnet on the “Interfaces” tab).

2.4.4 Network Transitions

If the programming device is connected to a
subnet, it can reach all other nodes on this sub-
net. For example, from one connection point,
you can program and debug all S7 stations con-
nected to an MPI network. If another subnet
such as a PROFIBUS subnet is connected to an
S7 station, the programming device can also
reach the stations on the other subnet. The
requirement for this is that the station with the
subnet transition has routing capability, that is it
will channel the transferred message frames.

When the network configuration is compiled,
routing tables containing all the necessary
information are automatically generated for the
stations with subnet transitions. All accessible
communications partners must be configured in
a plant network within an S7 project and must
be supplied with the “knowledge” of which sta-
tions can be reached via which subnets and sub-
net transitions.

2.4 Configuring the Network

71

If you want to reach all nodes in a subnet with
a programming device from one connection
point, you must configure the connection point.
You enter a “placeholder”, a PG/PC station
from the Network Object Catalog in the net-
work configuration at the relevant subnet. You
configure a PG/PC station on every subnet to
which you want to connect a programming
device.

During operation, you connect the program-
ming device to the subnet and select PLC
ASSIGN PG/PC. This adapts the interfaces of
the programming device to the configured set-
tings for the subnet. Before disconnecting the
programming device again from the subnet,
select PLC UNDO PG/PC ASSIGNMENT.

If you go online with a programming device
that does not contain the right project, you
require the S7 subnet ID for network access.
The S7 subnet ID comprises two numbers: the
project number and the subnet number. You can
obtain the subnet ID in the network configura-
tion by selecting the subnet and then EDIT
OBJECT PROPERTIES on the “General” tab.

2.4.5 Loading the Connection Data

To activate the connections, you must load the
connection table into the PLC following saving
and compiling (all connection tables into all
“active” CPUs).

Requirement: You are in the network window
and the connection table is visible. The pro-
gramming device is a node of the subnet over
which the connection data are to be loaded into
the modules with communications capability.
All subnet nodes have been assigned unique
node addresses. The modules to which connec-
tion data are to be transferred are in the STOP
mode.

With PLC DOWNLOAD TO CURRENT PRO-
JECT ... you transfer the connection and con-
figuration data to the accessible modules.
Depending on which object is selected and
which menu command is selected, you can
choose between the following

 SELECTED STATIONS

 SELECTED AND PARTNER STATIONS

 STATIONS ON THE SUBNET

 SELECTED CONNECTIONS

 CONNECTIONS AND GATEWAYS

To delete all the connections of a programma-
ble module, load an empty connection table
into the respective module.

The compiled connection data are also a com-
ponent part of the System data in the Blocks
container. Transfer of the system data and the
subsequent startup of the CPUs effectively also
transfers the connection data to the modules
with communications capability.

For online operation via MPI, a programming
device requires no additional hardware. If you
connect a PC to a network or if you connect a
programming device to an Ethernet or PROFI-
BUS network, you require the relevant inter-
face module. You parameterize the module
with the application “Set PG/PC Interface” in
the Windows Control Panel.

2.4.6 Adjusting Projects in the
Multiproject

When opening a multiproject with the network
configuration, a window is displayed with the
projects present in the multiproject. This win-
dow is also displayed if you open a project
linked in a multiproject and select VIEW
MULTIPROJECT. The window displays the proj-
ects present in the multiproject and the cross-
project subnets which have already been com-
bined. To permit further editing, you can now
double click a project (Figure 2.7).

Projects usually contain communications con-
nections between the individual stations. If
projects are combined in a multiproject or if an
existing project is incorporated into the multi-
project, these connections can be combined and
adjusted.

If you select VIEW CROSS-PROJECT NET-
WORK VIEW in an open project which belongs to
a multiproject, all stations of the multiproject as
well as the current connections are shown in the
overview. You cannot carry out any changes to
the projects in the cross-project network view.
You can leave the multiproject view by select-
ing VIEW CROSS-PROJECT NETWORK VIEW

again.

2 STEP 7 Programming Software

72

Combining subnets

The MPI, PROFIBUS and Industrial Ethernet
subnets are initially combined. A prerequisite is
that the subnets to be combined have the same
subnet ID. With the network selected, you can
set these in the network configuration with
EDIT OBJECT PROPERTIES.

With the multiproject open, you can use FILE

 MULTIPROJECT ADJUST PROJECTS to call
a wizard in the SIMATIC Manager which sup-
ports you during the adjustment. In the network
configuration, you access the dialog window
with EDIT MERGE/UNMERGE SUBNETWORKS

 ...

Select the type of subnet, and click the “Run”
button to obtain the subnets of the selected type
present in the multiproject. You can now select
individual subnets of the project and combine
them in a multi-subnet. You can also use this
dialog to separate subnets again from the multi-
subnet.

Several multi-subnets of the same type can be
created in one multiproject. The properties of
the multi-subnet are determined by the first
added subnet or the subnet selected using the
“Select” button. Use “OK” or “Apply” to
acknowledge the settings. Subnets which are
part of a multi-subnet can be recognized by a
different symbol in the SIMATIC Manager.

Combining connections

The connections configured in individual proj-
ects and leading to a partner in a different proj-
ect can be combined in a multiproject. If you
select the partner “In unknown project” in the
window “Insert new connection” during con-
figuration of the connection, you can subse-
quently enter a connection name (reference) in
the window “Properties – S7 connection”. Con-
nections in different projects but with the same
connection name can be automatically com-
bined.

Figure 2.7 Multiproject in the Network Configuration

2.5 Creating the S7 Program

73

In the SIMATIC Manager, this is carried out by
the wizard for project adjustment if you click
“Merge connections” and “Execute”. Connec-
tions are then combined which have an identi-
cal connection name (reference).

In the network configuration, you can also
combine connections with “unspecified” part-
ners. Select EDIT MERGE CONNECTIONS to
obtain a dialog box with all configured connec-
tions. Select one connection each in the win-
dows “Connections without connection part-
ners” and “Possible connection partners”, and
click “Assign”. The assigned connections are
listed in the bottom window “Assigned connec-
tions”. Use “Merge” to then combine the con-
nections. The connections are assigned the
properties of the local module of the currently
opened project. You are provided with the pos-
sibility for changing the connection properties
when combining.

Configuring multi-project connections

Multi-project connections can be configured
following the combination of subnets. The pro-
cedure is the same as with project-internal con-
nections, expanded by specification of the proj-
ect in the connection partner.

You can check the absence of network configu-
ration inconsistencies in the multi-project with
NETWORK CHECK CROSS-PROJECT CONSIS-
TENCY.

2.5 Creating the S7 Program

2.5.1 Introduction

The user program is created under the object S7
Program. You can assign this object in the proj-
ect hierarchy of a CPU or you can create it inde-
pendently of a CPU. It contains the object Sym-
bols and the containers Source Files and Blocks
(Figure 2.8).

With incremental program creation, you enter
the program direct block-by-block. Entries are
checked immediately for syntax. At the same
time, the block is compiled as it is saved and
then stored in the container Blocks. With incre-
mental programming, you can also edit blocks

online in the CPU, even during operation.
Incremental program creation is possible with
all basic languages.

In the case of source-oriented program creation,
you write one or more program sources and store
these in the container Source Files. Program
sources are ASCII text files that contain the pro-
gram statements for one or more blocks, possi-
bly even for the entire program. You compile
these sources and you get the compiled blocks in
the container Blocks. The compiled blocks con-
sist of MC7 code and run on an S7 CPU. You
apply source-oriented program creation for
STL and SCL; although you cannot program
source-oriented with LAD or FBD, you can
save your programs created using LAD or FBD
as source.

The signal states or the values of addresses are
processed in the program. An address is, for
example, the input I1.0 (absolute addressing).
With the help of the Symbol Table under the
object Symbols, you can assign a symbol (an
alphanumeric name, e.g. “Switch motor on”) to
an address and then access it with this name
(symbolic addressing). In the properties of the
offline object container Blocks, you specify
whether in the event of a change in the Symbol
Table the absolute address or the symbol is to
be definitive for the already compiled blocks
when next saved (address priority).

2.5.2 Symbol Table

In the control program, you work with
addresses; these are inputs, outputs, timers,
blocks. You can assign absolute addresses (e.g.
I1.0) or symbolic addresses (e.g. Start signal).
Symbolic addressing uses names instead of the

Figure 2.8 Objects for Program Generation

2 STEP 7 Programming Software

74

absolute address. You can make your program
easier to read by using meaningful names.

In symbolic addressing, a distinction is made
between local symbols and global symbols. A
local symbol is known only in the block in
which it has been defined. You can use the same
local symbols in different blocks for different
purposes. A global symbol is known through-
out the entire program and has the same mean-
ing in all blocks. You define global symbols in
the symbol table (object Symbols in the con-
tainer S7 Program).

A global symbol starts with an alpha character
and can be up to 24 characters long. A global
symbol can also contain spaces, special charac-
ters and national characters such as the Umlaut.
Exceptions to this are the characters 00hex,
FFhex and the inverted commas ("). You must
enclose symbols with special characters in
inverted commas when programming. In the
compiled block, the program editor displays all
global symbols in inverted commas. The sym-
bol comment can be up to 80 characters long.

In the symbol table you can assign names to the
following addresses and objects:

b Inputs I, outputs Q, peripheral inputs PI and
peripheral outputs PQ

b Memory bits M, timer functions T and
counter functions C

b Code blocks OBs, FBs, FCs, SFCs, SFBs
and data blocks DBs

b User-defined data types UDTs

b Variable table VAT

Data addresses in the data blocks are included
among the local addresses; the associated sym-
bols are defined in the declaration section of the
data block in the case of global data blocks and
in the declaration section of the function block
in the case of instance data blocks.

When creating an S7 program, the SIMATIC
Manager also creates an empty symbol table
Symbols. You open this and can then define the
global symbols and assign them to absolute
addresses (Figure 2.9). There can be only one
single symbol table in an S7 program.

Figure 2.9 Symbol Table Example

2.5 Creating the S7 Program

75

The data type is part of the definition of a sym-
bol. It defines specific properties of the data
behind the symbol, essentially the representa-
tion of the data contents. For example, the data
type BOOL identifies a binary variable and the
data type INT designates a digital variable
whose contents represent a 16-bit integer.
Please refer to Chapter 3.7 “Variables and Con-
stants”; for an overview of the data types used
in STEP 7; Chapter 24 “Data Types” contains a
detailed description.

With incremental programming, you create the
symbol table before entering the program; you
can also add or correct individual symbols dur-
ing program input. In the case of source-ori-
ented programming, the complete symbol table
must be available when the program source is
compiled.

Importing, exporting

Symbol tables can be imported and exported.
“Exported” means a file is created with the con-
tents of your symbol table. You can select here
either the entire symbol table, a subset limited
by filters or only selected lines. For the data for-
mat you can choose between pure ASCII text
(extension *.asc), sequential assignment list
(*.seq), System Data Format (*.sdf for Micro-
soft Access) and Data Interchange Format
(*.dif for Microsoft Excel). You can edit the
exported file with a suitable editor. You can also
import a symbol table available in one of the
formats named above.

Special object properties

With EDIT SPECIAL OBJECT PROPERTIES
..., you set attributes for each symbol in the
symbol table. These attributes or properties are
used in the following:

b Process monitoring with S7-PDIAG

b Human machine interface functions for
monitoring with WinCC

b Configuring messages

b Configuring communications with the
NCM software

b Control at contact with inputs and bit mem-
ories in the program editor

VIEW COLUMNS R, O, M, C, CC makes the
settings visible. With OPTIONS CUSTOMIZE,
you can specify whether or not the special
object properties are to be copied and you can
define behavior when importing symbols.

2.5.3 STL-Program Editor

For creating the user program, the STEP 7
Basic Package contains a program editor for the
LAD, FBD and STL programming languages.
In the STL programming language, you can
enter the program incrementally (directly) or
generate a source program and compile it later.
Figure 2.10 shows the possible actions associ-
ated with STL program creation.

If you use symbolic addressing for global
addresses, the symbols must already be
assigned to an absolute address in the case of
incremental programming; however, you can
enter new symbols or change symbols during
program input. In the case of source-oriented
programming, the complete symbol table must
be available at the time of compiling.

STL blocks can be “decompiled”, i.e. a read-
able block can be created again from the MC7
code without an offline database (you can read
any block from a CPU using a programming
device without the associated project). In addi-
tion, an STL program source can be recreated
from any compiled block.

Starting the STL program editor

You reach the program editor when you open a
block in the SIMATIC Manager, e.g. by double-
clicking on the automatically generated symbol
of the organization block OB 1, or via the Win-
dows taskbar with START SIMATIC
STEP 7 LAD, STL, FBD - PROGRAM S7
BLOCKS.

You can customize the properties of the pro-
gram editor with OPTIONS CUSTOMIZE. On
the “Editor” tab, select the properties with
which a new block is to be generated and dis-
played, such as creation language, pre-selection
for comments and symbols.

2 STEP 7 Programming Software

76

Program editor window

Further windows can be displayed in the win-
dow of the program editor: the block window,
the Details and Overviews windows, and the
window with the AS tabs (Figure 2.11).

The block window is automatically displayed
when a block is opened, and contains the block
interface at the top, i.e. the block parameters as
well as the static and dynamic local data. You
can program the block in the bottom program

area. The block windows and the contents are
described in Chapter 3.2 “Blocks”.

The Overviews window displays the program
elements and the call structure. If it is not visi-
ble, display it on the screen using VIEW
OVERVIEWS.

The Details window can be switched on and off
using VIEW DETAILS. It contains the fol-
lowing tabs:

Figure 2.10 Writing Programs with the STL Editor

2.5 Creating the S7 Program

77

b 1: Error
Contains the errors found in the block by the
program editor, e.g. following compilation.
With OPTIONS CUSTOMIZE in the tab
“Sources” you can set whether warnings are
also to be displayed here.

b 2: Info
Contains information on the currently
marked addresses.

b 3: Cross-references
Contains the cross-references of the opera-
tions present in the current network (see
Chapter 2.5.7 “Reference Data”).

b 4: Address info
Contains the symbol information of the
addresses present in the current network
(see Chapter 2.5.2 “Symbol Table”). You
can edit existing symbols here, add new
ones, and view the status of the address.

b 5: Modify
Contains an empty table of variables into
which you can enter the addresses to be con-
trolled (see Chapter 2.7.3 “Monitoring and
Modifying Variables”).

b 6: Diagnostics
Contains a list with the existing monitoring
functions for process diagnostics using the
S7-PDIAG options package.

b 7: Comparison
Contains the results of a previous block
comparison (see Chapter “Comparing
blocks”).

You can “dock” the Overviews and Details win-
dows on the edge of the editor window by dou-
ble clicking the respective title bar and then
releasing it again.

The PLC register contents window shows the
contents of the CPU registers (accumulators,
address registers and DB registers).

Figure 2.11 Example of the STL Editor Window

2 STEP 7 Programming Software

78

Programming modes

When you open a compiled block in the Blocks
container (e.g. with a double-click), it is opened
for incremental programming. For source-ori-
ented programming, you must open a program
source file in the Source files container.

You can also mix: enter some blocks direct and
program some blocks via a source file. It is also
possible to call blocks that have been written
with another programming language such as
FBD or SCL. The user program is generated
block by block and every block finally contains
executable MC7 code regardless of the pro-
gramming language used to write it.

Source-oriented programming generation with
symbolic addressing is recommended. Editing
is simpler, there are fewer syntax errors and
another text editor can be used. Via the symbol
table, you can specify different absolute
addresses each time the program is compiled so
that in this way you can create reusable “stan-
dard programs” independently of a hardware
configuration.

Source-oriented program creation is the only
possible method of providing your program
with block protection (KNOW_HOW_PRO-
TECT.

Incremental programming is optimal for “fast
checking” of a program change direct in the
CPU. If the change checks out, update it in the
program source and compile again. This way,
you always have the current version of the pro-
gram available as an ASCII text file. Incremen-
tal programming is also well suited for testing
the program with a few online statements that
you then no longer require.

Source-oriented programming

Source-oriented programming is used to edit an
STL source file in the Source Files object con-
tainer. An STL source file is a pure ASCII text
file. It may contain the source program for one
or more code or data blocks as well as the defi-
nitions of the user data types.

In the SIMATIC Manager, select the source
program container Source Files and create a
new source file with INSERT S7 SOFTWARE
 STL SOURCE. You can open and edit this
file.

You can make the settings for editing in the
source file in the program editor using
OPTIONS CUSTOMIZE in the tab “Source
Text”. In order to display the program text more
clearly, you can e.g. indent text blocks, display
line numbers, and select a different font or color
for the text for e.g. operations, addresses or
keywords.

You can make the creation of new blocks much
simpler for yourself by using INSERT BLOCK

TEMPLATE ... (in the editor). The editor uses
the templates from the directory ...\Step7\S7ska
that are contained in the text files S7kafnnx.txt.
You may adapt these templates to suit your
requirements. With INSERT OBJECT
BLOCK, the program editor inserts a previously
compiled block following the cursor as ASCII
source into the source file.

You also have the editor option of generating a
new STL source file from one or more com-
piled blocks with FILE GENERATE SOURCE.

If you generated a source file with another text
editor, you can use the SIMATIC Manager's
INSERT EXTERNAL SOURCE menu item to
place that file in the Source Files container. You
can copy the selected source file to a directory
of your choice with EDIT EXPORT SOURCE.

In source-file-oriented programming, you must
observe certain rules and use keywords
intended for the compiler. Chapter 3.4.5
“Source-oriented programming of an STL code
block” and Chapter 3.6.2 “Source-Oriented Data
Block Programming” shows the structure of an
STL source file.

Compiling the STL source file

You can save the program source at any point
during editing, even if the program is not yet
complete. Only when the source file has been
compiled does the program editor generate exe-
cutable blocks that it stores in the Blocks con-
tainer. If you have used global symbols in the
STL source file, the completed symbol table
must be available at the time of compiling.

On the “Sources Files” tab under OPTIONS
CUSTOMIZE, you can set the properties of the
compiler, such as, should existing blocks be
overwritten or should blocks be generated only
when the entire program source is free from

2.5 Creating the S7 Program

79

errors? On the “Generate Block” tab, you can
set automatic updating of the reference data
when compiling a block.

With FILE CHECK CONSISTENCY, you can
check the program source for correct syntax
without having to compile the blocks.

When the program source is open, you start
compiling with FILE COMPILE. All error-free
blocks located in the program source are com-
piled. Any block containing errors is not com-
piled. If warnings occur, the block is compiled
anyway; however, execution in the CPU may
not be error-free.

Called blocks must already exist as compiled
blocks or they must exist in the program source
before calling (see Chapter 3.4.5 “Source-ori-
ented programming of an STL code block” for
more details of the sequential order of blocks).

Updating or generating STL source files

On the “Sources” tab under OPTIONS CUS-
TOMIZE, you can select the option “Generate
source automatically” so that when you save an
(incrementally created) block, the program
source file is updated or created, if it does not
already exist. You can derive the name of a new
source file from the absolute address or the
symbolic address. The symbolic addresses are
imported if the address priority is set to “Sym-
bol has priority” in the properties of the block
container Blocks (see Chapter 2.5.6 “Address
Priority”). With the setting “Absolute value has
priority”, you can select either absolute or sym-
bolic addressing in the source.

With the “Execute” button, you select, in the
subsequent dialog box, the blocks from which
you want to generate a program source file.

Incremental programming

With incremental programming, you edit the
blocks both in the offline and online Blocks
container. The editor checks your entries in
incremental mode as soon as you have termi-
nated a program line. When the block is closed
it is immediately compiled, so that only error-
free blocks can be saved.

On the “Create Block” tab under OPTIONS
CUSTOMIZE, you set automatic updating of the
reference data when saving a block.

The blocks can be edited both offline in the pro-
gramming device's database and online in the
CPU, generally referred to as the “programma-
ble controller”, or “PLC”. For this purpose, the
SIMATIC Manager provides an offline and an
online window; the one is distinguished from
the other by the labeling in the title bar.

In the offline window, you edit the blocks right
in the PG database. If you are in the editor, you
can store a modified block in the offline data-
base with FILE SAVE and transfer it to the
CPU with PLC DOWNLOAD. If you want to
save the opened block under another number or
in a different project, or if you want to transfer
it to a library or to another CPU, use the menu
command FILE SAVE AS.

With the menu command FILE STORE
READ-ONLY... in the program editor, you can
save a write-protected copy of the currently
opened (and saved) block in a different block
container.

To edit a block in the CPU, open that block in
the online window. This transfers the block
from the CPU to the programming device so
that it can be edited. You can write the edited
block back to the CPU with PLC DOWN-
LOAD. If the CPU is in RUN mode, the CPU
will process the edited block in the next pro-
gram scan cycle. If you want to save a block
that you edited online in the offline database as
well, you can do so with FILE SAVE.

Chapter 2.6.4 “Loading the User Program into
the CPU” and Chapter 2.6.5 “Block Handling”
contain further information on online program-
ming. Chapter 3.4.2 “Programming STL Code
Blocks Incrementally” and Chapter 3.6.1 “Pro-
gramming Data Blocks Incrementally” show
you how to enter an STL block.

Comparing blocks

You can use the block comparison function to
determine the differences between two blocks.
The blocks can be present in different projects,
in different target systems (CPUs) or in one
project and one target system.

In the program editor, you can compare the
open block with the same block in the CPU or
in the project using OPTIONS COMPARE
ON-/OFFLINE PARTNERS. The result is dis-

2 STEP 7 Programming Software

80

played in the details area of the editor window
in tab “7:Comparison”.

In the SIMATIC Manager, mark the object
Blocks or only the blocks to be compared, and
select OPTIONS COMPARE BLOCKS. The
comparison is carried out either between the
online and offline data (ONLINE/offline) or
between two projects (Path1/Path2). When
comparing the complete program – which can
also contain tables of variables and user-
defined data types (UDTs) – you can incorpo-
rate the system data. Use “Execute code com-
parison” to additionally compare the program
code of the blocks, also of blocks with different
programming languages.

The comparison comprises all data of a block,
also its time tag for program code and interface.
If you wish to know whether the program code
is identical – independent of the block proper-
ties – compare the checksum of the block. To do
this, select the “Details” button in the result
window of the block comparison.

2.5.4 SCL Program Editor

The S7-SCL optional software provides you
with its own program editor for programming
in SCL. At installation, this is integrated into
the SIMATIC Manager. You use it in exactly
the same way as the program editor for the stan-
dard languages. With SCL you use source-file-
oriented programming (Figure 2.12).

You create an SCL source file that you then
compile. You can also call already compiled
blocks, located in the Blocks container here
(integrate them into your program, so to speak).
These blocks can also be written with another
programming language such as STL.

If you use symbolic addressing in the program
for global addresses, the complete symbol table
must be available when you compile the pro-
gram.

You cannot generate an SCL source file from a
compiled block; for example, if you have
deleted the program source file by mistake.
(Note: an already compiled SCL block will exe-
cute in the CPU even if the program source file
is not available.)

Starting the SCL program editor

You start the SCL program editor in the
SIMATIC Manager by opening a compiled
SCL block or an SCL source file, or via the
Windows taskbar with START SIMATIC
STEP 7 S7-SCL - PROGRAM S7 BLOCKS.

If the program editor does not find the relevant
program source file when starting via a com-
piled block, e.g. because it has been deleted or
shifted, the block is opened with the STL pro-
gram editor. However, as soon as you write the
block back, even without changes, it is “unus-
able” for the SCL program editor.

You can set the properties of the SCL program
editor to suit your own requirements with
OPTIONS CUSTOMIZE. On the “Editor” tab,
select the properties with which a new block is
to be created and displayed, such as, display
with line numbers.

Creating the SCL source file

You create a new SCL source file in the
SIMATIC Manager when you select the Source
files container and then INSERT S7 SOFT-
WARE SCL SOURCE FILE. A double-click on
the source file opens it.

Make the settings for editing in the source file
in the program editor with OPTIONS CUS-
TOMIZE in the tabs “Editor” and “Format”. To
display the program text more clearly, you can
e.g indent text blocks, display line numbers,
and select a different font or color for the text
for e.g. keywords, comments or global sym-
bols.

With INSERT BLOCK CALL you can insert
the call for an existing block (user or system
block) into the program source at the cursor
position. INSERT BLOCK TEMPLATE ...
makes creation of new blocks easier and with
INSERT CONTROL STRUCTURE ..., you
can insert off-the-shelf program structures into
the program source file at the cursor position.

Bookmark makes navigation easier in the
source program, e.g. in order to rapidly jump
between different parts of the source. Set the
bookmark in the line you wish to mark, and se-
lect EDIT BOOKMARK ON/OFF. If several
bookmarks are present, you can swap between
the marked lines with EDIT GO TO NEXT

2.5 Creating the S7 Program

81

BOOKMARK and ... PREVIOUS BOOKMARK.
You can delete a bookmark if the cursor is lo-
cated in a marked line and you select EDIT
BOOKMARK ON/OFF. Use EDIT DELETE
ALL BOOKMARKS to delete all of the book-
marks.

A separate menu bar which is made visible us-
ing VIEW BOOKMARK BAR makes handling
easier. Please note that the bookmarks are only
available during the current input; they are not
saved together with the source program.

If you have created an SCL source file with
another text editor, you can fetch it to the
Source files container with INSERT EXTER-
NAL SOURCE under the SIMATIC Manager.
With EDIT EXPORT SOURCE, you can copy

the selected source file to a folder (directory) of
your choice.

In the case of source-file-oriented program-
ming, you must observe certain rules and use
keywords intended for the compiler. Chapter
3.5.2 “Programming SCL Code Blocks” and
Chapter 3.6.2 “Source-Oriented Data Block
Programming” shows you the structure of an
SCL source file.

Compiling the SCL source file

You can save the program source file at any
time during editing, even if the program is not
yet complete. Only after the source file has
been compiled does the program editor gener-
ate blocks that it then stores in the Blocks con-

Figure 2.12 Program Creation with the SCL Program Editor

2 STEP 7 Programming Software

82

tainer. If you have used global symbols in the
SCL source file, the completed symbol table
must be available at the time of compiling.

You can make the following setting, among
others, on the “Compiler” tab under OPTIONS

 CUSTOMIZE:

b Create object code
If this option is selected, blocks are gener-
ated following error-free compiling; other-
wise, you can check the program source file
for correct syntax, without generating
blocks.

b Optimize object code
The generated blocks are optimized with
regard to memory requirement and runtime.

b Monitor array limits
This causes the compiler to generate addi-
tional program code that allows checking
of, e.g., array limits during runtime.

b Create debug info
If you still have to debug the compiled pro-
gram with the program status, select this
option (however, this increases the memory
requirements and the program execution
time).

b Set OK flag
You must set this option if you use the OK
variable or the EN/ENO mechanism in the
program.

If the compiler settings are only to apply to one
program source or one compilation control file,
you can also write the settings in the source pro-
gram (see Chapter 3.5.2 “Programming SCL
Code Blocks”).

With the program source file open, you start
compiling with FILE COMPILE. All error-free
blocks located in the program source are com-
piled. Any block containing errors is not com-
piled. If warnings occur, the block is compiled
anyway; however, execution in the CPU may

Figure 2.13 Example of the SCL Editor Window

2.5 Creating the S7 Program

83

not be error-free. If you want to compile the
selected blocks of the source file, select FILE
COMPILE SELECTED BLOCKS.

Called blocks must already exist as compiled
blocks or they must exist in the program source
before calling (see Chapter 3.5.2 “Program-
ming SCL Code Blocks” for more details of the
sequential order of blocks). The SCL compiler
automatically creates any missing instance data
blocks in the case of function block calls. The
DB number is taken from the Symbol Table or
the smallest free number is selected.

The standard blocks called in the first call level,
such as an IEC function, are copied from the
standard library to the Blocks container at the
time of compiling.

PLC DOWNLOAD loads into the connected
CPU all blocks that have been generated or
automatically copied from a standard library to
the Blocks container the last time the program
was compiled.

Compilation control file

SCL provides the facility of compiling several
program source files in a specific order in one
run. You create a compilation control file with
the SIMATIC Manager by selecting INSERT
S7 SOFTWARE SCL COMPILE CONTROL

FILE with the Source files container selected.

Open the compilation control file and specify
the names of the program source files in the
order desired for compiling. You start the com-
pile procedure with FILE COMPILE.

2.5.5 Rewiring

The Rewiring function allows you to replace
addresses in individually compiled blocks or in
the entire user program. For example, you can
replace input bits I0.0 to I 0.7 with input bits
I 16.0 to I 16.7. Permissible addresses are
inputs, outputs, memory bits, timers and coun-
ters as well as functions FCs and function
blocks FBs.

In the SIMATIC Manager, you select the
objects in which you wish to carry out the
rewiring; select a single block, a group of
blocks by holding Ctrl and clicking with the
mouse, or the entire Blocks user program.

OPTIONS REWIRE takes you to a table in
which you can enter the old addresses to be
replaced and the new addresses. When you con-
firm with “OK”, the SIMATIC Manager then
exchanges the addresses.

When “rewiring” blocks, first change the num-
bers of the blocks and then carry out the rewir-
ing which changes the calls. If you “rewire” a
function block, its instance data block is then
automatically assigned to the rewired function
block; the data block number is not changed.

A subsequently displayed info file shows you in
which block changes were made, and how
many.

The reference data are no longer up-to-date fol-
lowing rewiring, and must be regenerated.

Please note that the “rewiring” only takes place
in the compiled blocks; program source, if pres-
ent, is not modified.

Further possible methods of rewiring are:

b With compiled blocks, you can also use the
Address priority function.

b In the case of source-oriented programming
and symbolic addressing, you change the
symbol table prior to compiling, and after
compiling you receive a “rewired” program.

2.5.6 Address Priority

In the properties window of the offline object
container Blocks on the “Address Priority” tab,
you can set whether the absolute address or the
symbol is to have priority for already saved
blocks when they are displayed and saved again
following a change to the symbol table or to the
declaration or assignment of global data blocks.

The default is “Absolute value has priority”
(the same behavior as in the previous STEP 7
versions). This default means that when a
change is made in the symbol table, the abso-
lute address is retained in the program and the
symbol changes accordingly. If “Symbol has
priority” is set, the absolute address changes
and the symbol is retained.

Example: The symbol table contains the fol-
lowing:

I 1.0 "Limit_switch_up"
I 1.1 "Limit_switch_down"

2 STEP 7 Programming Software

84

In the program of an already compiled block,
input I1.0 is scanned:

A I 1.0 "Limit_switch_up"

If the assignments for inputs I1.0 and I1.1 are
now changed in the symbol table to:

I 1.0 "Limit_switch_down"
I 1.1 "Limit_switch_up"

and the already compiled block is read out, then
the program contains

A I 1.1"Limit_switch_up"

if “Symbol has priority” is set,

and if “Absolute value has priority” is set, the
program contains

A I 1.0 "Limit_switch_down"

If, as a result of a change in the symbol table,
there is no longer any assignment between an
absolute address and a symbol, the statement
will contain the absolute address if “Absolute
value has priority” is set (even with symbolic
display because the symbol would, of course,
be missing); if “Symbol has priority” is set, the
statement is rejected as errored (because the
mandatory absolute address is missing).

If “Symbol has priority” is set, incrementally
programmed blocks with symbolic addressing
will retain their symbols in the event of a
change to the symbol table. In this way, an
already programmed block can be “rewired” by
changing the address assignment.

Please note that this “rewiring” is not carried
out automatically because the already compiled
blocks contain the executable MC7 code of the
statements with absolute addresses. The change
is only made in the relevant blocks - following
the relevant message - after they have been
opened and saved again.

In order to implement the modification in the
complete block folder, select EDIT CHECK
BLOCK CONSISTENCY for the marked object
Blocks.

2.5.7 Reference Data

As a supplement to the program itself, the
SIMATIC Manager shows you the reference
data, which you can use as the basis for correc-
tions or tests. These reference data include the
following:

b Cross references

b Assignment (I, Q, M and T, C)

b Program structure

b Unused symbols

b Addresses without symbols

To generate reference data, select the Blocks
object in a project and the menu command
OPTIONS REFERENCE DATA DISPLAY.
The representation of the reference data can be
changed specifically for each work window
with VIEW FILTER; you can save the settings
for later with WINDOW SAVE ARRANGE-
MENT ON EXIT. You can display and view sev-
eral lists at the same time (Figure 2.14).

With OPTIONS CUSTOMIZE in the program
editor, specify on the “Block” tab whether or
not the reference data are to be updated when
compiling a program source file or when saving
an incrementally written block.

Please note that the reference data are only
available when the data of a project are man-
aged offline; the offline reference data are dis-
played even if the function is called in a block
opened online.

Cross references

The cross-reference list shows the use of the ad-
dresses and blocks in the user program. It in-
cludes the absolute address, the symbol (if any),
the block in which the address was used, how it
was used (read or write) and positions at which
the address was used. Click on a column header
to sort the table by column contents.

EDIT GO TO LOCATION with the position
marked, or double clicking the position of use
starts the program editor and displays the
address in the programmed environment.

The cross-reference list shows the addresses
you selected with VIEW FILTER (for instance
bit memory). STEP 7 then uses the filter saved
as “Standard” every time it opens the cross-ref-
erence list.

Advantage: the cross references show you
whether the referenced addresses were also
scanned or reset. They also show you in which
blocks addresses are used (possibly more than
once).

2.5 Creating the S7 Program

85

Assignments

The I/Q/M reference list shows which bits in
address areas I, Q and M are assigned in the
program. One byte, broken down into bits,
appears on each line. Also shown is byte-,
word- or doubleword-oriented access by a blue
bar. The T/C reference list shows the timers and
counters used in the program. Ten timers or
counters are displayed on a line.

Advantage: the list shows you whether certain
address areas were (improperly) assigned or
where there are still addresses available.

Program structure

The program structure shows the call hierarchy
of the blocks in a user program. You can select
the start object for the call hierarchy from a
selection list. With VIEW FILTER you have a
choice between two different views in the pro-
gram structure:

The Call structure shows all nesting levels of
the block calls. You control the display of nest-

ing levels with the “+” and “–” boxes. The
requirements for temporary local data are
shown for a block or for the entire path up to the
associated block. With the block marked,
change using EDIT GO TO LOCATION to
call the block, or open the block with EDIT
GO TO BLOCK.

The display as Dependency structure shows
two call levels. The blocks are displayed
(indented) in which the block positioned on the
left is called.

Advantage: which blocks were used? Were all
programmed blocks called? What are the
blocks’ temporary local data requirements? Is
the specified local data requirement per priority
class (per organization block) sufficient?

Unused symbols

This list shows all addresses which have sym-
bol table allocations but were not used in the
program. The list shows the symbol, the

Figure 2.14 Examples22 of Reference Data (Cross-references, Assignment, Program Structure)

2 STEP 7 Programming Software

86

address, the data type, and the comment from
the symbol table.

Advantage: were the addresses in the list inad-
vertently forgotten when the program was
being written? Are they spares? Or are they per-
haps superfluous, and not really needed?

Addresses without symbol

This list shows all the addresses used in the pro-
gram to which no symbols were allocated. The
list shows these addresses and how often they
were used.

Advantage: were addresses used inadvertently
(by accident, or because of a typing error)?

2.5.8 Language Settings

STEP 7 offers several possibilities for working
with different languages:

b The language of the operating system (char-
acter set)

b The STEP 7 language

b The language for comments and displays

The settings for the various languages are inde-
pendent of one another.

Language setting of the operating system

Use the Windows’ control panel to select the
character set for use with the Windows operat-
ing system. The character sets tested with the
multi-language version (MUI version) and the
limitations when operating with STEP 7 can be
found in the current Readme file or the STEP 7
help under “Creating and editing the project”.

Project language

The project language is the language set when
creating the project in the Windows’ control
panel. In the SIMATIC Manager, select EDIT
 OBJECT PROPERTIES to show the language
in which the selected project or library was cre-
ated. The display “not yet set” means that lan-
guage-independent use of the project or library
is possible, e.g. in multi-projects. These are al-
ways language-independent. Only ASCII
characters (2Ahex to 7Fhex) may be used in
language-independent projects or libraries.

You can find further information in the
STEP 7 help under “Creating and editing the
project”.

STEP 7 language

The session language of the SIMATIC Manag-
er, which e.g. defines the texts of the menus and
error messages, is referred to as the STEP 7 lan-
guage. You can set this language in the SIMAT-
IC Manager using OPTIONS CUSTOMIZE on
the “Language” tab. “National Language” lists
those which have been installed with STEP 7
and are available for selection. Also set the pro-
gramming mnemonics on this tab, i.e. the lan-
guage used by STEP 7 for addresses and oper-
ations, e.g. “A I” (AND Input) for English or
“U E” (UND Eingang) for German.

Multilingual comments and display texts

Comments and display texts can be implement-
ed in several languages. You have entered the
texts in the original language, such as English,
and you want to generate a German version of
your program. To do so, export the desired texts
or text types. The export file is a *.csy or *.xls.
file that you can edit with Microsoft Excel. You
can enter the translation for each text. You im-
port the finished translation table back into your
project. Now you can switch between the lan-
guages. You can do this with several languages.

Use OPTIONS LANGUAGE FOR DISPLAY
UNITS in the SIMATIC Manager to select the

Table 2.2
Text Types of the Translated Texts (Selection)

Text type Meaning

BlockTitle Block title

BlockComment Block comment

NetworkTitle Network title

NetworkComment Network comment

LineComment Line comment

InterfaceComment Comment in
b the declaration table of

code blocks
b data blocks
b user data types UDT

SymbolComment Symbol comment

2.6 Online Mode

87

languages available in your project and to set
the standard language for the display units.

Exporting and importing texts

Select the object in the SIMATIC Manager con-
taining the comments you want to translate, e.g.
the symbol table, the block container, several
blocks or a single block. Select OPTIONS
MANAGE MULTILINGUAL TEXTS EXPORT.
In the dialog window that then appears, enter
the storage location of the export file and the
target language. Select the text types that you
want to translate (Table 2.2).

A separate file is generated for every text type,
e.g. the file SymbolComment.csv for the com-
ments from the symbol table. Existing export
files can be expanded. A log file provides infor-
mation on the types of exported text and any
errors.

Open the export file(s) with the FILE OPEN

dialog box in Microsoft Excel (not by double-
clicking). The exported texts are displayed in
the first column and you can translate the texts
in the second column.

You can fetch the translated texts back to the
project with OPTIONS MANAGE MULTILIN-
GUAL TEXTS IMPORT. A log file provides
information about the imported texts and any
errors that may have occurred.

Please note that the name of the import file
must not be changed since there is a direct rela-
tion between this and the text types contained in
the file.

Selecting and deleting a language

You can change to all imported languages in the
SIMATIC Manager with OPTIONS MANAGE

MULTILINGUAL TEXTS CHANGE LAN-
GUAGE. The language change is executed for
the objects (blocks, symbol table) for which the
relevant texts have been imported. This infor-
mation is contained in the log file. Further set-
tings, e.g. the importing of multilingual com-
ments when copying a block, are made with
OPTIONS MANAGE MULTILINGUAL TEXTS
 SETTINGS FOR COMMENT MANAGEMENT.
You can delete the imported language again
with OPTIONS MANAGE MULTILINGUAL

TEXTS DELETE LANGUAGE.

2.6 Online Mode

You create the hardware configuration and the
user program on the programming device, gen-
erally referred to as the “engineering system”
(ES). The S7 program is stored offline on the
hard disk here, also in compiled form.

To transfer the program to the CPU, you must
connect the programming device to the CPU.
You establish an “online” connection. You can
use this connection to determine the operating
state of the CPU and the assigned modules, i.e.,
you can carry out diagnostics functions.

2.6.1 Connecting a PLC

The connection between the programming
device’s MPI interface and the CPU’s MPI
interface is the mechanical requirement for an
online connection. The connection is unique
when a CPU is the only programmable module
connected. If there are several CPUs in the MPI
subnet, each CPU must be assigned a unique
node number (MPI address). You set the MPI
address when you initialize the CPU. Before
linking all the CPUs to one network, connect
the programming device to only one CPU at a
time and transfer the System Data object from
the offline container Blocks or direct with the
Hardware Configuration editor using the menu
command PLC DOWNLOAD. This assigns a
CPU its own special MPI address (“naming”)
along with the other properties.

The MPI address of a CPU in the MPI network
can be changed at any time by transferring a
new parameter data record containing the new
MPI address to the CPU. Note carefully: the
new MPI address takes effect immediately.
While the programming device adjusts imme-
diately to the new address, you must adapt other
applications, such as global data communica-
tions, to the new MPI address.

The MPI parameters are retained in the CPU
even after a memory reset. The CPU can thus
be addressed even after a memory reset.

A programming device can always be operated
online on a CPU, even with a module-indepen-
dent program and even though no project has
been set up.

2 STEP 7 Programming Software

88

If no project has been set up, you establish the
connection to the CPU with PLC DISPLAY

ACCESSIBLE NODES. This screens a project
window with the structure “Accessible Nodes”
– “Module (MPI=n)” – “Online User Program
(Blocks)”. When you select the Module object,
you may utilize the online functions, such as
changing the operational status and checking
the module status. Selecting the Blocks object
displays the blocks in the CPU’s user memory.
You can then edit (modify, delete, insert) indi-
vidual blocks.

You can fetch back the system data from a con-
nected CPU for the purpose of, say, continuing
to work on the basis of the existing configura-
tion, without having the relevant project in the
programming device data management system.
Create a new project in the SIMATIC Manager,
select the project and then PLC UPLOAD

STATION TO PG. After specifying the desired
CPU in the dialog box that then appears, the
online system data are loaded onto the hard
disk.

If there is a CPU-independent program in the
project window, create the associated online
project window. If several CPUs are connected
to the MPI and accessible, select EDIT
OBJECT PROPERTIES with the online S7 pro-
gram selected and set the number of the mount-
ing rack and the CPU’s slot on the “Addresses
Module” tab.

If you select the S7 Program in the online win-
dow all the online functions to the connected
CPU are available to you. Blocks shows the
blocks located in the CPU’s user memory. If the
blocks in the offline program agree with the
blocks in the online program you can edit the
blocks in the user memory with the information
from the data management system of the pro-
gramming device (symbolic address, com-
ments).

When you switch with VIEW ONLINE a
CPU-assigned program into online mode, you
can carry out program modifications just as you
would in a CPU-independent program. In addi-
tion, it is now possible for you to configure the
SIMATIC station, that is, to set CPU parame-
ters and address and parameterize modules.

2.6.2 Protection of the user program

With appropriately equipped CPUs, access to
the user program can be protected with a pass-
word. Everyone in possession of the password
has unrestricted access to the user program. For
those who do not know the password, you can
define 3 protection levels. You set the protec-
tion levels with the “Protection” tab of the
Hardware Configuration tool when parameter-
izing the CPU.

The access privilege using the password applies
until the SIMATIC Manager has been exited, or
if the password protection is canceled again
with PLC ACCESS RIGHTS CANCEL.

Protection level 1: mode selector

This protection level is set as default (without
password). With CPUs with a keylock switch,
the user program is protected in level 1 by the
mode selector switch on the front of the CPU.
In the RUN-P and STOP positions, you have
unrestricted access to the user program; in the
RUN position, only read access via the pro-
gramming device is possible. In this position,
you can also remove the keylock switch so that
the mode can no longer be changed via the
switch.

You can bypass protection via the keylock
switch RUN position by selecting the option
“Removable with password”, e.g. if the CPU,
and with it the keylock switch, are not easily
accessible or are located at a distance.

If the mode selector is designed as a toggle
switch, protection level 1 results in no limita-
tion in access to the user program.

In protection level 1, the write protection (pro-
tection level 2) can be switched on and off
again by the program using system function
SFC 109 PROTECT (see Chapter 20.3.8
“Changing the Program Protection”).

Protection level 2: write protection

At this protection level, the user program can
only be read, regardless of the position of the
keylock switch.

2.6 Online Mode

89

Protection level 3: read/write protection

No access to the user program, regardless of the
keylock switch position. Exception: read diag-
nostics buffer and monitor variables in tables
are possible in every protection level.

Password protection

If you select protection level 2 or 3 or protec-
tion level 1 with “Removable with password”,
you will be prompted to define a password. The
password can be up to 8 characters long.

If you try to access a user program that is pro-
tected with a password, you will be prompted to
enter the password. Before accessing a pro-
tected CPU, you can also enter the password via
PLC ACCESS RIGHTS SETUP. First, select
the relevant CPU or the S7 program.

In the “Enter Password” dialog box, you can
select the option “Use password as default for
all protected modules” to get access to all mod-
ules protected with the same password.

Password access authorization remains in force
until the last S7 application has been terminated.

Everyone in possession of the password has
unrestricted access to the user program in the
CPU regardless of the protection level set and
regardless of the keylock position.

2.6.3 CPU Information

In online mode, the CPU information listed
below is available to you. The menu commands
are screened when you have selected a module
(in online mode and without a project) or S7
program (in the online project window).

b PLC DIAGNOSTICS/SETTING

 HARDWARE DIAGNOSTICS

(see Chapter 2.7.1 “Diagnosing the Hard-
ware”)

 MODULE INFORMATION

General information (such as version), diag-
nostics buffer, memory (current map of
work memory and load memory, compres-
sion), cycle time (length of the last, longest,
and shortest program cycle), timing system
(properties of the CPU clock, clock syn-
chronization, run-time meter), performance
data (available data handling blocks and

system blocks, sizes of the address areas),
communication (data transfer rate and com-
munication links), stacks in STOP state (B
stack, I stack, and L stack)

 OPERATING MODE

Display of the current operating mode (for
instance RUN or STOP), modification of
the operating mode

 CLEAR/RESET

Resetting of the CPU in STOP mode

 SET TIME OF DAY

Setting of the internal CPU clock and, in
expanded dialog, difference in time from a
particular zone

b PLC CPU MESSAGES

Reporting of asynchronous system errors
and of user-defined messages generated in
the program with SFC 52 WR_USMSG,
SFC 18 ALARM_S, SFC 17 ALARM_SQ,
SFC 108 ALARM_D and SFC 107
ALARM_DQ.

b PLC DISPLAY FORCE VALUES, PLC
MONITOR/MODIFY VARIABLES,
(see Chapters 2.7.3 “Monitoring and Modi-
fying Variables” and 2.7.4 “Forcing Vari-
ables”)

2.6.4 Loading the User Program into
the CPU

When you transfer your user program (com-
piled blocks and configuration data) to the
CPU, it is loaded into the CPU’s load memory.
Physically, load memory can be a memory inte-
grated in the CPU, a memory card or a micro
memory card (see Chapter 1.1.6 “CPU Memory
Areas”).

With a micro memory card or a flash EPROM
memory card, you can write to it in the pro-
gramming device and use it as data medium.
You plug the memory card into the CPU in the
off-circuit state; on power up following mem-
ory reset, the relevant data of the memory card
are transferred to the work memory of the
CPU. With appropriately equipped CPUs, you
can also overwrite a flash EPROM memory
card or also write a micro memory card if it is
plugged into the CPU, but only with the entire
program.

2 STEP 7 Programming Software

90

In the case of a RAM load memory (integrated
in the CPU, as a memory card or as a micro
memory card) you transfer a complete user pro-
gram by switching the CPU to the STOP state,
performing memory reset and transferring the
user program. The configuration data are also
transferred.

If you only want to change the configuration
data (CPU properties, the configured connec-
tions, GD communications, module parame-
ters, and so on), you need only load the System
Data object into the CPU (select the object and
transfer it with menu command PLC DOWN-
LOAD. The parameters for the CPU go into
effect immediately; the CPU transfers the
parameters for the remaining modules to those
modules during startup.

Please note that the entire configuration is
loaded onto the PLC with the System data
object. If you use PLC DOWNLOAD... in an
application, e.g. in global data communica-
tions, only the data edited by the application are
transferred.

Note: select PLC SAVE TO MEMORY CARD
to load the compressed archive file (see
Chapter 2.2.2 “Managing, Rearranging and
Archiving”). The project in the archive file can-
not be edited direct either with the program-
ming device or from the CPU.

2.6.5 Block Handling

Transferring blocks

In the case of a RAM load memory, you can
also modify, delete or reload individual blocks
in addition to transferring the entire program
online.

You transfer individual blocks to the CPU by
selecting them in the offline window and select-
ing PLC DOWNLOAD. With the offline and
online windows opened at the same time, you
can also drag the blocks with the mouse from
one window and drop them in the other.

Special care is needed when transferring indi-
vidual blocks during operation. If blocks that
are not available in the CPU memory are called
within a block, you must first load the “lower-
level” blocks. This also applies for data blocks
whose addresses are used in the loaded block.

You load the “highest-level” block last. Then,
provided it is called, it will be executed imme-
diately in the next program cycle.

The SIMATIC Manager also allows you to
transfer individual blocks or the entire program
from the offline container Blocks to the CPU in
SCL. Transfer back from the CPU to the hard
disk makes little sense since compiled blocks
can no longer be edited by the SCL editor. You
can only edit the SCL program source file and,
form it, generate the compiled blocks.

Modifying or deleting blocks online

You can edit blocks incrementally in the online
user program (on the CPU), in exactly the same
way as in the offline user program. Using a pro-
gramming device online on the CPU, you can
read, modify or delete blocks in the load mem-
ory.

If the RAM section of the load memory is suf-
ficiently large to accommodate the complete
user program and also the modified blocks, you
can edit blocks without limitation.

If the user program is on a flash EPROM mem-
ory card, you can edit blocks as long as the
RAM section of the load memory is large
enough to accommodate the modified blocks.
The modified blocks in the RAM are valid dur-
ing runtime, those in the FEPROM are marked
as being invalid. Please note that following an
overall reset or unbuffered switching-on the
original blocks are loaded from the FEPROM
into the work memory.

If you use a micro memory card as e.g. with the
compact CPUs, all blocks in the load memory
are non-volatile. You can modify individual
blocks online, and these blocks retain their
modifications even following an overall reset
or unbuffered switching-on. Deleted blocks are
then no longer present.

In incremental programming mode you can
modify blocks in offline data management on
the programming device and in online data
management on the CPU independent of one
another. However, if the online and offline data
management diverge, it may be the case that the
editor can no longer display the additional
information of the offline data management;
they may then be lost (symbolic names, jump
labels, comments, user-defined data types).

2.6 Online Mode

91

Blocks that have been modified online are best
stored offline on the hard disk to avoid data
inconsistency (e.g. a “time stamp conflict”
when the interface of the called block is later
than the program in the calling block).

The following still applies even if you work
with the program editor online: with FILE
SAVE you store the current block in the offline
user program in the programming device data
management; with PLC LOAD you write the
block back to the user program in the CPU.

Compressing

When you load a new or modified block into
the CPU, the CPU places the block in load
memory and transfers the relevant data to work
memory. If there is already a block with the
same number, this “old block” is declared
invalid (following a prompt for confirmation)
and the new block “added on at the end” in
memory. Even a deleted block is “only”
declared invalid, not actually removed from
memory.

This results in gaps in user memory which
increasingly reduce the amount of memory still

available. These gaps can be filled only by the
Compress function. When you compress in
RUN mode, the blocks currently being exe-
cuted are not relocated; only in STOP mode can
you truly achieve compression without gaps.

The current memory allocation can be dis-
played in percent with the menu command PLC
 DIAGNOSTICS/SETTING MODULE

INFORMATION, on the “Memory” tab. The dia-
log box which then appears also has a button for
preventive compression.

You can initiate event-driven compressing per
program with the call SFC 25 COMPRESS.

Data blocks offline/online

When programming, you assign a default value
and an initial value to the data addresses in a data
block (see also Chapter 3.6 “Programming Data
Blocks”). If a data block is loaded into the CPU,
the initial values are transferred to load memory
and the actual values are subsequently trans-
ferred to work memory. Every value change
made to a data address per program corre-
sponds to a change to the actual value in the
work memory (Figure 2.15).

Figure 2.15 Data Storage in User Memory

2 STEP 7 Programming Software

92

You can download the current values generated
in the work memory from a programmed
(loaded) data block into the offline data man-
agement by opening the data block online and
importing into the offline data management
with FILE SAVE. The variable names and the
data types saved in the offline data management
are then retained. If you upload the online data
block into the offline data management using
the SIMATIC Manager with PLC UPLOAD

TO PG or by dragging the data block from the
online window into the offline window, the
description of the addresses, e.g. variable name
and data type, are lost.

If you transfer a data block from the CPU back
into the offline data management, the current
values present in the work memory are
imported into the offline data management as
initial values. The initial values in the load
memory are not changed by this. Following an
overall reset or an unbuffered switch-on, and
with use of a flash EPROM memory card or a
micro memory card, the (old) initial values
present in the load memory are imported into
the work memory as (new) current values.

If you wish to import the current values into the
load memory when using a RAM load memory
or a micro memory card, load the data block
from the CPU into the programming device and
then back again into the CPU. CPUs with micro
memory card provide the system function SFC
84 WRIT_DBL with which you can directly
write current values into the load memory. With
appropriately designed CPUs, you can transmit
the complete work memory contents into the
ROM section of the load memory with PLC
COPY RAM TO ROM.

A data block generated with the property
unlinked is not transferred to work memory; it
remains in load memory. A data block with this
property can be read with SFC 20 BLKMOV or
– with appropriately designed CPUs – with
SFC 83 READ_DBL.

In incremental programming mode, you can
create data blocks directly in the work memory
of the CPU. It is recommendable to also save
these data blocks offline immediately following
creation.

With the system functions SFC 22 CREAT_
DB, SFC 85 CREA_DB and SFC 82 CREA_

DBL you can generate data blocks during
runtime where the description of the addresses,
e.g. variable name and data type, is missing.
When reading with the programming device, a
BYTE field is therefore displayed with a name
and index assigned by the program editor. If
you transmit such a data block to the offline
data management, this declaration is also
imported. If the data block has the property
Unlinked, the initial values from the load
memory are imported into the offline data
management as new initial values, otherwise
the current values from the work memory.

When transferring to the offline data
management, the checksum of the (offline)
program is changed.

2.7 Testing the Program

After establishing a connection to a CPU and
loading the user program, you can test (debug)
the program as a whole or in part, such as indi-
vidual blocks. You initialize the variables with
signals and values, e.g. with the help of simula-
tor modules and evaluate the information
returned by your program. If the CPU goes to
the STOP state as a result of an error, you can
get support in finding the cause of the error
from the CPU information among other things.

Extensive programs are debugged in sections.
If, for example, you only want to debug one
block, load this block into the CPU and call it in
OB 1. If OB 1 is organized is in such a way that
the program can be debugged section by section
“from beginning to end”, you can select the
blocks or program sections for debugging by
using jump functions to skip those calls or pro-
gram sections that are not to be debugged.

With the S7-PLCSIM optional software, you
can simulate a CPU on the programming device
and so debug your program without additional
hardware.

2.7.1 Diagnosing the Hardware

In the event of a fault, you can fetch the diag-
nostics information of the faulty modules with
the help of the function “Diagnose Hardware”.

2.7 Testing the Program

93

You connect the programming device to the
MPI bus and start the SIMATIC Manager.

If the project associated with the plant configu-
ration is available in the programming device
database, open the online project window with
VIEW ONLINE. Otherwise, select PLC
DISPLAY ACCESSIBLE NODES and select the
CPU.

Now you can get a quick overview of the faulty
modules with PLC DIAGNOSTICS/SETTING
 HARDWARE DIAGNOSTICS (default in the
SIMATIC Manager with OPTIONS CUS-
TOMIZE in the tab “View”). If the fast view is
deselected, you obtain detailed diagnostics
information on all modules.

If you are in the Hardware Configuration,
switch the online view on with VIEW
ONLINE. You can now display the existing diag-
nostics information of the selected module with
PLC MODULE INFORMATION.

2.7.2 Determining the Cause of a STOP

If the CPU goes to STOP because of an error,
the first measure to take in order to determine
the reason for the STOP is to output the diag-
nostics buffer. The CPU enters all messages in
the diagnostic buffer, including the reason for a
STOP and the errors which led to it.

To output the diagnostic buffer, switch the PG
to online, select an S7 program, and choose the
Diagnostics Buffer tab with the menu command
PLC DIAGNOSTICS/SETTING MODULE

INFORMATION. The last event (the one with the
number 1) is the cause of the STOP, for instance
“STOP because programming error OB not
loaded”. The error which led to the STOP is
described in the preceding message, for exam-
ple “FC not loaded”. By clicking on the mes-
sage number, you can screen an additional com-
ment in the next lower display field. If the mes-
sage relates to a programming error in a block,
you can open and edit that block with the “Open
Block” button.

If the cause of the STOP is, for example, a pro-
gramming error, you can ascertain the sur-
rounding circumstances with the “Stacks” tab.
When you open “Stacks”, you will see the
B stack (block stack), which shows you the call
path of all non-terminated blocks up to the

block containing the interrupt point. Use the
“I stack” button to screen the interrupt stack,
which shows you the contents of the CPU reg-
isters (accumulators, address register, data
block register, status word) at the interrupt
point at the instant the error occurred. The
L stack (local data stack) shows the block’s
temporary local data, which you select in the
B stack by clicking with the mouse.

2.7.3 Monitoring and Modifying Variables

One excellent resource for debugging user pro-
grams is the monitoring and modifying of vari-
ables with VAT variable tables. Signal states or
values of variables of elementary data types can
be displayed. If you have access to the user pro-
gram, you can also modify variables, i.e.
change the signal state or assign new values.

Please note that you can only control data
addresses if the write protection for the data
block is switched off, i.e. the block property DB
is write-protected in the AS is not activated.

Addresses in data blocks with the block proper-
ty Unlinked cannot be monitored since these
data blocks are present in the load memory of
the Micro Memory Card. A single updating op-
eration is carried out when the data block is
opened online.

Caution: you must ensure that no dangerous
states can result from modifying variables!

Creating a variable table

For monitoring and modifying variables, you
must create a VAT variable table containing the
variables and the associated data formats. You
can generate up to 255 variable tables (VAT 1 to
VAT 255) and assign them names. The maxi-
mum size of a variable table is 1024 lines with
up to 255 characters (Figure 2.16).

You can generate a VAT offline by selecting the
user program Blocks and then INSERT S7
BLOCK VARIABLE TABLE, and you can gen-
erate an unnamed VAT online by selecting S7
Program and selecting PLC MONI-
TOR/MODIFY VARIABLES.

You can specify the variables with either abso-
lute or symbolic addresses and choose the data
type (display format) with which a variable is to

2 STEP 7 Programming Software

94

be displayed and modified (select the lines to be
changed then select VIEW SELECT DISPLAY

FORMAT or click with the right mouse button on
“Display Format”).

Use comment lines to give specific sections of
the table a header. You may also stipulate which
columns are to be displayed. You can change
variables or display formats or add or delete
lines at any time. You save the variable table in
the Blocks object container with TABLE
SAVE.

Establishing an online connection

To operate a variable table that has been created
offline, switch it online with PLC CONNECT

TO ... You must switch each individual VAT
online and you can clear down the connection
again with PLC DISCONNECT.

Trigger conditions

In the variable table, select VARIABLE TRIG-
GER to set the trigger point and the trigger con-
ditions separately for monitoring and modify-
ing. The trigger point is the point at which the
CPU reads values from the system memory or
writes values to the system memory. You spec-
ify whether reading and writing is to take place
once or periodically.

If monitoring and modifying have the same
trigger conditions, monitoring is carried out
before modifying. If you select the trigger point
“Start of cycle” for modifying, the variables are
modified after updating of the process input
image and before calling OB 1. If you select the
trigger point “End of cycle” for monitoring, the
status values are displayed after termination of
OB 1 and before output of the process output
image.

Figure 2.16 Variable Table Example

2.7 Testing the Program

95

Monitoring variables

Select the Monitor function with the menu
command VARIABLE MONITOR. The vari-
ables in the VAT are updated in accordance with
the specified trigger conditions. Permanent
monitoring allows you to follow changes in the
values on the screen. The values are displayed
in the data format which you set in the Display
Format column. The ESC key terminates a per-
manent monitor function.

VARIABLE UPDATE MONITOR VALUES

updates the monitor values once only and
immediately without regard to the specified
trigger conditions.

Modifying variables

Use VARIABLE MODIFY to transfer the spec-
ified values to the CPU dependent on the trig-
ger conditions. Enter values only in the lines
containing the variables you want to modify.
You can expand the commentary for a value
with “//” or with VARIABLE MODIFY VALUE

AS COMMENT; these values are not taken into
account for modification. You must define the
values in the data format which you set in the
Display Format column. Only the values visi-
ble on starting the modify function are modi-
fied. The ESC key terminates a permanent
modify function.

VARIABLE ACTIVATE MODIFY VALUES

transfers the modify values only once and
immediately, without regard to the specified
trigger conditions.

2.7.4 Forcing Variables

With appropriately equipped CPUs, you can
specify fixed values for certain variables. The
user program can no longer change these values
(“forcing”). Forcing is permissible in any CPU
operating state and is executed immediately.

Caution: you must ensure that no dangerous
states can result from forcing variables!

The starting point for forcing is a variable table
(VAT). Create a VAT, enter the addresses to be
forced and establish a connection to the CPU.
You can open a window containing the force
values by selecting VARIABLE DISPLAY

FORCE VALUES.

If there are already force values active in the
CPU, these are indicated in the force window in
bold type. You can now transfer some or all
addresses from the variable table to the force
window or enter new addresses. You save the
contents of a force window in a VAT with
TABLE SAVE AS.

The following address areas can be provided
with a force value:

b Inputs I (process image)
[S7-300 and S7-400]

b Outputs Q (process image)
[S7-300 and S7-400]

b Peripheral inputs PI
[S7-400]

b Peripheral outputs PQ
[S7-400]

b Memory bits M
[S7-400]

You start the force job with VARIABLE
FORCE. The CPU accepts the force values and
permits no more changes to the forced
addresses.

While the force function is active, the following
applies:

b All read accesses to a forced address via the
user program (e.g. load) and via the system
program (e.g. updating of the process
image) always yield the force value.

b On the S7-400, all write accesses to a forced
address via the user program (e.g. transfer)
and via the system program (e.g. via SFCs)
remain without effect. On the S7-300, the
user program can overwrite the force val-
ues.

Forcing on the S7-300 corresponds to cyclic
modifying: after the process input image has
been updated, the CPU overwrites the inputs
with the force value; before the process output
image is output, the CPU overwrites the outputs
with the force value.

Note: forcing is not terminated by closing the
force window or the variable table, or by break-
ing the connection to the CPU! You can only
delete a force job with VARIABLE STOP

FORCING.

2 STEP 7 Programming Software

96

Forcing is also deleted by memory reset or by a
power failure if the CPU is not battery-backed.
When forcing is terminated, the addresses
retain the force values until overwritten by
either the user program or the system program.

Forcing is effective only on I/O assigned to a
CPU. If, following restart, forced peripheral
inputs and outputs are no longer assigned (e.g.
as a result of reparameterizing), the relevant
peripheral inputs and outputs are no longer
forced.

Error handling

If the access width when reading is greater than
the force width (e.g. forced byte in a word), the
unforced component of the address value is
read as usual. If a synchronization error occurs
here (access or area length error) the “error sub-
stitute value” specified by the user program or
by the CPU is read or the CPU goes to STOP.

If, when writing, the access width is greater
than the force width (e.g. forced byte in a
word), the unforced component of the address
value is written to as usual. An errored write
access leaves the forced component of the
address unchanged, i.e. the write protection is
not revoked by the synchronization error.

Loading forced peripheral inputs yields the
force value. If the access width agrees with the
force width, input modules that have failed or
have not (yet) been plugged in can be
“replaced” by a force value.

The input I in the process image belonging to a
forced peripheral input PI is not forced; it is not
preassigned and can still be overwritten. When
updating the process image, the input receives
the force value of the peripheral input.

When forcing peripheral outputs PQ, the asso-
ciated output Q in the process image is not
updated and not forced (forcing is only effec-
tive “externally” to the module outputs). The
outputs Q are retained and can be overwritten;
reading the outputs yields the written value (not
the force value). If an output module is forced
and if this module fails or is removed, it will
receive the force value again immediately on
reconnection.

The output modules output signal state “0” or
the substitute value with the OD signal (disable

output modules at STOP, HOLD or RESTART)
– even if the peripheral outputs are forced
(exception: analog modules without OD evalu-
ation continue to output the force value). If the
OD signal is deactivated, the force value
becomes effective again.

If, in STOP mode, the function Enable PQ is
activated, the force values also become effec-
tive in STOP mode (due to deactivation of the
OD signal). When Enable PQ is terminated, the
modules are set back to the “safe” state (signal
state “0” or substitute value); the force value
becomes effective again at the transition to
RUN.

2.7.5 Enabling Peripheral Outputs

In STOP mode, the output modules are nor-
mally disabled by the OD signal; with the
Enable peripheral outputs function, you can
deactivate the OD signal so that you can modify
the output modules even at CPU STOP. Modi-
fying is carried out via a variable table. Only
the peripheral outputs assigned to a CPU are
modified. Possible application: wiring test of
the output at STOP and without user program.

Caution: you must ensure that no dangerous
states can result from enabling the peripheral
outputs!

Create a variable table and enter the peripheral
outputs (PQ) and the modify values. Switch the
variable table online with PLC CONNECT TO

 ... online and stop the CPU if necessary, e.g.
with PLC OPERATING MODE and “STOP”.

You deactivate the OD signal with VARIABLE

 ENABLE PERIPHERAL OUTPUTS; the module
outputs now have signal state “0” or the substi-
tute value or force value. You modify the
peripheral outputs with VARIABLE ACTI-
VATE MODIFY VALUES. You can change the
modify value and modify again.

You can switch the function off again by select-
ing VARIABLE ENABLE PERIPHERAL OUT-
PUTS again, or by pressing the ESC key. The
OD signal is then active again, the module out-
puts are set to “0” and the substitute value or the
force value is reset

If STOP is exited while “enable peripheral out-
puts” is still active, all peripheral inputs are
deleted, the OD signal is activated at the transi-

2.7 Testing the Program

97

tion to RESTART and deactivated again at the
transition to RUN.

2.7.6 Test and process mode

Recording of the program status information
requires additional execution time in the pro-
gram cycle. For this reason, you can choose two
operating modes for debugging purposes: test
mode and process mode. In test mode, all de-
bugging functions can be used without restric-
tion. You would select this, for example, to de-
bug blocks without connection to the system,
because this can significantly increase the cycle
execution time. In process mode, care is taken
to keep the increase in the cycle time to a mini-
mum and this results in debugging restrictions,
e.g. the status display is aborted at the return
position in the case of program loops. Tests
with breakpoints and single-step program exe-
cution cannot be carried out in process mode.

For the S7-300 CPUs, test mode is factory-set.
You can set test or process mode for these CPUs
with the Hardware Configuration in the “Pro-
tection” tab. The configuration must then be re-
compiled and downloaded to the CPU.

For the S7-400 CPUs, process mode is factory-
set. You can change the mode online using the
program editor. The set mode is displayed using
DEBUG OPERATION..., and it is possible to
change this online.

2.7.7 STL Program Status

With the Program status function, the program
editor provides an additional test method for the
user program. The editor shows you line by line
the register assignments you have selected on
the “STL” tab under OPTIONS CUSTOMIZE

(“Standard status” means accumulator 1 here or
timer value or counter value). The amount of
status information displayed depends on the
CPU and the data type of the variables. You can
improve the display through smaller networks
or by reducing the block window.

The block whose program you want to debug is
in the CPU’s user memory and is called and
edited there. Open this block, for example by
double-clicking on it in the SIMATIC Man-
ager’s online window. The editor is started and
shows the program in the block.

Select the program section you want to debug.
Activate the Program Status function with
DEBUG MONITOR. Now you can see the
address statuses, the result of the logic opera-
tion and the register assignments (Figure 2.17).
You can deactivate the Program Status function
again by selecting DEBUG MONITOR again.

You set the trigger conditions with DEBUG
CALL ENVIRONMENT (see further under
“Breakpoints, single-step mode”). You require
this setting if the block to be debugged is called
more than once in your program. You can initi-
ate status recording either by specifying the call
path (determined from the reference data or
manually) or by making it dependent on the
opened data block when calling the block to be
tested. If the call environment is not set,
observe the block when it is called for the first
time.

Controlling addresses

You can control addresses in the program sta-
tus. If the address is of data type BOOL, set the
cursor to the statement line and select DEBUG

 MODIFY ADDRESS TO 0 or DEBUG MOD-
IFY ADDRESS TO 1. With a different data type,
select DEBUG MODIFY ADDRESS and enter
the control value for the marked address in the
displayed dialog box.

Operator inputs on the contact

In the program status, you can directly control
binary inputs and bit memories in the user pro-
gram using a button. The following prerequi-
sites are necessary for this function:

b You assign the attribute CC (Control at Con-
tact, see “Special object properties” in
Chapter 2.5.2 “Symbol Table”) to the inputs
and bit memories in the symbol table.

b You have enabled control at contact in the
program editor with OPTIONS CUSTOM-
IZE on the tab “General”.

b You are online in the program status with
DEBUG MONITOR and additionally select
DEBUG CONTROL AT CONTACT.

The symbols and addresses of the binary inputs
and bit memories are displayed as buttons
which you can click with the mouse. Addresses
programmed as NO contacts or addresses with

2 STEP 7 Programming Software

98

scanning for signal status “1” then deliver the
address status “1”; addresses programmed as
NC contacts or addresses with scanning for sig-
nal status “0” deliver the status “0”. Using the
Ctrl key and the mouse, you can select several
addresses and access them simultaneously
when operating on the contact. You can dese-
lect addresses in the same manner.

Breakpoints, single-step mode

If the block was written in the STL language,
some CPUs allow you to debug the program
statement by statement in single-step mode.
The CPU is in HOLD mode; for reasons of
safety, the peripheral outputs are disabled.
Using breakpoints, you can stop the program at
any location and debug it step by step.

The test mode must be set to test in single-step
mode (see Chapter 2.7.6 “Test and process
mode”).

To set the breakpoint, position the cursor in the
relevant statement line and select DEBUG
SET BREAKPOINT. To debug, select DEBUG
BREAKPOINTS ACTIVE; this causes the break-
points to be transferred to the CPU and acti-
vated. If the CPU is not already operating, it
will now restart and go to the HOLD mode
when it encounters a breakpoint. Then, in a
window reserved for this purpose, the current
register contents are displayed at the statement.

You can now cause the program to be executed
line by line by selecting DEBUG EXECUTE

NEXT STATEMENT. Program execution stops at
each statement and displays the register con-
tents. At a block call, you can continue execu-
tion in the called block by selecting DEBUG
EXECUTE CALL.

With DEBUG RESUME, the program is exe-
cuted at normal speed until the next breakpoint
is reached.

Blocks containing breakpoints cannot be
changed or reloaded online. All breakpoints

Figure 2.17 STL Program Status

2.7 Testing the Program

99

must first be deleted. You must also delete all
breakpoints in order to terminate debugging
with breakpoints. With DEBUG RESUME, the
CPU switches back to the RUN state.

2.7.8 Monitoring and Controlling Data
Addresses

If the variables to be tested are present in data
blocks, you can also monitor and control them
directly: mark the data block in the SIMATIC
Manager and select EDIT OPEN OBJECT.
With STEP 7 V5.2 or higher, you are asked in
the standard setting whether you wish to open
the data block with the program editor or with
the application “Parameter assignment for data
blocks”.

In the program editor, switch the data view on
with VIEW DATA VIEW and select DEBUG
MONITOR. You can now monitor the current
values in the work memory, and also set (con-
trol) them if necessary. With PLC DOWN-
LOAD you can write the modified current values
back into the work memory, and with FILE
SAVE can import the modified values into the

offline data management (first switch off
DEBUG MONITOR).

With “Parameter assignment for data blocks”
you can directly monitor and control the current
values in the CPU’s user memory. You can also
monitor and set the current values here with
DEBUG MONITOR. With PLC DOWN-
LOAD PARAMETER DATA you have the opportu-
nity for only writing the current values into the
work memory and not the complete data block.
With DATA BLOCK SAVE you can import the
data block into the offline data management.

The advantage of the application “Parameter-
ization of data blocks” is the facility for dis-
playing and parameterizing the data blocks in
the parameterization view. Prerequisite: the
system attribute S7-techparam (technological
functions) is set and a parameterization desktop
is available, e.g. from an option package. Fig-
ure 2.18 shows a comparison between parame-
terization view and data view using an example
of the instance data block for the controller
function block FB 58 TCONT_CP from the

Figure 2.18 Comparison Between Parameterization View and Data View

2 STEP 7 Programming Software

100

standard library PID Control Blocks. Its param-
eterization desktop is provided with STEP 7.

2.7.9 Debugging SCL Programs

If you want to debug an SCL program, you
must compile it with the option “Create debug
info”. You can set this option on the “Compiler”
tab under OPTIONS CUSTOMIZE in the SCL
Editor. Following compiling with “Create
object code”, transfer the program to the CPU
with PLC DOWNLOAD.

The SCL debugger is an integral component of
the SCL program editor.

SCL program status

With this test function you can test a group of
statements, the "monitoring range", during run-
ning operation. The monitoring range has a
variable length that depends on the statements
used. The values of the variables in this range
are updated and displayed cyclically.

If the monitor area is in a program section that
is executed in every program cycle, the variable
values from concatenous cycles cannot usually
be acquired. Values that have changed during
the current pass are represented in black type,
and values that have not changed are repre-
sented in light gray.

To debug the SCL program, switch the CPU to
RUN or RUN-P and open the program source
file containing the program section to be
debugged. Select the operating mode DEBUG

 OPERATION TEST OPERATION.

Position the cursor at the start of the area to be
debugged. Activate debugging with DEBUG
MONITOR. The names and values of the vari-
ables in monitor range are displayed by line in
the right-hand section of the window that then
appears.

You can interrupt the debug run by selecting
DEBUG MONITOR again; DEBUG FINISH

DEBUGGING terminates the debug run.

Figure 2.19 Debugging with SCL

2.7 Testing the Program

101

Breakpoints, single-step mode

When debugging in single-step mode, you can
execute the SCL program line by line and mon-
itor the variable values. After setting break-
points, you can execute the program first up to
a breakpoint and then with step-by-step moni-
toring from there.

The following requirements must be met for
debugging in single-step mode: the block to be
debugged must not be protected, it must be
opened online and the opened block must not
have been modified in the editor. Single-step
mode only functions on CPUs that support it.
The operating mode “Test mode” must be set,
and debugging with the Program Status func-
tion must be deactivated. The CPU carries out
holding at a breakpoint and step-by-step execu-
tion only in HOLD mode.

To debug, open the program source file and
define the breakpoints by positioning the cursor
at the desired statement and selecting DEBUG

 SET BREAKPOINT. Please ensure that no dan-
gerous states can result and select DEBUG
BREAKPOINTS ACTIVE. If the CPU is not
already operating, it will now go to RUN mode
and then to HOLD mode at the next breakpoint
(Figure 2.19).

The CPU goes to RUN mode with DEBUG
NEXT STATEMENT and stops again at the state-
ment immediately following. The variable val-
ues of the executed statement line are displayed
in the right-hand section of the editor window.
Use DEBUG EXECUTE CALL if the CPU stops
at a block call and you wish to continue the sin-
gle-step execution in the called SCL block. Dis-
play of the symbol names can be toggled on and
off with VIEW SYMBOLIC REPRESENTATION.

With DEBUG RESUME, the CPU goes to
RUN mode and stops at the next breakpoint.
With DEBUG TO CURSOR, the CPU goes to
RUN mode and stops at the program section
selected by the cursor.

You can manage the breakpoints in the program
with DEBUG EDIT BREAKPOINTS. You inter-
rupt the debug process with a repeated DEBUG

 BREAKPOINTS ACTIVE; DEBUG FINISH

DEBUGGING terminates the debug process.

Note: the menu commands DEBUG NEXT

STATEMENT and DEBUG TO CURSOR set and
activate a breakpoint. Please ensure that the
CPU-specific number of breakpoints is not
exceeded when you activate this function.

3 SIMATIC S7 Program

102

3 SIMATIC S7 Program

This chapter shows you the structure of the user
program for the SIMATIC S7-300/400 CPUs
starting from the different priority classes (pro-
gram execution types) via the component parts
of a user program (blocks) right up to the vari-
ables and data types. The focus of this chapter
is the description of block programming with
STL and SCL. The data types are dealt with in
detail in Chapter 24 “Data Types”.

You define the structure of the user program
right back at the design phase when you adapt
the technological and functional conditions; it
is decisive for program creation, program test
and startup. To achieve effective programming,
it is therefore necessary to devote special atten-
tion to the program structure.

3.1 Program Processing

The overall program for a CPU consists of the
operating system and the user program.

The operating system is the totality of all
instructions and declarations which control the
system resources and the processes using these
resources, and includes such things as data
backup in the event of a power failure, the acti-
vation of priority classes, and so on. The oper-
ating system is a component of the CPU to
which you, as user, have no write access. How-
ever, you can reload the operating system from
a memory card, for instance in the event of a
program update.

The user program is the totality of all instruc-
tions and declarations (in this case program ele-
ments) for signal processing, through which a
plant (process) is affected in accordance with
the defined control task.

3.1.1 Program Processing Methods

The user program may be composed of pro-
gram sections which the CPU processes in
dependence on certain events. Such an event
might be the start of the automation system, an
interrupt, or detection of a program error (Fig-
ure 3.1). The programs allocated to the events
are divided into priority classes, which deter-
mine the program processing order (mutual
interruptibility) when several events occur.

The lowest-priority program is the main pro-
gram, which is processed cyclically by the
CPU. All other events can interrupt the main
program at any location, the CPU then executes
the associated interrupt service routine or error
handling routine and returns to the main pro-
gram.

A specific organization block (OB) is allocated
to each event. The organization blocks repre-
sent the priority classes in the user program.
When an event occurs, the CPU invokes the
assigned organization block. An organization
block is a part of a user program which you
yourself may write.

Before the CPU begins processing the main
program, it executes a startup routine. This rou-
tine can be triggered by switching on the mains
power, by actuating the mode switch on the
CPU’s front panel, or via the programming
device. Program processing following execu-
tion of the startup routine always starts at the
beginning of the main program in the case of a
cold or warm restart; in S7-400 systems, it is
also possible to resume the program scan at the
point at which it was interrupted (hot restart).

The main program is in organization block OB
1, which the CPU always processes. The start
of the user program is identical to the first net-
work in OB 1. After OB 1 has been processed
(end of program), the CPU returns to the oper-
ating system and, after calling for the execution

3.1 Program Processing

103

of various operating system functions, such as
the updating of the process images, it once
again calls OB 1.

Events which can intervene in the program are
interrupts and errors. Interrupts can come from
the process (process interrupts) or from the
CPU (watchdog interrupts, time-of-day inter-
rupts, etc.). As far as errors are concerned, a
distinction is made between synchronous and
asynchronous errors.

An asynchronous error is an error which is in-
dependent of the program scan, for example
failure of the power to an expansion unit or an
interrupt that was generated because a module
was being replaced.

A synchronous error is an error caused by pro-
gram processing, such as accessing a non-exis-
tent address or a data type conversion error. The
type and number of recorded events and the
associated organization blocks are CPU-spe-
cific; not every CPU can handle all possible
STEP 7 events.

3.1.2 Priority Classes

Table 3.1 lists the available SIMATIC S7 orga-
nization blocks, each with its priority. In some
priority classes, you can change the assigned
priority when you parameterize the CPU. The
Table shows the lowest and highest possible

Figure 3.1 Methods of Processing the User Program

3 SIMATIC S7 Program

104

priority classes; each CPU has a different
low/high range; a specific CPU occupies a sec-
tion of this overview.

Organization block OB 90 (background pro-
cessing) executes alternately with organization
block OB 1, and can, like OB 1, be interrupted
by all other interrupts and errors.

The startup routine may be in organization
block OB 100 (warm restart), OB 101 (hot
restart) or OB 102 (cold restart), and has prior-
ity 27. Asynchronous errors occurring in the
startup routine have priority class 28. Diagnos-
tic interrupts are regarded as asynchronous
errors.

Table 3.1 SIMATIC S7 Organization Blocks

Organization block Called under the following circumstances Priority

Default Modifiable

Free cycle
OB 1

Cyclically via the operating system 1 No

TOD interrupts
OB 10 to OB 17

At a specific time of day or at regular intervals
(e.g. monthly)

2 0, 2 to 24

Time-delay interrupts
OB 20 to OB 23

After a programmable time, controlled by the
user program

3 to 6 0, 2 to 24

Watchdog interrupts
OB 30 to OB 38

Regularly at programmable intervals
(e.g. every 100 ms)

7 to 15 0, 2 to 24

Process interrupts
OB 40 to OB 47

On interrupt signals from I/O modules 16 to 23 0, 2 to 24

DPV1 interrupts
OB 55 to OB 57

With status, update and manufacturer specific
interrupts from PROFIBUS DPV1 slaves

2 0, 2 to 24

Multiprocessor
interrupt OB 60

Event-driven via the user program in multipro-
cessor mode

25 No

Synchronous cycle
interrupts
OB 61 to OB 64

With an synchronous cycle interrupt of the
DP master (synchronous with DP cycle)

25 0, 2 to 26

Technology synchronous
interrupt
OB 65

Synchronous following update of the technology
data blocks of a CPU 317T

25 No

Redundancy errors
OB 70

OB 72
OB 73

In the case of loss of redundancy resulting from
I/O errors
In the case of CPU redundancy error
In the case of communications redundancy error

25
28
25

2 to 26
2 to 28
2 to 26

Asynchronous error
interrupts
OB 80
OB 81 to OB 84, 86, 87
OB 85
OB 88

In the case of errors not involved in program
execution (e.g. time error, SE error, diagnostics
interrupt, insert/remove module interrupt,
rack/station failure, processing abort)

26 2)

25 2)

25 2)

28

No
2 to 26

24 to 26
No

Background processing
OB 90

Minimum cycle time duration not yet reached 29 1) No

Startup routine
OB 100, OB 101, OB 102

At programmable controller startup 27 No

Synchronous errors
OB 121, OB 122

In the case of errors connected with program
execution (e.g. I/O access error)

Priority of the OBs
causing the errors
1) see text 2) at startup: 28

3.1 Program Processing

105

You determine which of the available priority
classes you want to use when you parameterize
the CPU. Unused priority classes (organization
blocks) must be assigned priority 0.

The relevant organization blocks must be pro-
grammed for all priority classes used; other-
wise the CPU will invoke OB 85 (“Program
Processing Error”) or go to STOP.

For each priority class selected, temporary local
data (L stack) must be available in sufficient
volumes (see Chapter 18.1.5 “Temporary Local
Data” for more details).

3.1.3 Specifications for Program
Processing

The CPU’s operating system normally uses
default parameters. You can change these
defaults when you parameterize the CPU (in the
Hardware Configuration) to customize the sys-
tem to suit your particular requirements. You
can change the parameters at any time.

Every CPU has its own specific number of
parameter settings. The following list provides
an overview of all STEP 7 parameters and their
most important settings.

b General
Name of CPU, plant identifier, location
identifier, settings for the MPI interface (if it
is not an interface combined with DP), com-
ment

b Startup
Specifies the type of startup (cold restart,
warm restart, hot restart); monitoring of
Ready signals or module parameterization;
maximum amount of time which may elapse
before a hot restart

b Cycle/Clock Memory
Enable/disable cyclic updating of the pro-
cess image; specification of the cycle moni-
toring time and minimum cycle time;
amount of cycle time, in percent, for com-
munication; number of the clock memory
byte; size of the process images

b Retentive Memory
Number of retentive memory bytes, timers
and counters; specification of retentive
areas for data blocks

b Memory
Max. number of temporary local data in the
priority classes (organization blocks); max
size of the L stack and number of communi-
cations jobs

b Interrupts
Specification of the priority for process
interrupts, time-delay interrupts, asynchro-
nous errors and DPV1 interrupts; assign-
ment of partial process images with process
interrupts and time-delay interrupts

b Time-of-Day Interrupts
Specification of the priority and assignment
of partial process images; specification of
the start time and periodicity

b Cyclic Interrupts
Specification of the priority, the time cycle
and the phase offset; assignment of partial
process images

b Synchronous cycle interrupts
Specification of the priority; assignment of
the DP master system and the partial pro-
cess images

b Diagnostics/Clock
Settings for system diagnostics; type and
interval for time synchronization, correction
factor

b Protection
Specification of the protection level; defin-
ing a password; setting of process and test
modes

b Multicomputing
Specification of the CPU number

b Integrated Functions
Activation and parameterization of the inte-
grated functions

b Communication
Definition of connection resources

b Web
Activation of Web server, language selec-
tion

On startup, the CPU puts the user parameters
into effect in place of the defaults, and they
remain in force until changed.

Program length, memory requirements

The memory requirements of a compiled block
are listed in the block properties. If you mark

3 SIMATIC S7 Program

106

the block in the SIMATIC Manager and select
the tab “General - Part 2” with EDIT OBJECT

PROPERTIES, you will be provided with the load
and work memory requirements for this block.

The length of the user program is listed in the
properties of the offline container Blocks (mark
Blocks and EDIT OBJECT PROPERTIES). On
the tab “Blocks” you can find the data “Size in
work memory” and “Size in load memory”.

Note that the configuration data (system data
blocks) are missing for the size data for the load
memory. With the container open, the
SIMATIC Manager shows you blocks in the
detail view (display as table) and, with the
object System data marked, the memory
requirements in the status line (at bottom right
in window).

With the programming device switched online,
the SIMATIC Manager shows you the current
assignment of the CPU memory under PLC
DIAGNOSTIC/SETTING MODULE INFORMA-
TION, tab “Memory”.

Checksum

The program editor generates a checksum for
all blocks of the user program, and stores it in
the object properties of the container Blocks.
Identical programs have the same checksum,
each change in the program also changes the
checksum. A checksum is also generated using
the system data. You can view the checksums in
the SIMATIC Manager with the marked con-
tainer Blocks and EDIT OBJECT PROPERTIES.

The checksum of the user program is generated
from the program code and the default and ini-
tial values of the data blocks. Writing of data
addresses in the work memory (current values)
does not change the checksum. The checksum
is only changed when the data blocks are
loaded back into the offline data management,
during which the current values become the ini-
tial values. This also applies to data blocks gen-
erated using system functions.

If a data block generated using system func-
tions is written or deleted, the checksum is not
changed. The checksum is adapted if a pro-
grammed (loaded) data block is deleted, or if
the initial values in the load memory are

changed by the system function SFC 84 WRIT_
DBL.

3.2 Blocks

You can subdivide your program into as many
sections as you want to in order to make it eas-
ier to read and understand. The STEP 7 pro-
gramming languages support this by providing
the necessary functions. Each program section
should be self-contained, and should have a
technological or functional basis. These pro-
gram sections are referred to as “Blocks”. A
block is a section of a user program which is
defined by its function, structure or intended
purpose.

3.2.1 Block Types

STEP 7 provides different types of blocks for
different tasks:

b User blocks
Blocks containing user program and user
data

b System blocks
Blocks containing system program and sys-
tem data

b Standard blocks
Turnkey, off-the-shelf blocks, such as driv-
ers for FMs and CPs

User blocks

In extensive and complex programs, “structur-
ing” (subdividing) of the program into blocks is
recommended, and in part necessary. You may
choose among different types of blocks,
depending on your application:

Organization blocks (OBs)

These blocks serve as the interface between
operating system and user program. The CPU’s
operating system calls the organization blocks
when specific events occur, for example in the
event of a hardware or time-of-day interrupt.
The main program is in organization block OB
1. The other organization blocks have perma-
nently assigned numbers based on the events
they are called to handle.

3.2 Blocks

107

Function blocks (FBs)

These blocks are parts of the program whose
calls can be programmed via block parameters.
They have a variable memory which is located
in a data block. This data block is permanently
allocated to the function block, or, to be more
precise to the function block call. It is even pos-
sible to assign a different data block (with the
same data structure but containing different
values) to each function block call. Such a per-
manently assigned data block is called an
instance data block, and the combination of
function block call and instance data block is
referred to as a call instance, or “instance” for
short. Function blocks can also save their vari-
ables in the instance data block of the calling
function block; this is referred to as a “local
instance”.

Functions (FCs)

Functions are used to program frequently recur-
ring or complex automation functions. They
can be parameterized, and return a value (called
the function value) to the calling block. The
function value is optional, in addition to the
function value, functions may also have other
output parameters. Functions do not store infor-
mation, and have no assigned data block.

Data blocks (DBs)

These blocks contain your program’s data. By
programming the data blocks, you determine in
which form the data will be saved (in which
block, in what order, and in what data type).
There are two ways of using data blocks: as
global data blocks and as instance data blocks.
A global data block is, so to speak, a “free” data
block in the user program, and is not allocated
to a code block. An instance data block, how-
ever, is assigned to a function block, and stores
part of that function block’s local data.

The number of blocks per block type and the
length of the blocks is CPU-dependent. The
number of organization blocks, and their block
numbers, are fixed; they are assigned by the
CPU’s operating system. Within the specified
range, you can assign the block numbers of the
other block types yourself. You also have the

option of assigning every block a name (a sym-
bol) via the symbol table, then referencing each
block by the name assigned to it.

System blocks

System blocks are components of the operating
system. They can contain programs (system
functions (SFCs) or system function blocks
(SFBs) or data (system data blocks (SDBs)).
System blocks make a number of important
system functions accessible to you, such as
manipulating the internal CPU clock, or vari-
ous communications functions.

You can call SFCs and SFBs, but you cannot
modify them, nor can you program them your-
self. The blocks themselves do not reserve
space in user memory; only the block calls and
the instance data blocks of the SFBs are in user
memory.

SDBs contain information on such things as the
configuration of the automation system or the
parameterization of the modules. STEP 7 itself
generates and manages these blocks. You, how-
ever, determine their contents, for instance
when you configure the stations. As a rule,
SDBs are located in load memory and only read
from your program using special system
blocks, e.g. when parameterizing modules.

Double-click on the object System blocks in the
container Blocks to display a list of current sys-
tem data blocks which have been generated by
the Hardware Configuration (in the offline con-
tainer) or are present on the CPU (in the online
container). Table 3.2 shows an overview of the
number scheme for system data blocks.

Standard blocks

In addition to the functions and function blocks
you create yourself, off-the-shelf blocks (called
“standard blocks”) are also available. They can
either be obtained on a storage medium or are
contained in libraries delivered as part of the
STEP 7 package (for example IEC functions, or
functions for the S5/S7 converter).

Chapter 33 “Block Libraries” contains an over-
view of the system and standard blocks sup-
plied in the Standard Library.

3 SIMATIC S7 Program

108

3.2.2 Block Structure

Essentially, code blocks consist of three parts
(Figure 3.2):

b The block header,
which contains the block properties, such as
the block name

b The declaration section
in which the block-local variables are
declared, that is, defined

b The program section
which contains the program and program
commentary

A data block is similarly structured:

b The block header contains the block properties

b The declaration part contains the specifica-
tion of the local block variables, here: data
operands with data type

b The initialization section, in which initial
values can be specified for individual data
addresses

In incremental programming (direct program
input without source text file), the declaration
section and the initialization section are com-

bined. You define the data addresses and their
data types in the “declaration view”, and you
can initialize each data address individually in
the “data view”.

3.2.3 Block Properties

The block properties, or attributes, are con-
tained in the block header. You can view and
modify the block attributes with the menu com-
mand EDIT OBJECT PROPERTIES in the
SIMATIC Manager with the block marked or
FILE PROPERTIES from the Editor (Figure
3.3).

Tab “General - Part 1”

This tab contains under Name the absolute
address of the block with block type and num-
ber as well as a symbolic name and symbol
comment from the symbol table.

With function blocks, it is indicated, in addition
to the name, whether the block has multi-
instance capability. If the property “Multiple
Instance Capability” is activated, which is nor-
mally the case, you can call the block as a local

Table 3.2 Number ranges for system data blocks

SDB No. Meaning, content

0 CPU parameters which control the response of the operating system and the CPU-internal
default settings; overwrite the SDB 2 on transmission to the CPU

1 Module addressing for central I/O (reference configuration), e.g. assignment of logical and
geographical addresses, address area for modules, etc.

2 CPU parameters (default settings in the CPU’s operating system; become effective following
overall reset if a configuration has not yet been transmitted)

3 to 7 Various CPU and module parameters, e.g. for saving the consistency of the transmitted
configuration data

20 to 89 Module addressing for distributed I/O (reference configuration), e.g. assignment of logical and
geographical addresses, address area for modules, etc.

90 to 99 Configuration data for fault-tolerant and fail-safe systems

100 to 149 Parameters for central and distributed modules assigned to the CPU

150 to 152 Parameters for interface modules

153 to 189 Parameters for distributed modules

200 to 998 Parameters for configuration of communication (e.g. global data communication, symbol-
based messages, configuration of connections)

999 Configuration data for routing of connections

1000 and
larger

Parameters for distributed I/O, parameters for CP and FM modules,
parameters for fault-tolerant/fail-safe and TD/OP systems

3.2 Blocks

109

instance and you can also call further function
blocks with multi-instance capability within it
as local instances. You can deselect the prop-
erty Multiple Instance Capability when creat-
ing the function block; with a source-oriented
program input, the keyword for deselection is
CODE_VERSION1. The advantage of a func-
tion block without multi-instance capability is
the unlimited use of instance data in the case of
indirect addressing (only significant in STL
programming).

The tab also displays the programming lan-
guage of the block which you set when creating
the block, as well as the storage locations of the
block and the project.

The program editor stores the creation and
modification dates of the block in two time
stamps: these are the block parameters and the
static local data for the program code and for
the interface. Note that the modification date of
the interface must be the same or smaller
(older) than the modification date of the pro-

Figure 3.2 Structure of a Block

Block header
Block type address
Block header

DATA_BLOCK address
Block header

VAR_xxx

name : Data type := Initialization;
name : Data type := Initialization;

END_VAR

...

STRUCT

name : Data type := Initialization;
name : Data type := Initialization;

END_STRUCT

...

BEGIN

Program

END_block_type

BEGIN

name := Initialization;

END_DATA_BLOCK

Block header

NameInterface

Address

Data type

A Input1 //Limit switch up
A Input2 //Manual mode
= Output1 //Message to control panel

Initial value

Comment

Name Type

Program

Declaration

Declaration

Code block, incremental programming

Data block, incremental programming

Code block, source-oriented programming

Data block, source-oriented programming

IN
OUT
IN OUT
STAT
TEMP

3 SIMATIC S7 Program

110

gram code in the calling block. If this is not the
case, the program editor signals a “time stamp
conflict” during output of the calling block.

The displayed comment consists of the block
title and the block comment which you have
entered when programming the block.

Tab “General - Part 2”

The Name (Header) displayed on this tab is the
block name; this is not the same as the symbolic
address. Different blocks can have the same
name. With Family, you assign a common fea-
ture to a group of blocks. The block name and
family are displayed when you insert blocks
and when you select a block in the dialog win-
dow of the program elements catalog. Author is
the creator of the block. Name, Family and
Author can consist of up to 8 characters. Alpha-
numeric characters and the underscore are per-
missible. Version is entered twice, with two dig-
its from 0 to 15.

The length data indicate the memory allocation
for the block in bytes:

b Local data: Allocation in the local data stack
(temporary local data)

b MC7: size of the block (code only)

b Load memory requirement

b Work memory requirement

A block occupies more space in the load mem-
ory since the data not relevant to the execution
are additionally stored here.

The Know-how protection attribute is used for
block protection. If a block is KNOW HOW-
protected, the program in that block can not be
viewed, printed out or modified. The Editor
shows only the block header and the declaration
table with the block parameters. You assign this
property with the source-oriented input of the
block with the keyword KNOW_HOW_PRO-
TECT. When you do this to a block, no one can
view the compiled version of that block, not
even you (make sure you keep the source file in
a safe place!).

DB is write-protected in the PLC is a property
only for data blocks. It means that you can

Figure 3.3 Block Properties

3.2 Blocks

111

only read from this data block by means of a
program. Overwriting of the data is prevented
and an error message is generated. The write
protection applies to the data relevant to exe-
cution (actual values) in the work memory; the
data in the load memory (initial values) can be
overwritten even if the data block is provided
with write protection. The write protection
must not be confused with the block protec-
tion: A data block with block protection can be
read and written by the program; however, its
data can no longer be viewed using a program-
ming or monitoring device. The property DB
is write-protected in the PLC is switched off as
standard and can be changed at any time with
the program editor. The keyword in source-
oriented program entry for switching on write
protection is READ_ONLY.

The block header of any standard block which
comes from Siemens contains the “Standard
block” attribute.

Data blocks can be assigned the property
Unlinked. Data blocks of this type are only in
the load memory, they are execution-relevant.
Since their data are not in the work memory,
direct access is not possible. Data in the load
memory can be read using system functions and
– if the load memory is a micro memory card –
also written. Data blocks with the property
Unlinked are suitable for accommodating data
which are only seldom accessed, e.g. recipes or
archives. This property is switched off in the
default setting, but can be changed at any time
using the program editor. The keyword for
source-oriented program input for switching on
this property is UNLINKED.

The property Non Retain means “non-reten-
tive” and is assigned to data blocks for appro-
priately designed CPUs. If Non Retain is
switched on, the data block accepts the initial
values from the load memory into the work
memory when the power is switched off/on and
with a RUN-STOP transition (response as with
a cold restart). If Non Retain is switched off, i.e.
the corresponding data block is retentive, it
retains its current values when the power is
switched off/on and with a RUN-STOP transi-
tion (response as with a warm start/restart).
This property is switched off in the default set-
ting, but can be changed at any time using the
program editor. The keyword for source-ori-

ented program input for switching on this prop-
erty is NON_RETAIN.

Blocks which have been saved in the program
editor, e.g. for reference purposes, using the
menu command FILE STORE READ-ONLY
are assigned the block property Block read-on-
ly. These can be all code blocks, data blocks and
user-defined data types. This property can only
be set using the program editor, a keyword for
source-oriented programming is not available
for this.

Tab “Calls”

This tab shows a list of all blocks called in this
block with the time stamps for the code and the
interface. With instance data blocks, the basic
function block and the local instances (function
blocks) called in this instance are present here,
in each case with the time stamps for code and
interface.

Tab “Attributes”

Blocks may have system attributes. System
attributes control and coordinate functions
between applications, for example in the
SIMATIC PCS7 control system.

3.2.4 Block Interface

The declarations section contains the interface
of the block to the rest of the program. It con-
sists of the block parameters (input, output and
in/out parameters) and also – in the case of
function blocks – the static local data. The tem-
porary local data, which really do not belong to
the block interface, are also handled at this
point. The block interface is defined in the
interface window when programming the block
and is initialized with variables when the block
is called (see Chapter 19 “Block Parameters”).

The Program Editor checks that the block
parameter initialization in the called block
agrees with the interface of the called block.
The Editor also uses the time stamp for this: the
interface of the called block must be older than
the code in the calling block, that is, the last
interface modification must have been made
prior to integration of the block. The Program
Editor updates the interface time stamp when

3 SIMATIC S7 Program

112

the number of parameters changes or when a
data type or a default value changes.

Time stamp conflict

A time stamp conflict occurs when the interface
of the called block has a later time stamp than
the code of the calling block. You will notice a
time stamp conflict if you open an already com-
piled block again. The Program Editor then
indicates the incorrect block call in red. A time
stamp conflict can be caused, for example, if
you modify the interfaces of blocks that are
already called in other blocks, or if you com-
bine blocks from different programs into a new
program, or if you re-compile a section of the
overall program with a source file.

However, the interface conflict generally
described as a “time stamp conflict” can also
have other causes. It also occurs if a called or
referenced block is younger than the calling
block. Examples of the occurrence of time
stamp conflicts include the following:

b The interface of a called block is younger
than the code of the calling block.

b The interface initialization does not agree
with the block interface.

b A function block is younger than its
instance data block (the instance data block
is generated from the interface description
of the function block and should therefore
be younger than or the same age as the func-
tion block).

b A local instance is younger than the calling
instance (affects function blocks).

b A user data type UDT is younger than the
block whose variables are declared with the
UDT; this can be any block including a data
block or another UDT.

Correcting invalid block calls

There are several possibilities for using the pro-
gram editor to find and correct invalid block
calls. How you can check the block consistency
in a complete program is described in the next
section (“Checking block consistency”).

You can check block calls which have become
invalid with the block open (with the cursor at
the invalid block call) using the menu com-

mand EDIT BLOCK CALL UPDATE. Block
calls can become invalid following inserting,
deleting or shifting block parameters, as well as
when changing names and types.

With EDIT BLOCK CALL CHANGE TO

MULTI-INSTANCE CALL and EDIT BLOCK

CALL CHANGE TO FB/DB CALL you transfer
calls of function blocks into local instance calls
or into calls with data blocks. Following modi-
fication of the block calls, you must regenerate
the associated instance data blocks.

A further possibility is provided by the menu
command FILE CHECK AND UPDATE

ACCESSES. The invalid block calls are updated
in an opened block, or made available for mod-
ification.

Checking block consistency

The Program Editor only indicates a time stamp
conflict when you open a block containing a
time stamp conflict. If you want to check an
entire program, you can use the function
“Check block consistency” in the SIMATIC
Manager. This purges a majority of interface
conflicts and directs you to the program loca-
tions that require editing.

To carry out a consistency check, select the
Blocks container in the SIMATIC Manager and
then select EDIT CHECK BLOCK CONSIS-
TENCY. If a call tree is not displayed in the win-
dow, because e.g. the program was compiled
using an earlier version of STEP 7, select PRO-
GRAM COMPILE in this window.

Please note that the instance data blocks and the
data blocks generated from the UDT are again
assigned the initial values in the compiled pro-
gram following checking of the block consis-
tency.

You can see the progress and result of the con-
sistency check in the output window (VIEW
ERRORS AND WARNINGS). The consistency
check cannot be used on programs in libraries.

The dependencies in the case of called or refer-
enced blocks are displayed in the form of a tree
diagram (Figure 3.4). You can choose between
two representations:

The view Call tree: References displays the
dependencies in a similar way to the program
structure: on the left are the calling blocks, fur-

3.3 Addressing Variables

113

ther to the right are the blocks called in the
blocks on the left. Example: instance DB
20/FB20 is called in OB1 and local instances
FB 21 and FB 22 are called in FB 20.

The view Dependency tree displays the depen-
dencies starting from all called or referenced
blocks. They are located in the left-hand col-
umn and to the right of this are listed the calling
blocks. Example: FB 22 stores its data in
instance DB 20/FB 20 that is called in OB 1. It
also has its own DB 29 and it is called as a local
instance in FB 20.

The determined information is displayed in
compact form by symbols. An exclamation
mark, for example, indicates that the object
caused a time stamp conflict. A white cross on
a red background indicates that the associated
block has to be recompiled.

If you select a block in the tree diagram or in the
output window, you can edit it with EDIT
OPEN OBJECT, e.g. correct an incorrect call.

The consistency check is not supported by the
SCL option package in Version 5.1 or earlier
(the blocks are not compiled by PROGRAM
COMPILE or PROGRAM COMPILE ALL).
Blocks programmed with SCL must therefore

be compiled “manually” in the event of an
error.

3.3 Addressing Variables

When addressing variables, you may choose
between absolute addressing and symbolic
addressing.

b Absolute addressing uses numerical
addresses beginning with zero for each
address area.

b The symbolic addressing uses alphanumeri-
cal names that you specify in the symbol ta-
ble for the global operands or in the declara-
tion part for local block operands.

An extension of absolute addressing is indirect
addressing, in which the addresses of the mem-
ory locations are not computed until runtime.

3.3.1 Absolute Addressing of Variables

Variables of elementary data type can be refer-
enced by absolute addresses.

Figure 3.4 Example of the Representation of the Check Block Consistency Dependencies

3 SIMATIC S7 Program

114

The absolute address of an input or output is
computed from the module start address which
you set or had set in the configuration table and
the type of signal connection on the module.
A distinction is made between binary signals
and analog signals.

Binary signals

A binary signal contains one bit of information.
Examples of binary signals are the input signals
from limit switches, momentary-contact
switches and the like which lead to digital input
modules, and output signals which control
lamps, contactors, and the like via digital output
modules.

Analog signals

An analog signal contains 16 bits of informa-
tion. An analog signal corresponds to a “chan-
nel”, which is mapped in the controller as a
word (2 bytes) (see below). Analog input sig-
nals (such as voltages from resistance ther-
mometers) are carried to analog input modules,
digitized, and made available to the controller
as 16 information bits. Conversely, 16 bits of
information can control an indicator via an ana-
log output module, where the information is
converted into an analog value (such as a cur-
rent).

The information width of a signal also corre-
sponds to the information width of the variable
in which the signal is stored and processed. The
information width and the interpretation of the
information (for instance the positional
weight), taken together, produce the data type
of the variable. Binary signals are stored in
variables of data type BOOL, analog signals in
variables of data type INT.

The only determining factor for the addressing
of variables is the information width. In
STEP 7, there are four widths which can be
accessed with absolute addressing:

b 1 bit Data type BOOL

b 8 bits Data type BYTE or another data
type with 8 bits

b 16 bits Data type WORD or another data
type with 16 bits

b 32 bits Data type DWORD or another data
type with 32 bits

Variables of data type BOOL are referenced via
an address identifier, a byte number, and - sep-
arated by a decimal point - a bit number. Num-
bering of the bytes begins at zero for each
address area. The upper limit is CPU-specific.
The bits are numbered from 0 to 7.
Examples:

I 1.0 Input bit no. 0 in byte no. 1
Q 16.4 Output bit no. 4 in byte no. 16

Variables of data type BYTE have as absolute
address the address identifier and the number of
the byte containing the variable. The address
identifier is supplemented by a B.
Examples:

IB 2 Input byte no. 2
QB 18 Output byte no. 18

Variables of data type WORD consist of two
bytes (a word). They have as absolute address
the address identifier and the number of the low-
order byte of the word containing the variable.
The address identifier is supplemented by a W.
Examples:

IW 4 Input word no. 4,
contains bytes 4 and 5

QW 20 Output word no. 20,
contains bytes 20 and 21

Variables of data type DWORD consist of four
bytes (a doubleword). They have as absolute
address the address identifier and the number of
the low-order byte of the word containing the
variable. The address identifier is supple-
mented by a D.

Examples:

ID 8 Input doubleword no. 8,
contains bytes 8, 9, 10 and 11

Figure 3.5
Bit and Byte Contents in Words and Doublewords

3.3 Addressing Variables

115

QD 24 Output doubleword no. 24,
contains bytes no. 24, 25, 26 and 27

Addresses for the data area include the data
block. Examples:

DB 10.DBX 2.0
Data bit 2.0 in data block DB 10

DB 11.DBB 14
Data byte 14 in data block DB 11

DB 20.DBW 20
Data word 20 in data block DB 20

DB 22.DBD 10
Data doubleword 10 in data block DB 22

Additional information on addressing the data
area can be found in Chapter 18.2.2 “Accessing
Data Addresses”.

3.3.2 Indirect Addressing

Indirect addressing allows you to wait until run-
time to compute an address in the data area.
STL and SCL use different methods for indirect
addressing. In STL, a distinction is made
between memory-indirect addressing and regis-
ter-indirect addressing:

b Memory-indirect addressing,
IW [MD 200]
The address is in the memory doubleword

b Register-indirect area-internal addressing,
IW [AR1, P#2.0]
The address is in address register AR1, and
is incremented by the offset P#2.0 when the
statement is executed

b Register-indirect area-crossing addressing,
W [AR1, P#0.0]
The address area and the address itself are in
address register AR 1

Doublewords from the address areas for data
(DBD and DID), bit memory (MD) and tempo-
rary local data (LD) are available for saving
addresses when using memory-indirect address-
ing. You can implement register-indirect
addressing with two address registers (AR 1 and
AR 2).

Indirect addressing is described in detail in the
Chapter 25 “Indirect Addressing”.

For SCL, the address areas consist of a field
whose elements are then accessed indirectly

and individually. For example, MW[index]
addresses a memory word whose address is
located in the variable index. The variable index
can be modified at runtime. See Chapter 27.2.3
“Indirect Addressing in SCL” for more detailed
information.

3.3.3 Symbolic Addressing of Variables

Symbolic addressing uses a name (called a sym-
bol) in place of an absolute address. You yourself
choose this name. Such a name must begin with
a letter and may comprise up to 24 characters. A
keyword is not permissible as a symbol in STL;
to use a keyword as a symbol in SCL, insert the
hash character (#) before the name.

A distinction is made between upper and lower
case for input. For output, the editor uses the
case and notation used at declaration of the
symbol.

The name, or symbol, must be allocated to an
absolute address. A distinction is made
between global symbols and symbols that are
local to a block.

Global symbols

You may assign names in the symbol table to
the following objects:

b Data blocks and code blocks

b Inputs, outputs, peripheral inputs and
peripheral outputs

b Memory bits, timers and counters

b User data types

b Variable tables

A global symbol may also include spaces, spe-
cial characters and country-specific characters
such as the umlaut. Exceptions to this rule are
the characters 00hex and FFhex. When using
symbols containing special characters, you
must put the symbols in quotation marks in the
program. In compiled blocks, the STL Editor
always shows global symbols in quotation
marks.

You can use global symbols throughout the pro-
gram; each such symbol must be unique within
a program.

3 SIMATIC S7 Program

116

Editing, importing and exporting of global
symbols is described in Chapter 2.5.2 “Symbol
Table”.

Block-local symbols

The names for the local data are specified in the
declaration section of the relevant block. These
names may contain only letters, digits and the
underline character.

Local symbols are valid only within a block.
The same symbol (the same variable name)
may be used in a different context in another
block. The Editor shows local symbols with a
leading “#”. When the Editor cannot distin-
guish a local symbol from an address, you must
precede the symbol with a “#” character during
input.

Local symbols are available only in the pro-
gramming device database (in the offline con-
tainer Blocks). If this information is missing on
decompilation, the Editor inserts a substitute
symbol.

Using symbol names

If you use symbolic names while programming
with the incremental Editor, they must have
already been allocated to absolute addresses.
You also have the option of entering new sym-
bolic names in the symbol table while program-
ming with the incremental Editor and can use
these symbols for further programming.

If you are using a source text file to input your
program, the complete assignment of symbolic
names to absolute addresses need not be avail-
able until compilation starts.

In the case of arrays, the individual components
are accessed via the array name and a subscript,
for example MSERIES[1] for the first compo-
nent. In STL, the index is a constant INT value,
and in SCL it can also be an INT variable or an
INT expression.

In structures, each subidentifier is separated
from the preceding subidentifier by a decimal
point, for instance FRAME.HEADER.CNUM.
Components of user data types are addressed
exactly like structures. For further details see
Chapter 24 “Data Types”.

Data addresses

Symbolic addressing of data uses complete
addressing including the data block. Example:
the data block with the symbolic address
MVALUES contains the variables MVALUE1,
MVALUE2 and MTIME.

These variables can be addressed as follows:

"MVALUES".MVALUE1

"MVALUES".MVALUE2

"MVALUES".MTIME

Please refer to Chapters 18.2.2 “Accessing
Data Addresses” (STL) and 27.2.2 “Symbolic
Addressing” (SCL) for further information on
assigning data addresses.

3.4 Programming Code Blocks
with STL

3.4.1 Structure of an STL Statement

An STL program consists of a sequence of indi-
vidual statements. A statement is the smallest
autonomous unit of a user program. It repre-
sents a work specification for the CPU. Figure
3.6 shows the structure of an STL statement.

An STL statement consists of the following

b A label (optional) comprising up to 4 char-
acters and ending with a colon (see Chapter
16 “Jump Functions”)

b An operation that describes what the CPU
should do (e.g. load, scan and link according
to AND operation, compare, etc.)

b An address providing the information
needed to execute the operation (for
instance an absolute address such as IW 12,
the symbolic address of a variable such as
ANALOGVALUE_1 or of a constant such
as W#16#F001, and so on). Some opera-
tions require no address specification.

b A comment (optional), which must begin
with two slashes and may extend up to the
end of the line).

When inputting to a source file, you must termi-
nate each statement (before beginning a com-
ment, if any) with a semicolon. An STL line
may contain no more than 200 characters, a
comment no more than 160 characters.

3.4 Programming Code Blocks with STL

117

3.4.2 Programming STL Code Blocks
Incrementally

Chapter 2.5 “Creating the S7 Program” gives
an introduction to program creation and use of
the program editor.

Open block

You begin block programming by opening a
block. You open an existing block either by
double-clicking on the block in the SIMATIC
Manager's project window or by selecting FILE

 OPEN in the Editor.

If you open a compiled block in the container
Blocks e.g. by means of a double click, it is
opened for incremental programming. This is
the case both for offline and online program-
ming.

If the block does not yet exist, you can generate
it in the following ways:

b In the SIMATIC Manager by selecting the
Blocks object in the left half of the project
window and generating a new block with
INSERT S7 BLOCK ... You see the
Properties window of the block. Select the
block number under Name and “STL” lan-
guage on the “General - Part1” tab. You can
also enter the remaining block properties
later.

b In the Program Editor: with FILE NEW

you obtain a dialog box in which you can
enter the desired block under Object name.
After closing the dialog box you can pro-
gram the contents of the block. The Program
Editor uses the language set on the “Block”
tab with OPTIONS CUSTOMIZE.

You can enter the information for the block
header when you generate the block or you can
enter the block attributes later in the Editor by
opening the block and selecting the menu com-
mand FILE PROPERTIES.

Block window

The Program Editor shows the variables decla-
ration table (block parameters and local data) of
an opened code block, as well as the program
window (code and comments). In addition, the
program elements can be displayed in the over-
view window.

Variable declaration table

The variable declaration table is in the window
above the program window. If it is not visible,
position the mouse pointer to the upper line of
demarcation for the program window, click on
the left mouse button when the mouse pointer
changes its form, and pull down. The overview
of the types of variable is then displayed on the
left, and to the right of this is the variable dec-
laration table, which is where you define the
block-local variables (see Table 3.3).

To declare a variable, select its type in the left
area, and fill in the right area of the table. Not
every type of variable can be programmed in
every code block. The corresponding table
remains empty if you do not use a type of vari-
able.

The declaration for a variable consists of the
name, the data type, a default value, if any, and
a variable comment (optional). Not all variables
can be assigned a default value (for instance, it
is not possible for temporary local data). The
default values for functions and function blocks

Figure 3.6 Structure of an STL statement

3 SIMATIC S7 Program

118

are described in detail in Chapter 19 “Block
Parameters”.

The order of the declarations in code blocks is
fixed (as shown in the table above), while the
order within a variable type is arbitrary. You
can save room in memory by bundling binary
variables into blocks of 8 or 16 and BYTE vari-
ables into pairs. The Editor stores a (new)
BOOL or BYTE variable at a byte boundary
and a variable of another data type at a word
boundary (beginning at a byte with an even
address).

Program window

In the program window, you will see - depend-
ing on the Editor's default settings - the fields
for the block title and the block comment and,
if it is the first network, the fields for the net-
work title, the network comment, and the field
for the program entry. In the program section
of a code block, you control the display of
comments and symbols with the menu com-
mands VIEW DISPLAY WITH. You can
change the size of the display with VIEW
ZOOM IN, VIEW ZOOM OUT and VIEW
ZOOM FACTOR.

3.4.3 Overview Window

The overview window contains the program
element catalog and the call structure.

If the overview window is not visible, fetch it
onto the screen with VIEW OVERVIEWS or
with INSERT PROGRAM ELEMENTS (Figure
3.7).

The other views are present in a separate win-
dow which you can dock on the edge of the edi-
tor window, and release again (double click in

each case on the title bar of the overview win-
dow).

Program elements catalog

The program element catalog supports you in
programming in the languages LAD and FBD
by offering the available graphic elements. In
the STL view, it shows the blocks that are al-
ready in the offline Blocks container, as well as
the multiple instances that are already pro-
grammed and the libraries that are available. By
right-clicking on a block or a block type, you
can choose whether the blocks are to be sorted
by type and number or by block family.

Call structure

The call structure indicates the block hierarchy
in the current user program. You see the call

Table 3.3 Variable Types in the Declaration Section

Variable Type Declaration Possible in Block Type

Input parameters IN - FC FB

Output parameters OUT - FC FB

In-out parameters IN_OUT - FC FB

Static local data STAT - - FB

Temporary local data TEMP OB FC FB

Return value RETURN - FC -

Figure 3.7
Program elements catalog and call structure

3.4 Programming Code Blocks with STL

119

environment of the currently open block and
the use blocks.

3.4.4 Programming Networks

You can subdivide an STL program into net-
works. The Editor numbers the networks auto-
matically, beginning with 1. Each block can
accommodate up to 999 networks. You may
give each network a network title and a network
comment. During editing, you can select each
network and each program line directly with the
menu command EDIT GO TO NET-
WORK/ROW.

To enter the program code, click once below the
window for the network comment, or, if you
have set “Display with Comments”, click once
below the shaded area for network comments.
You will see a framed empty window. You can
begin entering your program anywhere within
this window. Refer to Chapter 3.4.1 “Structure
of an STL Statement” to review the structure of
an STL statement. Separate the OP code (oper-
ator) and the address (operand) from one
another by one or more spaces or tabs. Follow-
ing the address, you can enter two slashes and a
statement comment. Terminate a statement by
pressing RETURN. You can also enter a line
comment by beginning a line with two slashes.

You program a new network with INSERT
NETWORK. The Editor then inserts an empty
network behind the currently selected network.

If you want to use symbolic names when enter-
ing the program incrementally, these names
must already have absolute addresses assigned
to them. You can call up a selection of the sym-
bols entered in the Symbol Table with INSERT

 SYMBOL and then transfer the desired sym-
bol per mouse-click.

While entering the program with the incremen-
tal editor, you can also add symbolic names to
the Symbol Table or correct them. You can call
up the complete Symbol Table with OPTIONS
SYMBOL TABLE, and you can call up one line
with the currently marked symbol from the
table with EDIT SYMBOLS. After editing the
symbol, you continue entering the program
with the new or modified symbol.

You need not terminate a block with a special
statement, simply stop making entries. How-

ever, you can program a last (empty) network
with the title “Block End”, providing an easily
seen visual end of the block (an advantage, par-
ticularly in the case of exceptionally long
blocks).

When the program editor opens a compiled
block, it “decompiles” it back into STL. To do
this, the Editor uses the program sections in the
programming device database which are not
relevant to the program's execution in order, for
example, to represent symbols, comments and
jump labels. If information needed from the
offline programming device database is miss-
ing when the program editor decompiles the
program, it uses substitute symbols.

You can create new blocks or open and edit
existing ones in the program editor without
having to return to the SIMATIC Manager.

Network templates

Just like you can save blocks in a library in
order to reuse them in other programs, you can
also save network templates in order e.g. to
repeatedly copy them into other blocks.

To save the network templates, create a library
which contains at least one S7 program and the
container Sources.

You program the networks you wish to use as
templates completely “normally” in any block.
You then replace the addresses you wish to
modify by the dummy characters %00 to %99.
You can also design the network title and the
network comments variably in this manner.

The lines with a dummy character are displayed
in red since this type of block cannot be saved.
This is of no importance since this block can be
rejected (closed without saving) following sav-
ing of the network template(s).

Following input of the dummy characters, mark
the network by clicking the network number at
the top left in front of the network title. You can
also combine several networks in a template;
hold the Ctrl key pressed while you click fur-
ther network numbers.

Now select EDIT CREATE NETWORK TEM-
PLATE. In the displayed dialog field, assign
meaningful comments to the network and all
dummy characters. In the next dialog box,
assign the network template a name and define

3 SIMATIC S7 Program

120

the storage location (container Sources in a
library).

When using the network templates, open the
corresponding library in the program element
catalog and then select the desired network
template (double click or drag into editor win-
dow). Replace the dummy values by valid
entries in the automatically displayed dialog
window. The network template is appended to
the marked network.

3.4.5 Source-oriented programming
of an STL code block

Chapter 2.5 “Creating the S7 Program” gives
an introduction to program creation and the use
of the program editor.

You begin source-file-oriented programming
by generating an empty STL program source
file in the SIMATIC Manager (see Chapter
2.5.3 “STL-Program Editor” under “Source-
File-Oriented Programming”). You start the
editor by opening the program source file and
you can start entering the program immediately,
for example, with the keyword for a function
block or you use a block template with INSERT
 BLOCK TEMPLATE.

Table 3.4 shows you which keywords you need
for the block programming and the sequence in
which you use the keywords.

Block header

You program the properties of a block in the
block header after the block type and before the
variable declaration. All information in the
block header is optional; you can omit individ-
ual specifications or all of them. Please refer to
Chapter 3.2.3 “Block Properties” for a descrip-
tion and the assignment of block properties.

With the keyword “TITLE=” immediately after
the line for the block type, you can enter a block
title of up to 64 characters. You can then add a
block comment in the form of one or more com-
ment lines beginning with a double slash. The
block comment can be up to 18 KB long.

Variable declaration

The declaration section contains the definition of
the block-local variables, that is, of the variables
which you use only in that block. You cannot
program every variable type in every block (see
Table 3.4). If you do not use a variable type, omit
the declaration, including keywords.

The declaration for a variable consists of the
name, the data type, a default value, if any, and
a variable comment (optional). Example:

Quantity: INT := +500; //Units per batch

Not all variables can be assigned a default value
(for instance temporary local data cannot). The
defaults for functions and function blocks are
described in detail in Chapter 19 “Block Param-
eters”.

The order of the declarations for code blocks is
fixed (as shown in the table). The order within
a variable type is arbitrary, and also determines,
in conjunction with the data type, the amount of
room required in memory; Chapter 24 “Data
Types”, shows you how you can optimize mem-
ory requirements by skillfully planning the
order.

Program section

The program section of a code block begins with
the keyword BEGIN and ends with END_xxx,
with block type ORGANIZATION_BLOCK,
FUNCTION_BLOCK or FUNCTION taking
the place of xxx. The keyword END_xxx
replaces Block End BE.

In both keywords and program code, the Editor
accepts upper and lower case. Details on state-
ment syntax can be found in Chapter 3.4.1
“Structure of an STL Statement”. The OP code
(operator) must be separated from the address
(operand) by one or more spaces or tabs. To
improve the readability of the source text, you
can leave one or more spaces and/or tabs
between words. You can set the font and color
for different types of text in the program editor
with OPTIONS CUSTOMIZE on the tab
“Source text”.

You must terminate each statement with a semi-
colon. After the semicolon you can write a
statement comment, but it must begin with two
slashes; it may extend up to the end of the line.

3.4 Programming Code Blocks with STL

121

You may also program several statements on
one line, separating each from its predecessor
by a semicolon.

You begin a line comment with two slashes at
the beginning of the line. A line comment may
comprise no more than 160 characters; it may
contain no tabs and no non-printable characters.

For better readability and logic, you can divide
the program in a block into networks. In the
graphic languages, a subdivision into networks
is necessary; in STL, it is not. Networks have
no functional purpose; they are simply used in
STL to divide the program into more logically
related sections and to improve its readability,

Table 3.4 Keywords for programming of STL code blocks

Block type Organization block Function block Function

Block type ORGANIZATION_BLOCK FUNCTION_BLOCK FUNCTION : Function value

Header TITLE = block title TITLE = block title TITLE = block title

//Block comment //Block comment //Block comment

CODE_VERSION1

KNOW_HOW_PROTECT KNOW_HOW_PROTECT KNOW_HOW_PROTECT

NAME : Block name NAME : Block name NAME : Block name

FAMILY : Block family FAMILY : Block family FAMILY : Block family

AUTHOR : Originator AUTHOR : Originator AUTHOR : Originator

VERSION : Version VERSION : Version VERSION : Version

Declaration VAR_INPUT VAR_INPUT

Input parameters Input parameters

END_VAR END_VAR

VAR_OUTPUT VAR_OUTPUT

Output parameters Output parameters

END_VAR END_VAR

VAR_IN_OUT VAR_IN_OUT

In/out parameters In/out parameters

END_VAR END_VAR

VAR

Static local data

END_VAR

VAR_TEMP VAR_TEMP VAR_TEMP

Temporary local data Temporary local data Temporary local data

END_VAR END_VAR END_VAR

Program BEGIN BEGIN BEGIN

NETWORK NETWORK NETWORK

TITLE = Network title TITLE = Network title TITLE = Network title

//Network comment //Network comment //Network comment

… STL statements … STL statements … STL statements

//Line comment //Line comment //Line comment

NETWORK NETWORK NETWORK

… etc. … etc. … etc.

Block end END_ORGANIZATION_
BLOCK

END_FUNCTION_
BLOCK

END_FUNCTION

3 SIMATIC S7 Program

122

and to make it easier and more efficient to write
comments. In very extensive programs, it is an
advantage to be able to directly address the net-
works in the compiled block, thus reaching a
particular program location quickly (with EDIT

 GO TO NETWORK/ROW you can specify
the network number or the line number relative
to the beginning of the network).

Networks begin with the keyword NETWORK;
with the keyword in the next line, "TITLE =",
you can give each network a heading of up to 64
characters. The line comments immediately af-
ter the network title form the network comment;
it may be up to 18 KB long. STL numbers the
networks automatically beginning with 1; there
is a maximum of 999 networks per block. There
are 64 KB available per block for block and net-
work comments.

Please note when calling a block that the trans-
ferred block parameters are listed in the same
order in which they have been declared in the
called block.

Order of blocks in source-file-oriented
programming

To call a block, the editor requires the informa-
tion in the block header, the block parameters to
be initialized and which declaration type and
data type the block parameter has in each case.
This means that you must first program the
called functions and function blocks, or that
you start programming with the “lowest-level”
blocks (position them accordingly at the start of
the source text file).

However, it is also sufficient if you program
only the block header with the parameter decla-
ration (only as an “interface description” as it
were). You can then provide this interface
description with a program at a later time.
(Please ensure, however, that you do not mod-
ify the interface of an already called block!
Otherwise, the editor will report a time stamp
conflict when outputting the block call.)

The following order is recommended for the
blocks in a source file:

b User-defined data types UDTs

b Global data blocks

b Functions and function blocks beginning
with the blocks of the “lowest” call level

b Instance data blocks (can also be located
directly after the assigned function block)

b Organization blocks

For comprehensive user programs, you will
probably want to divide the entire program
source into "convenient" individual files; for
example, "program standards" that you use
throughout the program, individual technologi-
cally or functionally distinguishable sub-pro-
grams, or a "main program" that contains e.g.
organization blocks.

When creating individual source files, you
must keep sight of the order of compilation –
for the block call reasons listed above.

Example of a function block with
instance data block

Figure 3.8 shows an example for a function
block with static local data, followed by the
programmed instance data block associated
with that function block.

3.5 Programming Code Blocks
with SCL

3.5.1 Structure of an SCL Statement

The SCL program consists of a sequence of in-
dividual STL statements. A statement is the
smallest independent unit of the user program.
It represents a procedural specification for the
CPU. Figure 3.9 shows several examples of
SCL statements.

An SCL statement comprises

b A jump label (optional) comprising up to
24 characters and terminated with a colon;
jump labels must be declared.

b An instruction that describes what the CPU
is to do (e.g. value assignments, control
statements, etc.).

b A comment (optional) beginning with two
slashes and going to the end of the line (only
printable characters and no tabs).

You must terminate every statement with a
semicolon (before any comment). An SCL
statement can contain up to 126 characters.

3.5 Programming Code Blocks with SCL

123

FUNCTION_BLOCK W_Memory_STL
TITLE = Intermediate memory for 4 values
//Example of a function block with static local data in STL
AUTHOR : Berger
FAMILY : STL_Book
NAME : Memory
VERSION : 01.00
VAR_INPUT
Import : BOOL := FALSE; //Import with positive edge
Input value : REAL := 0.0; //in data format REAL (fraction)

END_VAR
VAR_OUTPUT
Output value : REAL := 0.0; //in data format REAL (fraction)

END_VAR
VAR
Value1 : REAL := 0.0; //First saved REAL value
Value2 : REAL := 0.0; //Second value
Value3 : REAL := 0.0; //Third value
Value4 : REAL := 0.0; //Fourth value
Edge trigger flag : BOOL := FALSE;//Edge trigger flag for importing

END_VAR
BEGIN
NETWORK
TITLE = Program for importing and output
//Importing and output take place with a positive edge at import

U Import; //If import changes to "1",
FP Edge trigger flag; //the RLO = "1" following FP
SPBN end; //Jump if no positive edge is present

//Transfer of values starting with the last value
L Value4;
T Output value; //Output of last value
L Value3;
T Value4;
L Value2;
T Value3;
L Value1;
T Value2;
L Input value; //Importing of input value
T Value1;

End: BE;
END_FUNCTION_BLOCK

DATA_BLOCK Memory1_STL
TITLE = Instance data block for "W-Memory_STL"
//Example of an instance data block
AUTHOR : Berger
FAMILY : STL_Book
NAME : W_SP_DB1
VERSION : 01.00
W_Memory_STL //Instance for the FB "W_Memory_STL"
BEGIN
 Value1 := 1.0; //Individual preallocation
 Value2 := 1.0; //of selected values
END_DATA_BLOCK

Figure 3.8
Example of programming of an STL function block and the associated instance data block

3 SIMATIC S7 Program

124

3.5.2 Programming SCL Code Blocks

An introduction to program creation and the op-
eration of the program editor are described in
Chapter 2.5 “Creating the S7 Program”.

You begin programming by generating an
empty SCL program source file in the
SIMATIC Manager (see Chapter 2.5.4 “SCL
Program Editor” under “Creating the SCL
source file”). You start the editor by opening the
program source file and you can start entering
the program immediately, for example, with the
keyword for a function block or you insert a
block template with INSERT BLOCK TEM-
PLATE.

Table 3.5 shows which keywords you require
for block programming and the order in which
you use the keywords.

Block header

You program the properties of a block in the
block header after the block type and before the
variable declaration. All information in the
block header is optional; you can omit individ-
ual specifications or all of them. Please refer to
Chapter 3.2.3 “Block Properties” for a descrip-
tion and the assignment of block properties.

With the keyword “TITLE=” immediately after
the line for the block type, you can enter a block
title of up to 64 characters. You can then add a
block comment in the form of one or more com-
ment lines beginning with a double slash. The
block comment can be up to 18 KB long.

Variable declaration

The declaration section contains the definition
of the block-local variables, that is, of the vari-
ables that you use only in that block. You can-
not program every variable type in every block
(see table). If you do not use a variable type,
omit the declaration, including keywords.

The declaration for a variable consists of the
name, the data type, a default value, if any, and
a variable comment (optional). Example:

Quantity : INT := +500;//Units per batch

At declaration, SCL allows variables of the
same data type to be combined in one line:

Value1, Value2, Value3, Value4 : INT;

Not all variables can be assigned a default value
(for instance temporary local data cannot). The
defaults for functions and function blocks are
described in detail in Chapter 19 “Block Param-
eters”.

The order of the individual declarations and the
order within a variable type is arbitrary. It deter-
mines, in conjunction with the data type, the
amount of memory space required; Chapter 24
“Data Types” shows you how you can optimize
memory requirements by skillfully planning
the order.

In SCL, you can declare constants, i.e. you
assign a symbol to a fixed value. If you use
jump labels in the block, you must declare
them.

Program section

The program section of an SCL code block
begins (optionally) with the keyword BEGIN
and ends with END_xxx, where xxx stands for
block type ORGANIZATION_BLOCK,
FUNCTION_BLOCK or FUNCTION.

In both keywords and program code, the Editor
accepts upper and lower case. Details on state-
ment syntax can be found in Chapter 3.5.1

Value Assignments

Power := Voltage * Current;
TooLarge := Volt_Act > Volt_Set;
Switch_on := Manual_on OR Auto_on;

Control Statements

IF Input_value > Maximum
THEN Delimiter := Maximum;
ELSIF Input_value < Minimum

THEN Delimiter := Minimum;
ELSE Delimiter := Input_value;

END_IF;
FOR i := 1 TO 32 DO

Measure_value[i] := 0;
END_FOR;

Function Calls

Result := Delimiter(
Input_value:= Actual_value,
Minimum := Lower_limit,
Maximum := Upper_limit);

Figure 3.9 SCL Statement Examples

3.5 Programming Code Blocks with SCL

125

Table 3.5 Keywords for Programming SCL Code Blocks

Block Organization Block Function Block Function

Block type ORGANIZATION_BLOCK FUNCTION_BLOCK
PROGRAM 3)

FUNCTION : Function value

Header TITLE = 'Block title' TITLE = 'Block title' TITLE = 'Block title'

//Block comment //Block comment //Block comment

KNOW_HOW_PROTECT KNOW_HOW_PROTECT KNOW_HOW_PROTECT

NAME : Block name NAME : Block name NAME : Block name

FAMILY : Block family FAMILY : Block family FAMILY : Block family

AUTHOR : Originator AUTHOR : Originator AUTHOR : Originator

VERSION : 'Version' VERSION : 'Version' VERSION : 'Version'

Declaration VAR_INPUT VAR_INPUT

Input parameters Input parameters

END_VAR END_VAR

VAR_OUTPUT VAR_OUTPUT

Output parameters Output parameters

END_VAR END_VAR

VAR_IN_OUT VAR_IN_OUT

In-out parameters In-out parameters

END_VAR END_VAR

VAR VAR 1)

Static local data Temporary local data

END_VAR END_VAR

VAR_TEMP VAR_TEMP VAR_TEMP

Temporary local data Temporary local data Temporary local data

END_VAR END_VAR END_VAR

CONST CONST CONST

Constants Constants Constants

END_CONST END_CONST END_CONST

LABEL LABEL LABEL

Jump labels Jump labels Jump labels

END_LABEL END_LABEL END_LABEL

Program BEGIN 2) BEGIN 2) BEGIN 2)

... SCL statements ... SCL statements ... SCL statements

//Line comment //Line comment //Line comment

(* Block comment ... (* Block comment ... (* Block comment ...

... Block comment *) ... Block comment *) ... Block comment *)

... etc. ... etc. ... etc.

Block end END_ORGANIZATION_
BLOCK

END_FUNCTION_
BLOCK
END_PROGRAM 3)

END_FUNCTION

1) The local data agreed under VAR in an SCL function FC are handled like temporary local data (VAR_TEMP)
2) Not required for SCL
3) Alternative to FUNCTION_BLOCK or END_FUNCTION_BLOCK

3 SIMATIC S7 Program

126

“Structure of an SCL Statement”. The OP code
must be separated from the address (operand)
by one or more spaces or tabs. To improve the
readability of the source text, you can leave one
or more spaces and/or tabs between words. You
can set the font and color for different types of
text in the program editor with OPTIONS
CUSTOMIZE on the tab “Format”.

You must terminate each statement with a semi-
colon. After the semicolon you can write a
statement comment, but it must begin with two
slashes; it may extend up to the end of the line.
You may also program several statements on
one line, separating each from its predecessor
by a semicolon.

An SCL block must contain at least one state-
ment (one semicolon). SCL does not have net-
works like STL.

You begin a line comment with two slashes at
the beginning of the line. A line comment may
comprise no more than 160 characters; it may
contain no tabs and no non-printable characters.

SCL has a block comment that can extend over
several lines. It begins with an open bracket and
star and ends with a star and closed bracket.

The block comment may also be placed within
an SCL statement; however, it must not inter-
rupt either a symbolic name or a constant
(exception: character string).

Compiler properties

You can set the compiler properties globally in
the SCL program editor with OPTIONS CUS-
TOMIZE on the tabs “Generate blocks” and
“Compiler”. The properties apply to all compi-
lations unless other properties have been de-
fined in the source programs or in the compila-
tion control file. The compiler settings defined
in the source program apply starting at their po-
sition in the source program or compilation
control file until they are overwritten by other
settings, or until the end of the source program
or compilation control file.

Table 3.6 shows the keywords available for the
compiler settings. You write the keywords –
enclosed in curly brackets – in a separate line
outside a block. If several keywords are present
in one line, they must be separated by a semico-
lon. Upper-case and lower-case letters are not
differentiated.

Table 3.6 Keywords for the compiler properties

Keyword Value Property

[SCL_]ResetOptions (none) Import settings from menu dialog

[SCL_]OverwriteBlocks 'y[es]' or 'n[o]' Overwrite blocks

[SCL_]GenerateReferenceData 'y[es]' or 'n[o]' Generate reference data

[SCL_]S7ServerActive 'y[es]' or 'n[o]' Consider system attribute “S7_server”

[SCL_]CreateObjectCode 'y[es]' or 'n[o]' Create object code

[SCL_]OptimizeObjectCode 'y[es]' or 'n[o]' Optimize object code

[SCL_]MonitorArrayLimits 'y[es]' or 'n[o]' Monitor array limits

[SCL_]CreateDebugInfo 'y[es]' or 'n[o]' Create debug information

[SCL_]SetOKFlag 'y[es]' or 'n[o]' Set OK flag

[SCL_]SetMaximumStringLength '1' .. '254' Set maximum STRING length

3.6 Programming Data Blocks

127

Examples:

Order of blocks in source-file-oriented
programming

To call a block, the editor requires the informa-
tion in the block header, the block parameters to
be initialized and which declaration type and
data type the block parameter has in each case.
This means that you must first program the
called functions and function blocks, or that
you start programming with the “lowest-level”
blocks (position them accordingly at the start of
the source text file).

However, it is also sufficient if you program
only the block header with the parameter decla-
ration (only as an “interface description” as it
were). You can then provide this interface
description with a program at a later time.
(Please ensure, however, that you do not mod-
ify the interface of an already called block!
Otherwise, the editor will report a time stamp
conflict when outputting the block call.)

The following order is recommended for cre-
ation of a source file:

b User-defined data types UDTs

b Global data blocks

b Functions and function blocks beginning
with the blocks of the “lowest” call level

b Instance data blocks (can also be located
immediately after the assigned function
block)

b Organization blocks

If you subdivide extensive user programs into
individual program source files, you must keep
sight of the order of compilation – for the block
call reasons listed above.

Example of an SCL Function Block with
Instance Data Block

Figure 3.10 shows an example of a function
block with static local data. Subsequently, the
associated instance data block is programmed.

3.6 Programming Data Blocks

Chapter 2.5 “Creating the S7 Program” gives
an introduction to program creation and the use
of the program editor.

Data blocks are programmed in the same way
in STL and SCL. You use the STL program edi-
tor for incremental programming; both the STL
program editor and the SCL program editor are
available to you for source-file-oriented pro-
gramming.

3.6.1 Programming Data Blocks
Incrementally

Creating data blocks

You begin block programming by opening a
block, either with a double-click on the block in
the project window of the SIMATIC Manager
or by selecting FILE OPEN in the editor. If the
block does not yet exist, create it as follows:

b In the SIMATIC Manager: select the object
Blocks in the left-hand portion of the project
window and create a new data block with
INSERT S7 BLOCK DATA BLOCK. You
see the properties window of the block.
Specify the number and the type of the data
block on the “General – Part 1” tab (see
below). “Instance DB” or “DB of type” can
only be selected if function blocks FB or
system function blocks SFB or user-defined
data types UDT are present in the block con-
tainer. You can also enter the remaining
block properties later.

b In the STL program editor: with FILE
NEW, you get a dialog box in which you can
enter the desired block under “Object
name”. In the subsequently displayed dialog
window “New data block” you will be
requested to define the type of data block
(see below). After closing the dialog box,
you can program the block contents.

//Create debug info
//Set OK flag
{CreateDebugInfo:='yes'; SetOKFlag:='yes'}

FUNCTION_BLOCK example
...
END_FUNCTION_BLOCK

//Reset settings
{ResetOptions}

3 SIMATIC S7 Program

128

FUNCTION_BLOCK W_Memory_SCL
TITLE = 'Intermediate memory for 4 values'
//Example of a function block with static local data in SCL

AUTHOR : Berger
FAMILY : SCL_Book
NAME : Memory
VERSION : ’01.00’

VAR_INPUT
Import : BOOL := FALSE; //Import with positive edge
Input value : REAL := 0.0; //in data format REAL (fraction)

END_VAR

VAR_OUTPUT
Output value : REAL := 0.0; //in data format REAL (fraction)

END_VAR

VAR
Value1 : REAL := 0.0; //First saved REAL value
Value2 : REAL := 0.0; //Second value
Value3 : REAL := 0.0; //Third value
Value4 : REAL := 0.0; //Fourth value
Edge trigger flag : BOOL := FALSE;//Edge trigger flag for importing

END_VAR

BEGIN
//Importing and output take place with a positive edge at import
IF import = 1 AND edge memory bit = 0
THEN output value := Value4;

//Transfer of values starting with the last value
Value4 := Value3;
Value3 := Value2;
Value2 := Value1;
Value1 := Input value;
Edge memory bit := Import; //Update edge memory bit

ELSE edge memory bit := Import; //even if there is no edge
END_IF;
END_FUNCTION_BLOCK

DATA_BLOCK Memory1_SCL
TITLE = 'Instance data block for "W-Memory_SCL" '
//Example of an instance data block

AUTHOR : Berger
FAMILY : SCL_Book
NAME : W_SP_DB1
VERSION : ’01.00’

W_Memory_SCL //Instance for the FB "W_Memory_SCL"

BEGIN
 Value1 := 1.0; //Individual preallocation
 Value2 := 1.0; //of selected values
END_DATA_BLOCK

Figure 3.10
Example of programming of an SCL function block and the associated instance data block

3.6 Programming Data Blocks

129

You can fill out the header of a block as you cre-
ate it or you can add the block properties at a
later point. You program later additions to the
block header in the editor by selecting FILE
PROPERTIES while the block is open.

Types of data blocks

When creating a new data block you will be
requested to define the type of data block.
When creating with the SIMATIC Manager,
you set the type in the selection box of the prop-
erties window. When creating with the program
editor, you set the type with the program editor
in the window “New data block” by clicking
one of the offered options.

Three different types of data block are differen-
tiated depending on the creation and the appli-
cation:

b “Data block” or “Shared DB”
Creation as a global data block; you declare
the data addresses when programming the
data block in this case.

b “Data block referencing a user-defined data
type” or “DB of type”
Creation as a data block of user-defined data
type; the data structure is used which you
declared when programming the corre-
sponding user-defined data type UDT.

b “Data block referencing a function block”
or “Instance DB”
Creation as an instance data block; here, the
data structure that you have declared when
programming the relevant function block is
transferred.

When creating a data block on the basis of a
user-defined data type, you simultaneously
define the UDT used as basis; i.e. the UDT
must already be present in the block container.
The same applies to creation of a data block
with assigned function block.

Block window and views

When opening a data block whose structure is
based on a user-defined data type or a (system)
function block, you will be asked in the default
setting whether you wish to open the data block
using the program editor or the application

“Parameter assignment for data blocks”. The
parameterization view displays the data values
in technological groups and permits convenient
parameterization (see Chapter 2.7.8 “Monitor-
ing and Controlling Data Addresses”). The data
views are described below.

The program editor provides two views for pro-
gramming (creating) data blocks:

b The declaration view serves to define the
data structure with global data blocks and
the default values.

b In the data view you handle the online val-
ues.

A table is displayed in each view, and contains
the data addresses with their absolute addresses
and sequence, the names and data types, the ini-
tial values and comments (Figure 3.11). There is
an additional column with the current value in
the data view.

If you open a data block from the offline data
management, you are presented with the
offline window with which you can edit data in
the programming device. If you open a data
block which is present in the CPU’s user mem-
ory, the editor presents the online window with
which you can handle the data values on the
CPU.

Offline window

You use the declaration view for global data
blocks at the input. You declare the data oper-
ands in this view: You set the order of the data
operands, you assign a name and data type for
each data operand, and you may also add oper-
and comments. Each data operand is preallocat-
ed with a default value. Depending on the data
type, this can be zero, the minimum value, or a
space. In the initial value column, you have the
opportunity to change the default value.

The data operations and the default values are
already fixed for data blocks derived from a
user-defined data type or from a function block.
They are obtained from the declaration of the
user-defined data type or from the declaration
of the function block.

The data view additionally shows the current
value column. As standard, the default values

3 SIMATIC S7 Program

130

from the initial value column are entered into
this column. In the data view you can define a
different initial value for the load memory, and
thus a current value for the work memory (Fig-
ure 3.12).

The possibility existing for each data block for
individual default data is particularly applica-
ble for the data blocks derived from a user-
defined data type or from a function block. For
example, if you produce several instance data
blocks of a function block, all data blocks have
the default setting made in the function block.
You can then individually assign other default
values to certain data addresses in the data view
for each instance.

Online window

You usually use the online window to view the
current data values in the CPU’s user memory.
However, you can also generate data blocks
with it.

In the declaration view, the initial value column
shows the initial value from the offline data
management or the initial value from the load
memory if the offline project belonging to the

CPU program is not present. In the data view,
the current value from the work memory is dis-
played in the current value column. You can
leave the editor with EDIT INITIALIZE DATA

BLOCK, and all current values are replaced by
the initial values again.

When writing back with PLC DOWNLOAD,
you write the value in the current value column
into the work memory. You therefore have the
possibility for manipulating the values of data
addresses with the programming device during
program execution. The value in the initial
value column is rejected.

When writing back with FILE SAVE, you
write the value in the initial value column as the
default value and the value in the current value
column as the initial value into the offline data
management.

Note that the complete information with respect
to data addresses, e.g. the name, is only present
in the offline data management. It is recom-
mendable to also write the data blocks gener-
ated in the user memory of the CPU into the
offline data management so that data consis-
tency is guaranteed (Chapter 2.6.5 “Block Han-
dling” under “Data blocks offline/online”).

Figure 3.11 Example of an opened data block (declaration view)

3.6 Programming Data Blocks

131

3.6.2 Source-Oriented Data Block
Programming

When you create a source file for a data block,
you must adhere to the structure or order shown
in Table 3.7 for programming the block. This
applies both for STL program source files and
for SCL program source files.

Block header

You program the properties of a block in the
block header after the block type and before the
variable declaration. All information in the
block header is optional; you can omit individ-
ual specifications or all of them. Please refer to
Chapter 3.2.3 “Block Properties” for a descrip-
tion and the assignment of block properties.

With the keyword "TITLE =" immediately after
the line for the block type, you can enter a block
title of up to 64 characters. One or more com-
ment lines beginning with two slashes can then
be attached as block comments. The block
comment can be a maximum of 18 KB long.

Declaration in the data block

The declaration section contains the definition
of the block-local variables, that is, of the vari-
ables which you use only in that block. You can
declare a data block as a global data block with
“individual” variables, as a global data block
with UDT and as an instance data block.

The declaration for a variable in a global data
block consists of the name, the data type, a
default value, if any, and a variable comment
(optional).

Example:

Quantity : INT := +500;//Units per batch

All variables can be assigned a default value.
The order of variables is arbitrary; it also deter-
mines the required memory space in conjunc-
tion with the data type. Chapter 24 “Data
Types” shows the memory space occupied by
the variables. In Chapter 26.2 “Data Storage of
Variables” you can learn how the variables are
stored in data blocks. You can optimize the
memory requirement by skilful selection of the
order.

Fig. 3.12 Data storage in incremental programming

3 SIMATIC S7 Program

132

If you do not take the opportunity of assigning
a default value, the editor will write zero or the
smallest value into the variable or fill it with
blanks – depending on the data type.

The declaration section of a data block derived
from a UDT consists only of the UDT. You can
use the absolute address (e.g. UDT 51) or the
symbolic address (e.g. “Frame header”).

The declaration section of an instance data
block comprises only the specification of the
assigned function block with either absolute or
symbolic addressing.

Initialization in the data block

The initialization part begins with BEGIN and
ends with END_DATA_BLOCK. Even if you
do not preallocate anything in the initialization
part, you must enter these keywords.

If you do not specify a value for a data operand
in the initialization part, the editor takes the val-
ue from the declaration part. If you use user-de-
fined data types in the declaration that are with
preallocated default values, you can write over

the default values in the initialization part. The
same applies to instance data blocks that have
the assigned function block (with its default
value) as a data structure. Here, you can then set
the start values individually for this instance
(for calling the function block with this data
block).

The preallocation of the data operands in the
declaration part results in the default value in
the offline data storage. This value is also ac-
cepted as start value. By preallocating values in
the initialization part, you overwrite the start
value (Figure 3.13).

When transferring to the CPU, the program-
ming device writes the start value into the load
memory. The CPU subsequently copies the
start value from the load memory into the work
memory, where it becomes the current value.
The user program works with the current values
of the data addresses in the work memory
(Chapter 2.6.5 “Block Handling” under “Data
blocks offline/online”).

Table 3.7 Keywords for programming of data blocks

Block type Global data block Global data block from UDT Instance data block

Block type DATA_BLOCK DATA_BLOCK DATA_BLOCK

Header TITLE = block title TITLE = block title TITLE = block title

//Block comment //Block comment //Block comment

KNOW_HOW_PROTECT KNOW_HOW_PROTECT KNOW_HOW_PROTECT

NAME : Block name NAME : Block name NAME : Block name

FAMILY : Block family FAMILY : Block family FAMILY : Block family

AUTHOR : Originator AUTHOR : Originator AUTHOR : Originator

VERSION : Version VERSION : Version VERSION : Version

UNLINKED UNLINKED UNLINKED

READ_ONLY READ_ONLY READ_ONLY

NON_RETAIN NON_RETAIN NON_RETAIN

Declaration STRUCT

name type = default setting; UDTname FBname

END_STRUCT

Initialization BEGIN BEGIN BEGIN

name = Default; KOMPname = Default; KOMPname = Default;

…etc. …etc. …etc.

Block end END_DATA_ BLOCK END_DATA_BLOCK END_DATA_BLOCK

3.7 Variables and Constants

133

3.7 Variables and Constants

3.7.1 General Remarks Concerning
Variables

A variable is a value with a specific format
(Figure 3.14). Simple variables consist of an
address (such as input 5.2) and a data type (such
as BOOL for a binary value). The address, in
turn, comprises an address identifier (such as I
for input) and an absolute storage location
(such as 5.2 for byte 5, bit 2). You can also ref-
erence an address or a variable symbolically by
assigning the address a name (a symbol) in the
symbol table.

A bit of data type BOOL is referred to as a
binary address (or binary address). Addresses
comprising one, two or four bytes or variables
with the relevant data types are called digital
addresses.

Variables you declare within a block are called
local (block) variables. These include block pa-
rameters, static and temporary local data, and
also data operands in global data blocks. If
these variables have an elementary data type,
they can also be addressed as operands (e.g.
static local data as DI operands, temporary lo-
cal data as L operands, and data in global data
blocks as DB operands).

Local variables, however, can also be of com-
plex data type (such as structures or arrays).
Variables with these data types require more

than 32 bits, so that they can no longer, for
example, be loaded into the accumulator. And
for the same reason, they cannot be addressed
with “normal” STL statements. There are spe-
cial functions for handling these variables, such
as the IEC functions, which are provided as a
standard library with STEP 7 (you can generate
variables of complex data type in block param-
eters of the same data type).

If variables of complex data type contain com-
ponents of elementary data type, these compo-
nents can be treated as though they were sepa-
rate variables (for example, you can load a com-
ponent of an array consisting of 30 INT values
into the accumulator and further process it).

Constants are used to preset variables to a fixed
value. The constant is given a specific prefix
depending on the data type.

Figure 3.13 Data storage in source-oriented programming

Figure 3.14 Structure of a tag

3 SIMATIC S7 Program

134

3.7.2 General Remarks Regarding
Data Types

Data types define the properties of data, essen-
tially the representation of the contents of a tag
and the permissible ranges. STEP 7 provides
predefined data types that you can also compile
as self-defined data types. The data types are
globally available and can be used in any block.

This section provides an overview of all data
types and a brief introduction, particularly to
the elementary data types. This knowledge will
allow you to program a programmable control-
ler.

Table 3.8 shows a rough overview of data types
in STEP 7.

More depth of detail, such as the structure and
format of variables of complex data type, are
presented in Chapter 24 “Data Types”, and
information on data types in conjunction with
block parameters is provided in Chapter 19
“Block Parameters”.

Programming of user-defined data types is
described in Chapter 24 “Data Types”.

3.7.3 Elementary Data Types

Variables assigned this data type can be edited
direct in STL since they represent either a bit or
at the most an accumulator width (32 bits). The
same applies for SCL in the case of value
assignments.

Variables of elementary data type can be pre-
assigned fixed values (constants) at the declara-
tion stage. In this case, the STL (Table 3.9) and
SCL (Table 3.10) notations differ from each
other. For many data types, there is more than
one constant notation and they can be used with
equal validity (e.g. TIME# or T#).

Constant notation in STL

STL does not restrict operations (operators) to
specific data types (with the exception of the
differentiation between binary address and dig-
ital address). Comparison functions such as
comparing the accumulator contents indepen-
dently of the data type of the variables the accu-
mulator contains.

Constant notation in SCL

In SCL you can only execute operations with
variables of the permissible data types. Con-
stants in SCL do not receive their data type until
applied in conjunction with the operation.

Table 3.8 Splitting of data types

Elementary data types Complex
data types

User-defined
data types

Parameter data types

BOOL, BYTE, CHAR,
WORD, INT, DATE,
DWORD, DINT, REAL,
S5TIME, TIME, TOD

DT, STRING,
ARRAY, STRUCT

UDT,
global data blocks, in-
stances

TIMER, COUNTER,
BLOCK_DB,
BLOCK_SDB,
BLOCK_FC,
BLOCK_FB,
POINTER, ANY

Data types that have at
most a double word (32
bits)

Data types that can be
larger than a double word
(DT, STRING) or that
are made up of several
components

Structures or data areas,
that can be given a name

Block parameters

Can be mapped to abso-
lutely and symbolically
addressed operands

Can only be mapped to symbolically addressed tags Can only be mapped to
block parameters (only
symbolic addressing)

Permitted in all operand
ranges

Permissible in data blocks (as global data and
instance data), as temporary local data, and as block
parameters

Permitted in combination
with block parameters

3.7 Variables and Constants

135

Table 3.9 Overview of elementary data types with STL notation for constants

Data type
(width)

Description Examples of STL notation for constants

Minimum value Maximum value

BOOL
(1 bit)

Bit FALSE TRUE

BYTE
(8 bits)

8-bit hexadecimal num-
ber

B#16#00,
16#00

B#16#FF,
16#FF

CHAR
(8 bits)

one character (ASCII) printable character, e.g. 'A' printable character, e.g. 'A'

WORD
(16 bits)

16-bit hexadecimal
number

W#16#0000,
16#0000

W#16#FFFF,
16#FFFF

16-bit binary number 2#0000_0000_0000_0000 2#1111_1111_1111_1111

Count value,
3 decades BCD

C#000 C#999

2 8-bit decimal num-
bers without sign

B#(0,0) B#(255,255)

DWORD
(32 bits)

32-bit hexadecimal
number

DW#16#0000_0000,
16#0000_0000

DW#16#FFFF_FFFF,
16#FFFF_FFFF

32-bit binary number 2#0000_0000_…_0000_0000 2#1111_1111_…_1111_1111

4 8-bit decimal num-
bers without sign

B#(0,0,0,0) B#(255,255,255,255)

INT
(16 bits)

Fixed-point number –32 768 +32 767

DINT
(32 bits)

Fixed-point number L#–2 147 483 648 1) L#+2 147 483 647 1)

REAL
(32 bits)

Floating point number Exponential representation: +1.234567E+02 2)

Decimal representation: 123.4567 2)

S5TIME
(16 bits)

Time value in
SIMATIC format

S5T#0ms,
S5TIME#0ms

S5T#2h46m30s,
S5TIME#2h46m30s

TIME
(32 bits)

Time value in
IEC format

T#–24d20h31m23s648ms,
TIME#–24d20h31m23s648ms

T#24d20h31m23s647ms,
TIME#24d20h31m23s647ms

T#–24.855134d,
TIME#–24.855134d

T#24.855134d,
TIME#24.855134d

DATE
(16 bits)

Date D#1990-01-01,
DATE#1990-01-01

D#2168-12-31,
DATE#2168-12-31

TIME_OF_DAY
(32 bits)

Time of day TOD#00:00:00.000,
TIME_OF_DAY#00:00:00.000

TOD#23:59:59.999,
TIME_OF_DAY#23:59:59.999

1) "L#" can be omitted if the number falls outside the INT numerical range
2) For range of values, see Chapter 24.1.3 “Number Representations”

3 SIMATIC S7 Program

136

Table 3.10 Overview of elementary data types with SCL notation for constants

Data type (width) Description Examples of SCL notation for constants

BOOL
(1 bits)

Bit FALSE, TRUE, BOOL#FALSE, BOOL#TRUE

Binary number 2#0, 2#1, BOOL#0, BOOL#1

BYTE
(8 bits)

8-bit decimal number 0, B#127, BYTE#255

8-bit hexadecimal
number

16#0, B#16#7F, BYTE#16#FF

8-bit octal number 8#0, B#8#177, BYTE#8#377

8-bit binary number 2#0, B#2#0111_1111, BYTE#2#1111_1111

CHAR
(8 bits)

one printable charac-
ter (ASCII)

’ ’, CHAR#’ ’, CHAR#20
’z’, CHAR#’z’, CHAR#122

WORD
(16 bits)

16-bit decimal
number

0, W#32767, WORD#65535

16-bit hexadecimal
number

16#0, W#16#7FFF, WORD#16#FFFF

16-bit octal number 8#0, W#8#7_7777, WORD#8#17_7777

16-bit binary number 2#0, W#2#0111_1111_… , WORD#2#1111_1111_…

DWORD
(32 bits)

32-bit decimal
number

0, DW#2147483647, DWORD#4294967295

32-bit hexadecimal
number

16#0, DW#16#7FFF_FFFF, DWORD#16#FFFF_FFFF

32-bit octal number 8#0, DW#8#177_7777_7777, DWORD#8#377_7777_7777

32-bit binary number 2#0, DW#2#0111_1111_… , DWORD#2#1111_1111_…

INT
(16 bits)

16-bit decimal
number

–32_768, 0, INT#+32_767

16-bit hexadecimal
number

INT#16#0, INT#16#7FFF, INT#16#FFFF

16-bit octal number INT#8#0, INT#8#7_7777, INT#8#17_7777

16-bit binary number INT#2#0, INT#2#0111_1111_… , INT#2#1111_1111_…

DINT
(32 bits)

32-bit decimal
number

–2_147_483_648, 0, DINT#+2_147_483_647

32-bit hexadecimal
number

DINT#16#0, DINT#16#7FFF_FFFF, DINT#16#FFFF_FFFF

32-bit octal number DINT#8#0, DINT#8#177_7777_7777, DINT#8#377_7777_7777

32-bit binary number DINT#2#0, DINT#2#0111_1111_… , DINT#2#1111_1111_…

REAL
(32 bits)

Floating point
number

Exponential representation: +1.234567E+02 1)

Decimal representation: –123.4567 1)

Integer: +1234567 1)

S5TIME
(16 bits)

Time value for
SIMATIC times

T#0ms, TIME#2h46m30s
T#0.0s, TIME#24.855134d

TIME
(32 bits)

Time value in
IEC format

T#–24d20h31m23s648ms, T#0ms, TIME#24d20h31m23s647ms
T#–24.855134d, T#0.0ms, TIME#24.855134d

DATE
(16 bits)

Date D#1990-01-01, D#2168-12-31
DATE#1990-01-01, DATE#2168-12-31

TIME_OF_DAY
(32 bits)

Time of day TOD#00:00:00.000, TOD#23:59:59.999
TIME_OF_DAY#00:00:00.000, TIME_OF_DAY#23:59:59.999

 1) For range of values, see Chapter 24.1.3 “Number Representations”

3.7 Variables and Constants

137

Example: in SCL the constant 12345 has the
data type class ANY_NUM so depending on
the application, it is INT, DINT or REAL. With
“type-defined” constant notation, you assign a
specific data type direct to a constant, e.g. with
DINT#12345 the data type DINT.

3.7.4 Complex Data Types

You can use complex data types (Table 3.11) in
conjunction with variables in data blocks or in
the L stack or in conjunction with variables
which are block parameters.

Variables of complex data types can only be
applied to block parameters as complete vari-
ables; individual sections cannot be processed
with “normal” statements. However, with
“direct variable access” and indirect address-
ing, STL provides a method of manipulating
the variables if you know the internal structure.

In addition, there are IEC functions that can pro-
cess DT and STRING variables (e.g. merging
two character strings into one). The IEC func-
tions are a component part of STEP 7; you can
find them in the Standard Library in the IEC

Function Blocks program. The IEC functions
can be used in every programming language.

The length of a DT variable is fixed; you deter-
mine the length of STRING, ARRAY and
STRUCT variables yourself when you define
these variables.

A string can comprise up to 254 characters and
reserves two bytes more in memory than the
number of characters in the string.

An array can have as many as 65 536 elements
per dimension (from –32 768 to 32 767).

3.7.5 Parameter Types

The parameter types are data types for block pa-
rameters (Table 3.12). The length specifications
in the Table refer to the memory requirement for
block parameters in the case of function blocks.
Also use TIMER and COUNTER in the symbol
table as data types for timers and counters.

Chapter 19 “Block Parameters” shows you how
you can use the parameter types for declaring
and assigning block parameters.

Table 3.11 Overview of Complex Data Types

Data Type Description Example

DATE_AND_TIME Date and time 64 bits DT#1990-01-01-00:00:00.000
DATE_AND_TIME#2168-12-31:23:59:59.999

STRING String Variable Collection of ASCII characters, for instance “String 1”

ARRAY Array Variable Collection of components with the same data type, as
many as 6 dimensions possible

STRUCT Structure Variable Collection of components of arbitrary data type, up to 8
nesting levels possible

Table 3.12 Overview of Parameter Types

Parameter Type Description Examples of Actual Addresses

TIMER Timer 16 bits T 15 or symbol

COUNTER Counter 16 bits Z 16 or symbol

BLOCK_FC Function 16 bits FC 17 or symbol

BLOCK_FB Function block 16 bits FB 18 or symbol

BLOCK_DB Data block 16 bits DB 19 or symbol

BLOCK_SDB System data block 16 bits (hitherto unused)

POINTER DB pointer 48 bits As pointer: P#M10.0 or P#DB20.DBX22.2
As address: MW 20 or I 1.0 or symbol

ANY ANY pointer 80 bits As area: P#DB10.DBX0.0 WORD 20
or any (complete) variable

Basic Functions

138

Basic Functions

This part of the book describes the functions of
the STL programming language that represent a
certain “basic functionality”. These functions
allow you to program a PLC as you would con-
tactor or relay controls.

The binary logic operations are used to simu-
late series and parallel circuits in a circuit dia-
gram or to implement the AND and OR func-
tions in electronic switching systems. Nesting
functions make it possible to implement even
complex binary logic operations.

The memory functions retain the result of a
logic operation (RLO) so that it can, for exam-
ple, be checked and further processed at
another point in the program.

The transfer functions are the prerequisite for
the handling of digital values. These functions
are also required, for instance, to inform a timer
of the time value.

The timers are to programmable controllers
what timing relays are to contactor controls and
timers are to electronic switching systems. The
timers integrated in the CPU allow you to pro-
gram such values as wait and monitoring times.

The counters are up and down counters that
can count in the range from 0 to 999.

This part of the book describes the functions
using the address areas for inputs, outputs, and
memory bits. Inputs and outputs are the link to
the process or plant. Memory bits correspond to
auxiliary contactors that store binary states. The
subsequent parts of the book deal with the
remaining address areas which can be used in
binary logic operations. Most importantly,
these include the data bits in the global data
blocks and the temporary and static local data
bits.

Chapter 5 “Memory Functions” contains a pro-
gramming example for the binary logic opera-
tions and memory functions; Chapter 8 “Coun-
ter Functions” provides an example of the use

of timers and counters. In each case, the exam-
ple is in an FC function without block parame-
ters.

4 Binary Logic Operation
AND, OR and Exclusive OR; scanning
for signal state “1” and “0”; processing a
binary logic operation; nesting functions

5 Memory Functions
Assign, Set and Reset; RS flip-flop; edge
evaluation; example of conveyor belt
control

6 Transfer Functions
Load and Transfer; accumulator functions

7 Timers
Starting 5 different types of timers; reset-
ting, enabling and scanning a timer; time
value; IEC timer functions

8 Counters
Setting a counter; up and down counting;
resetting, enabling and scanning a coun-
ter; count value; IEC counter functions;
example of a parts counter

4 Binary Logic Operations

139

4 Binary Logic Operations

This chapter discusses the AND, OR and
Exclusive OR functions as well as combina-
tions of these functions for the STL program-
ming language. AND, OR and Exclusive OR
are used to check the signal states of binary
locations and link them with one another.

A binary location can be checked (scanned) for
signal state “1” or signal state “0”. By negating
the result of the logic operation and using nest-
ing expressions, you can also program complex
binary logic operations without saving the
intermediate result.

The examples in this chapter can be found in
function block FB 104 or in the source file
Chap_4 in the STL_Book library under the
“Basic Functions” program which you can
download from the publisher’s web site (see
page 8).

4.1 Processing a Binary Logic
Operation

Figure 4.1 shows, in broad outline, how a
binary logic instruction is processed. An input
module selects a sensor on the basis of the spec-
ified address, for instance the sensor at input
I 1.2. The CPU checks the signal state (status)
of that sensor, and links the result of the check
(check result) with the result of the logic oper-
ation (RLO) saved from the preceding logic
instruction. The result of this logic operation is
saved and stored as the new RLO. The CPU
then processes the next statement in the pro-
gram, for instance storing the result of the logic
operation in a specific memory location. The
first check to follow the storing of the now
“old” RLO is a new logic operation, in which
the RLO is set to the check result.

Figure 4.1
How a PLC Works, Using as Example a Binary
Logic Operation

4 Binary Logic Operations

140

Status

The status of a bit is the same as its signal state,
and can be “0” or “1”. In SIMATIC S7, the sig-
nal state is “1” when voltage is present at the
input (for instance 230 V AC or 24 V DC,
depending on the module); if no voltage is pres-
ent, the signal state of the input is “0”.

A check statement queries the status of the bit.
At the same time, it contains the rule of logic
according to which the checked signal state is
to be linked with the result of the logic opera-
tion stored in the processor. For example, the
statement

A I 17.1

checks input I 17.1 for signal state “1” and links
the checked signal state according to AND; the
statement

ON M 20.5

checks memory bit M 20.5 for signal state “0”
and links the checked signal state according to
OR.

Check result

Strictly speaking, the CPU does not link the sig-
nal state of the bit checked, but rather first
forms a check result. In checks for signal state
“1”, the check result is identical to the signal
state of the bit checked. In checks for signal
state “0”, the check result is the negated signal
state of the bit checked.

Result of the logic operation

The result of the logic operation (RLO) is the
signal state in the CPU, which the CPU then
uses for subsequent binary signal processing.
The result of the logic operation is formed and
modified by check statements. An RLO of “1”
means that the condition of the binary logic
operation was fulfilled; “0” means that the con-
dition was not fulfilled. Bits are set or reset
according to the result of the logic operation.

Logic step

Similar to a sequence step in a sequence con-
trol, it is possible to define a logic step in a logic
control. A result of a logic operation is generat-
ed and evaluated in an operation step (further

processed). An operation step consists of scan
operations and conditional operations. The first
scan operation following a conditional opera-
tion is the first check. The operation step is
highlighted in the program section shown be-
low:

First check

The first check statement following a condi-
tional statement is called the first check. It has
a special meaning because the CPU directly
accepts the check result of this statement as the
result of the logic operation. The “old” RLO is
thus lost. The first check always represents the
start of a logic operation. The rule of logic gov-
erning a first check (AND, OR, Exclusive OR)
plays no role in this.

Check statements

The result of the logic operation is formed with
check statements. These statements check the
signal state of a bit for “1” or “0” and link it
according to AND, OR, or Exclusive OR. The
CPU then saves the result of this logic opera-
tion as new RLO.

Figure 4.2 shows how checks for signal states
“1” and “0” are programmed. The check for “1”
takes the status of the bit checked as the check
result for the next link. The check for “0” forms
the check result from the negated status.

Conditional statements

Conditional statements are statements whose
execution depends on the result of the logic
operation. They include statements for assign-

... ...
= Q 4.0 Conditional operation

A I 2.0 First check
A I 2.1 Scan operation
... ...
A I 1.7 Scan operation
= Q 5.1 Conditional operation
... ...
= Q 4.3 Conditional operation

O I 2.6 First check
O I 2.5 Scan operation
... ...

4.2 Elementary Binary Logic Operations

141

ing, setting and resetting binary locations, for
starting timers and counters, and so on.

The conditional statements (with very few
exceptions) are executed when the RLO is “1”,
and not executed when the RLO is “0”. They do
not affect the RLO (with very few exceptions),
and the RLO thus remains the same over sev-
eral contiguous statements.

Intelligible programming

The rule of logic governing a first check is irrel-
evant, as the result of the check is taken directly
as the result of the logic operation. For the pur-
pose of intelligible programming, the rule of
logic for a first check should be identical to the
desired function.

As an example, the sequence of statements

represents two AND functions, whereby the
programming of the second AND function (in
which both checks are programmed with AND)
is to be preferred.

In the case of single scan statements, for exam-
ple

the AND is preferable.

4.2 Elementary Binary Logic
Operations

STL uses the binary functions AND, OR and
Exclusive OR. These functions are linked to the
check for signal state “1” or with the check for
signal state “0”.

A Bit address
Check for “1” and
combine according to AND

AN Bit address
Check for “0” and
combine according to AND

O Bit address
Check for “1” and
combine according to OR

ON Bit address
Check for “0” and
combine according to OR

Figure 4.2 Checking for Signal States “1” and “0”

...
= Q 15.3
O I 18.5 First AND function
A I 21.7
= Q 15.4

A I 18.4 Second AND function
A I 21.6
= Q 15.5
...

...
= Q 10.0
A I 20.1 Assignment from
= Q 10.1 I 20.1 to Q 10.1
...

4 Binary Logic Operations

142

X Bit address
Check for “1” and
combine according to Exclusive OR

XN Bit address
Check for “0” and
combine according to Exclusive OR

The checks for “1” set the result of the check to
“1” when the signal state of the bit is “1”. The
checks for “0” produce a check result of “1”
when the signal state of the bit is “0”. This cor-
responds to an input which leads to the relevant
function when negated.

The CPU then combines the result of the check
with the current RLO as per the specified func-
tion and forms the new RLO. When a binary
logic operation immediately follows a memory
function, the result of the check is entered in the
RLO buffer without a logic operation being
performed.

The number of binary functions and the scope
of a binary function are theoretically arbitrary;
in practice, however, the restriction is given by
the length of a block or the size of the CPU's
work memory.

4.2.1 AND Function

The AND function links two binary states with
one another and returns an RLO of “1” when
both states (both results of the check) are “1”.
When you program the AND function several
times in succession, all check results must be
“1” in order for the common result of the logic
operation to be “1”. In all other cases, the AND
function returns an RLO of “0”.

Figure 4.3 shows an example for AND. In net-
work 1, the AND function has three inputs;
these may be arbitrary bit addresses. All of
these bits are checked for signal state “1”, so
that the signal state of the bits will be directly
linked according to AND. If all bits checked are
“1”, the Assign statement sets the bit Output1 to
“1”. In all other cases, the AND condition is not
fulfilled and bit Output1 is set to “0”.

Network 2 shows an AND function with a
negated input. The input is negated by checking
it for “0”. The check result of a bit checked for
“0” is “1” if that bit is “0”, that is, the AND con-
dition in the example is fulfilled when bit
Input4 is “1” and bit Input5 is “0”.

4.2.2 OR Function

The OR function combines two binary states
with one another and returns an RLO of “1”
when one of these states (one of the check
results) is “1”. When you program the OR func-
tion several times in succession, only one check
result need be “1” for the common result of the
logic operation to be “1”. If all check results are
“0”, the OR function returns an RLO of “0”.

Figure 4.3 shows an example of an OR func-
tion. In network 3, the OR function has three
inputs; these may be arbitrary bit addresses. All
bits are checked for “1”, so that the signal state
of the bits is linked directly according to OR. If
at least one of the bits checked is “1”, the sub-
sequent Assign statement sets bit Output3 to
“1”. If all the bits checked are “0”, the OR con-
dition is not fulfilled and Output3 is reset to
“0”.

Network 4 shows an OR function with negated
input. The input is negated by a check for “0”.
The check result for a bit that was checked for
“0” is “1” when that bit is “0”, that is, the OR
condition in the example is fulfilled when bit
Input4 is “1” or bit Input5 is “0”.

4.2.3 Exclusive OR Function

The Exclusive OR function links two binary
states with one another and returns an RLO of
“1” when the two states (the two check results)
are not the same. The function returns an RLO
of “0” when the two states (the two check
results) are the same.

Figure 4.3 shows an example of an Exclusive
OR function. In network 5, two inputs (arbi-
trary bit addresses) lead to the Exclusive OR
function. Both inputs are checked for “1”. If the
signal state of only one of these bits is “1”, the
Exclusive OR condition is fulfilled and the
Assign statement sets bit Output5 to “1”. If both
bits are “1” or “0”, Output5 is reset to “0”.

Network 6 shows an Exclusive OR function
with a negated input. The input is negated by a
check for signal state “0”. The check result for
a bit checked for “0” is “1” when that bit is “0”,
that is, the Exclusive OR condition in the exam-
ple is fulfilled when both input bits have the
same signal state.

4.2 Elementary Binary Logic Operations

143

You can also program the Exclusive OR func-
tion several times in succession, in which case
the common RLO is “1” when an uneven num-
ber of the bits checked return a check result of
“1”.

Allowing for the Sensor Type

The binary functions AND, OR and Exclusive
OR are described in preceding sections of this
chapter as though normally open contacts were
connected to the input modules (normally open

contacts are sensors which return signal state
“1” when activated). When implementing a
control function, however, it is not always pos-
sible to use a normally open contact. In many
cases, for example in the case of closed circuits,
the use of normally closed contacts is absolutely
essential (a normally closed contact is a sensor
which returns signal state “0” when activated).

If the sensor connected to an input is a normally
open contact, the input carries signal state “1”
when the sensor is activated. If the sensor is a

Figure 4.3 Elementary Binary Functions

4 Binary Logic Operations

144

normally closed contact, the input carries signal
state “1” when the sensor is inactive. The CPU
has no way of knowing whether an input is
associated with a normally open or a normally
closed contact; it can only differentiate between
signal state “1” and signal state “0”.

When developing the program, it is therefore
necessary to take the sensor type into account.
Before writing the program, you have to know
whether the sensor is a normally closed contact
or a normally open contact. Because the pro-
gram is in part determined by the function of
the sensor (“Sensor activated”, “Sensor not
activated”), it follows that you must check the
input for signal state “1” or signal state “0”,
depending on the type of sensor used. In this
way, you can also directly check inputs which
are to execute various activities when “0”
(“active when zero” inputs) and use the check
result in subsequent links.

Figure 4.4 shows how to program in depen-
dence on the sensor type. In the first case, two
normally open contacts are connected to the
programmable controller, in the second case,
one normally open contact and one normally
closed contact. In both cases, a contactor con-

nected to an output is to pick up when both sen-
sors are activated.

When a normally open contact is activated, the
signal state of the input is “1”; in order to fulfill
the AND condition with check result “1”, the
input is checked for “1”. When a normally
closed contact is activated, the signal state of
the input is “0”. In order to fulfill the AND con-
dition with a check result of “1” in this case, the
input must be checked for signal state “0”.

4.3 Negating the Result of the
Logic Operation

NOT negates the result of the logic operation.
You can use NOT at any location in the pro-
gram, even within a logic operation. You can
use NOT, for example, to negate the AND con-
dition for an output (NAND function, Figure
4.5 network 7). Network 8 shows the negation
of an OR function, which is called a NOR func-
tion.

You will find additional examples for NOT in
Chapter 4.4.6 “Negating Nesting Expressions”.

Figure 4.4 Allowing for the Sensor Type

4.4 Compound Binary Logic Operations

145

4.4 Compound Binary Logic
Operations

Binary logic operations can be combined, for
instance AND and OR functions can be pro-
grammed in any order. When such functions are
programmed in arbitrary order, the CPU's han-
dling of them is very difficult to duplicate. It is
better, for instance, to illustrate the problem
solution in the form of a function block dia-
gram, then program it in STL.

When compound binary logic operations are
programmed, STL treats OR and Exclusive OR
the same (they have the same priority). AND is
executed “before” OR or Exclusive OR, and
has a higher priority.

In order for the functions to be processed in the
required order, it is sometimes necessary for the
CPU to temporarily store the function value
(the RLO that has been computed up to a cer-
tain point in the program). The nesting expres-
sions are provided for this purpose. As in the
case of the notation used for Boolean algebra,
the nesting expressions cause one function to be
executed “before” another. The nesting expres-
sions also include OR.

The STL programming language provides the
following binary nesting expressions:

O ORing of AND functions

A(Open bracket with AND function

O(Open bracket with OR function

X(Open bracket with Exclusive OR function

AN(Open bracket with negation
and AND function

ON(Open bracket with negation
and OR function

XN(Open bracket with negation
and Exclusive OR function

) Close bracket

The rule of logic for the open bracket statement
indicates how the result of the nesting expres-
sion is to be linked with the current RLO when
the close bracket operation is encountered.
Prior to this logic operation, the result of the
nesting expression is negated if a negation char-
acter is specified.

4.4.1 Processing Nesting Expressions

In the STL programming language, the binary
nesting expressions are used to define the order
in which binary logic operations are processed.
At runtime, the setting of brackets has the effect
as the CPU processing the nesting expressions
“first”, that is, before executing the instructions
outside the brackets.

When it encounters an open bracket statement,
the CPU stores the current RLO internally, then
processes the nesting expression, when it

Figure 4.5 Examples for the NOT Function

4 Binary Logic Operations

146

encounters the close bracket statement, it links
the RLO from the nesting expression with the
RLO it stored prior to processing the nesting
expression as per the function given in the open
bracket statement (Figure 4.6).

A check statement following a open bracket
statement is always a first check because the
CPU always regenerates the RLO within a nest-
ing expression. A check statement following a
close bracket statement is never a first check
because, when a nesting expression is the first
instruction in a logic operation, the CPU treats
the RLO from the nesting statement like the
result of a first check.

Nesting expressions can be nested, that is to
say, you can program a nesting expression in a
nesting expression (Figure 4.7). The nesting
depth is seven, that is, you may begin a nesting
expression seven times without first terminat-
ing one. Processing within the brackets is much
as described above.

Saving intermediate results with the aid of
the nesting stack

Internally, the CPU sets up a nesting stack in
order to process nesting functions. In this stack
it stores:

b The result of the logic operation (RLO) pre-
ceding the bracket,

b The binary result (BR) preceding the
bracket,

b The status bit (OR) (indicating whether an
OR condition was already fulfilled) and

b The nesting function (with which function
the nesting expression is to be linked).

The CPU sets the binary result BR following
the close bracket statement the signal state it
had prior to the nesting expression.

Within a nesting expression, you can not only
program binary logic operations but all state-
ments in the STL programming language. Care
must be taken, however, that nesting expression
be terminated with the “close bracket” state-
ment. It is thus possible, for example, to pro-
gram several logic steps or memory and com-
parison functions within a nesting expression.

4.4.2 Combining AND Functions
According to OR

These logic operations, which are a combina-
tion of OR and AND functions, can be written
in Boolean algebra without brackets. It is the
rule that the AND functions are processed
“first”. The results of the AND functions,
together with additional OR checks, if any, are
then linked with OR.

Example:

A Input0;
A Input1;
O ;
A Input2;
A Input3;
= Output8;

In the example, a single O (for OR) is between
the first and the second AND function. This
operation makes “AND before OR” possible,
and is always necessary when an AND function
is placed “before” an OR function. The single
“O” precedes the AND function, and is no lon-
ger necessary after the AND function.

In the example, Output8 is set when {Input0
and Input1} or {Input2 and Input3} are “1”.

4.4.3 Combining OR and Exclusive OR
Functions According to AND

These compound logic operations comprising
AND and OR functions must be written with
brackets in Boolean algebra to indicate that the
OR functions are to be processed “before” the
AND functions.

Figure 4.6 Processing Nesting Expressions

4.4 Compound Binary Logic Operations

147

Example:

A(;
O Input0;
O Input1;
) ;
A(;
O Input2;
O Input3;
) ;
= Output10;

The open bracket statement is “combined” with
an AND function. The OR function is within
the nesting expression. The close bracket state-
ment, in this case, links the result of the OR
function (generally the result of the logic oper-
ation computed in the brackets) with additional
checks, if any, according to AND.

In the example, Output10 is set when {Input0
or Input1} and {Input2 or Input3} are “1”.

The ANDing of Exclusive OR functions is pro-
grammed exactly the same way. The OR func-

tions in the example could be replaced by
Exclusive OR, since the two functions have the
same priority.

4.4.4 Combining AND Functions
According to Exclusive OR

An AND function before an Exclusive OR
function is written in brackets. With the aid of
the brackets, the CPU saves the result of the
AND function and can then combine it, possi-
bly with additional checks, according to the
rules governing Exclusive OR.

Example:

X(;
A Input0;
A Input1;
) ;
X(;
A Input2;
A Input3;
) ;
= Output12;

Figure 4.7 Example for Nested Nesting Expressions

4 Binary Logic Operations

148

In the example, the first AND function need not
be in brackets, as an AND function has a higher
priority than an Exclusive OR. The brackets,
however, make the program more readable.

Output12 in the example is set either when
{Input0 and Input1} or {Input2 and Input3} are
“1”.

4.4.5 Combining OR Functions and
Exclusive OR Functions

An OR function before an Exclusive OR func-
tion is written in brackets. With the aid of the
brackets, the CPU saves the result of the OR
function and can link it, possibly with addi-
tional checks, according to the rules governing
Exclusive OR.

Example:

X(;
O Input0;
O Input1;
) ;
X(;
O Input2;
O Input3;
) ;
= Output14;

In the example, Output14 is set when one, and
only one, of the two OR conditions is fulfilled.

An OR before an Exclusive OR is programmed
in exactly the same way. An OR in the example
can be replaced by an Exclusive OR and vice
versa, since the two functions have the same
priority.

4.4.6 Negating Nesting Expressions

Just as you can check a bit for signal state “0”
(negate the status, as it were), you can also

negate a nesting expression. This means that
the CPU will post-process the result of the nest-
ing expression in negated form. Negation is
specified by an additional N in the open bracket
statement.

Example:

AN(;
O Input0;
O Input1;
) ;
AN(;
X Input2;
X Input3;
) ;
= Output16;

In the example, Output16 is set if neither the
OR condition nor the Exclusive OR condition is
fulfilled.

A second way to negate nesting expressions is
through the use of the NOT (negation) state-
ment. A NOT written before the close bracket
statement negates the result of the nesting state-
ment prior to further processing.

Example:

A(;
O Input0;
O Input1;
NOT ;
) ;
A(;
X Input2;
X Input3;
NOT ;
) ;
= Output17;

This logic operation has the same function as
the preceding logic operation. Negation of the
nesting expression is attained here within the
brackets using NOT.

5 Memory Functions

149

5 Memory Functions

This chapter describes the memory functions
for the STL programming language; these
include Assign for dynamic bit control and Set
and Reset for static control. The memory func-
tions also include edge evaluations.

The memory functions are used in conjunction
with binary logic operations in order to affect
the signal states of bits with the help of the RLO
generated in the CPU.

You can use the memory functions to control all
bit addresses: the process input/output image,
the memory bits, the global data and the static
and temporary local data.

The examples in this chapter can be found in
function block FB 105 or in the source file
Chap_5 in the STL_Book library under the
“Basic Functions” program which you can
download from the publisher’s web site (see
page 8).

5.1 Assign

= Bit
Assigns the result of the logic operation

The Assign statement “=” assigns the RLO in
the processor directly to the bit specified in the
statement. If the result of the logic operation is
“1”, the bit is set; if the result of the logic oper-
ation is “0”, the bit is reset (Figure 5.1 network
1). If you want the bit to be set when the RLO
is “0”, you can negate the RLO prior to Assign
with the NOT statement (network 2).

You will find additional examples for Assign in
Chapter 4 “Binary Logic Operations”.

Simultaneous execution of multiple Assigns

You can also assign the result of the logic oper-
ation to several different bits by programming
successive Assign statements specifying the
relevant bits (Figure 5.1 network 3).

All specified bits react the same, as the instruc-
tions used for bit control do not affect the RLO.
The CPU does not generate a new result of
logic operation (RLO) until it encounters the
next check statement.

If you want to use the signal state of an output
in another logic operation, simply check that
output with the appropriate check statement
(network 4).

5.2 Set and Reset

S Bit
Sets the bit when the result of the logic
operation is “1”

R Bit
Resets the bit when the result of the logic
operation is “1”

The Set S and Reset R instructions are executed
only when the result of the logic operation is
“1”. The Set instruction then sets the specified
bit to “1”, and the Reset instruction sets it to
“0”. RLO “0” has no effect on the Set or Reset
instruction; when the RLO is “0”, the bit speci-
fied in a Set or Reset instruction retains it cur-
rent signal state (Figure 5.1 networks 5 and 6).

Simultaneous execution of multiple
memory functions

You can control multiple Set and Reset instruc-
tions, in any combination and together with
Assigns, with the same RLO. Simply write suc-
cessive statements specifying the relevant bits
(Figure 5.1 network 7). As long as Set, Reset

5 Memory Functions

150

Figure 5.1 Assign, Set and Reset

5.3 RS Flipflop Function

151

and Assign statements are being processed, the
RLO does not change. The CPU does not gen-
erate a new RLO until it encounters the next
check statement.

Here, too, you can use NOT to negate the RLO
within the sequence of memory statements.

To ensure the clarity and readability of the pro-
gram, you should use the Set and Reset state-
ments for a specific bit in pairs, and only once
for a given bit.

5.3 RS Flipflop Function

The RS flipflop function consists of one Set and
one Reset statement; there is no special identi-
fier in STL. The RS flipflop function is imple-
mented by programming successive Set and
Reset statements specifying the same bit.
Important to the RS flipflop function's func-
tionality is the order in which you program the
Set and Reset statements.

Note that the bits used in memory functions are
normally reset on startup (warm restart). In spe-
cial cases, the signal states of the bits specified
in memory functions are retained; this depends
on the type of startup (for instance a hot restart),
the specified bit (for example a bit in the static
local data area), and settings in the CPU (such
as retentivity).

5.3.1 Memory Functions with Reset
Priority

Reset priority means that the specified bit is
reset when the Set and Reset instructions pro-
duce a signal state of “1” “simultaneously”.
The Reset instruction then takes priority over
the Set instruction (Figure 5.1 network 8).

Because the statements are processed sequen-
tially, the CPU initially sets the bit because it
executes the Set instruction first, then resets it
when it executes the Reset instruction. The out-
put then remains reset for the remainder of the
program scan cycle.

If the bit is an output, this brief setting only
takes place in the process image, and the (exter-
nal) output on the associated output module is
not affected. The CPU does not transfer the pro-

cess-image output table to the output modules
until the end of the program scan cycle.

Reset priority is the “standard” form of this
function, since the reset state is, as a rule, the
safer or less hazardous state.

5.3.2 Memory Function with Set Priority

Set priority means that the specified bit is set
when the Set and Reset instructions produce a
signal state of “1” simultaneously. The Set
instruction then takes priority over the Reset
instruction (Figure 5.1 network 9).

When it processes the statement sequence, the
CPU first sets the specified bit to “0”; then,
when it processes the Set instruction, it sets the
bit to “1”. The output remains set for the
remainder of the program scan cycle.

If the bit is an output, this brief setting only
takes place in the process image and the “exter-
nal” output on the associated output module
remains unaffected.

Set priority is the exception rather than the rule
for this function. It is used, for example, to
implement a fault signal latch when, despite an
acknowledgment at the Reset input, the current
fault signal at the Set input is to continue to set
the bit specified in the memory function.

5.3.3 Memory Function in a Binary
Logic Operation

In the STL programming language, you can use
the memory functions very freely. It is possible
to save the RLO at any location in the program,
and then reuse it later.

The example in Figure 5.2 does not use nesting
statements to control the sequence of a binary
logic operation, but rather to temporarily save
the result of a logic operation.

Within the nested expression, an RS flipflop is
used here. Its signal state is to be combined fur-
ther. For this purpose, it is necessary for the
flipflop to be scanned at the end of the nested
expression in order to obtain the signal state of
the flipflop before the close bracket statement.
If this statement is missing, the signal state of
the logic operation prior to the reset input
would, in this case, be combined further.

5 Memory Functions

152

You can program any STL statements you wish
between the brackets; however, make sure that
you have the RLO you want before writing the
close bracket statement.

Intermediate binary results

Almost any bits can be used for the temporary
storing of binary results:

b Temporary local data bits are the best suited
when you need the intermediate result only
within the block itself. All code blocks have
temporary local data areas.

b Static local data bits are available only in
function blocks, and save their signal states
until set again.

b Memory bits are available globally in a
CPU-specific quantity; for clarity of pro-
gramming, avoid multiple use of memory
bits (the same bits for different tasks).

b Data bits in global data blocks are also
available throughout the whole program,
but before they can be used, the relevant da-
ta block must first be opened (even if this is
only implied through the use of complete
addressing).

Note: You can replace the “scratchpad mem-
ory” used in STEP 5 with temporary local data,
which are available in every block.

5.4 Edge Evaluation

FP Bit
Positive (rising) edge

FN Bit
Negative (falling) edge

Edge evaluation is the detection of a change in
a signal state, a signal edge. A positive (rising)
edge is present when the signal goes from “0”
to “1”. The opposite is referred to as a negative
(falling) edge.

In a relay logic diagram, the equivalent of edge
evaluation is a pulse contact element. If this
pulse contact element emits a pulse when the
relay is switched on, this corresponds to a rising
edge. Emission of a pulse when the relay is
switched off corresponds to a falling edge.

The bit specified in the edge evaluation is
referred to as “edge memory bit” (it need not
necessarily be a memory bit). However, it must
be a bit whose signal state is once again avail-
able in the next program scan cycle and which
is otherwise not used in the program. Suitable
bits are memory bits, data bits in global data
blocks, and static local data bits in function
blocks.

This edge memory bit stores the “old” RLO,
which is the one the CPU used for the last edge
evaluation. In each edge evaluation, the CPU
compares the current RLO with the signal state
of the edge memory bit. An edge is present
when they have different signal states. In this
case, the CPU updates the signal state of the

Figure 5.2 Nesting Statement as Intermediate Bit Buffer

5.4 Edge Evaluation

153

edge memory bit by assigning the current RLO
to it, and sets the RLO to “1” on either a posi-
tive or negative edge, depending on the instruc-
tion, following edge evaluation. If the CPU
does not detect an edge, it sets the RLO to “0”.

Signal state “1” following an edge evaluation
thus means “edge detected”. The signal state
remains at “1” only briefly, as a rule for only
one scan cycle. Because the CPU does not
detect an edge on the next edge evaluation
(when the edge evaluation's “input RLO” does
not change), it sets the RLO back to “0” follow-
ing the edge evaluation.

You can process the RLO directly after an edge
evaluation, for example with a Set operation, or
you can store it in a bit (a “pulse memory bit”).
Use a pulse memory bit when the RLO from the
edge evaluation is to processed at another loca-
tion in the program; it is effectively the interme-
diate buffer for a detected edge. Bits suitable as
pulse memory bits are memory bits, data bits in
global data blocks, and temporary and static
local data bits.

You can also further process the RLO after an
edge evaluation directly with the following
check statements.

Note the response of the edge evaluation when
you switch on the CPU. If an edge is to be
detected, the RLO prior to edge evaluation and
the signal state of the edge memory bit must be
identical. Under certain circumstances, the
edge memory bit must be reset on startup
(depending on the desired response and on the
bit used).

The following examples illustrate how edge
evaluation works. In simplified form, an input
represents the RLO prior to edge evaluation and
a memory bit (the “pulse memory bit”) the
RLO following edge evaluation. Of course, the
edge evaluation may also be preceded and fol-
lowed by a binary logic operation.

5.4.1 Positive Edge

The CPU detects a positive (rising) edge when
the result of the logic operation changes from
“0” to “1” prior to the edge evaluation. The pro-
cedures involved are shown in Figure 5.3
above; the consecutive number stands for suc-
cessive scan cycles:

a The first time around, the signal state of
both the input and the edge memory bit is
“0”. The pulse memory bit remains reset.

Figure 5.3 Edge Evaluations

5 Memory Functions

154

s The second time around, the signal state of
the input should have changed from “0” to
“1”. The CPU detects the change by com-
paring the current RLO with the status of
the edge memory bit. If the RLO is “1” and
the edge memory bit “0”, the edge memo-
ry bit is set to “1”. The current RLO is also
set to “1”.

d The next time around, the CPU finds that
the there is no different between the state
of the input and that of the edge memory
bit, and therefore sets the current RLO to
“0”.

f As long as there is no difference between
the two states, the RLO remains at “0” and
the edge memory bit remains set.

g When the input once again has a signal
state of “0”, the CPU corrects the edge
memory bit. The RLO remains at “0”. The
initial state is then reestablished.

5.4.2 Negative Edge

The CPU detects a negative (falling) edge when
the RLO changes from “1” to “0” prior to the
edge evaluation. The procedures involved are
shown in Figure 5.3 below; the consecutive
number stands for successive scan cycles:

a The first time around, the signal state of
both the input and the edge memory bit is
“0”. The pulse memory bit remains reset.

s The second time around, the signal state of
the input should have changed from “0” to
“1”. The CPU detects change by compar-
ing the current RLO with the status of the
edge memory bit. If the RLO is “1” and the
edge memory bit “0”, the edge memory bit
is set to “1”. Following edge evaluation,
the RLO remains “0”.

d As long as there is no difference between
the two states, the RLO remains at “0” and
the edge memory bit remains set.

f When the input once again has a signal
state of “0”, the CPU corrects the status of
the edge memory bit and sets the RLO to
“1” following edge evaluation.

g In the next scan cycle, the signal state of
the input and that of the edge memory bit
are the same. The CPU therefore sets the
RLO back to “0”, thus reestablishing the
original state.

5.4.3 Testing a Pulse Memory Bit

The signal states of the pulse memory bits are
very difficult to monitor with the programming
devices' test functions because they remain at
“1” for only one scan cycle.

It is for this reason that an output is also unsuit-
able as pulse memory bit, as the signal amplifi-
ers on the output module or the actuators are not
capable of duplicating the signal changes all
that quickly.

With a “flying restart circuit”, however, you
can record the extremely brief signal states of
the pulse memory bits in an RS flipflop. The
pulse memory bit sets the RS flipflop, thus stor-
ing the “Edge Detected” signal. After you have
evaluated this signal, you can reset the flipflop.

O PMembit0;
O PMembit1;
S Flipflop2;
A Input2;
R Flipflop2;

After you have evaluated the saved edge, you
can reset the flipflop again.

5.4.4 Edge Evaluation in a Binary Logic
Operation

Edge evaluation in a binary logic operation can
be used to serve a practical purpose only when
you use the signal state following edge evalua-
tion (the “pulse”) to control a memory, timer or
counter function. Binary checks may lie
between the edge evaluation and control of the
relevant function.

O Input3;
O Input4;
FP EMembit2
A Input5;
S Output15;
A Input6;
FN EMembit3;
R Output15;

In the example, Output15 is set at the instant at
which the OR condition is fulfilled (when the
bit in the OR statement goes from “0” to “1”)
and Input5 is “1”. Output15 is reset on a falling
edge at Input6.

An edge evaluation is effectively a first check,
as the RLO generated by the edge evaluation
can be post-processed. This also means that the
logic operation up to the instant of the edge

5.5 Example of a Conveyor Belt Control System

155

evaluation is regarded as “completed” (a ful-
filled OR condition is not stored). Edge evalua-
tion does not affect the processing of nesting
instructions.

5.4.5 Binary Scaler

A binary scaler has one input and one output. If
the signal at the binary scaler's input changes its
state, for example from “0” to “1”, the output
changes its state as well (Figure 5.4). This
(new) signal state is retained until the next, in
our example positive, signal state change. Only
then does the signal state of the output change
again. This means that half the input frequency
appears at the output of the binary scaler.

There are different methods of solving this task,
two of which are presented below.

In the first solution, a pulse memory bit is used
to set the output if it was reset and to reset it if
it was set. The important thing to remember
when programming this solution is that the
pulse memory bit has to be reset once it has set
the output (otherwise the output will be imme-
diately reset again).

A Input_1;
FP EMembit_1;
= PMembit_1;
A PMembit_1;
AN Output_1;
S Output_1;
R PMembit_1;
A PMembit_1;
A Output_1;
R Output_1;

The second solution uses a conditional jump
JCN to evaluate the edge. When the CPU does
not detect an edge, the RLO is “0” and the pro-
gram scan is resumed at the jump label.

In the case of a positive edge, the CPU does not
execute the jump and executes the next two
statements. If the output is reset, it is set; if it is

set, it is reset. Although an Assign controls the
output, the latter functions as a latch, as this
program section is executed only when there is
a positive edge.

A Input_2;
FP FMembit_2;
JCN M1;
AN Output_2;
= Output_2;

M1: ... ;

5.5 Example of a Conveyor Belt
Control System

A functionally extremely simple conveyor belt
control system is used here as an example to
show how binary logic operations and memory
functions work in conjunction with inputs, out-
puts, and memory bits.

Functional description

Parts are to be transported on a conveyor sys-
tem, one crate or pallet per belt. The essential
functions are as follows:

b When the belt is empty, the controller re-
quests more parts with the “readyload” sig-
nal (ready to load)

b The “Start” signal starts the belt, and the
parts are transported

b At the end of the belt, an “end-of-belt” sen-
sor (a light barrier, for example) detects the
parts, at which point the belt motor switches
off and triggers the “ready_rem” signal
(ready to remove)

b At the “Continue” signal, the parts are trans-
ported further until the “end-belt” (end-of-
belt) sensor no longer detects them.

The function block diagram for the conveyor
belt control system is shown in Figure 5.6. The
example is programmed with inputs, outputs
and memory bits. it can be loaded anywhere in
any block. In the example, a function without a
function value was chosen as block.

In the Chapter 19 “Block Parameters” the same
example is programmed in a function block
with block parameters; the function block can
be called more than once (for more than one
belt).

Figure 5.4 Pulse Diagram of a Binary Scaler

5 Memory Functions

156

Signals and symbols

A number of additional signals supplement the
functionality of the conveyor belt control sys-
tem:

b Basic_st
Sets the controller to the basic state

b Man_on
Switches on the belt without regard to any
conditions

b /Stop
Stops the belt as long as the “0” signal is
present (an NC contact as sensor, “zero ac-
tive”)

b Light_barrier1
The parts have reached the end of the belt

b /Mfault
Fault signal from the belt motor (e.g. motor
protection switch); designed as “zero ac-
tive” signal so that other malfunctions, such
as a wire break, will also generate a fault
signal

We want to use symbolic addressing, that is, the
addresses are assigned names which we then
use when writing the program. Prior to incre-

mental program input or to compilation, we
generate a symbol table (Table 5.1), that con-
tains the inputs, outputs, memory bits and
blocks.

Program

The example is located in a function without
block parameters. You can call this function,
for instance, in organization block OB 1 as fol-
lows:

CALL Belt_control;

The example is in the form of source text with
symbolic addressing. The global symbols can
also be used without quotation marks when
they contain no special characters. If a symbol
contains a special character (such as a space), it
must be enclosed in quotation marks. The STL
editor displays all global symbols in the com-
piled block in quotation marks.

The program is subdivided into networks to
improve clarity and readability. The last net-
work, with the title BLOCK END, is not abso-
lutely necessary, but serves as a visual end of
the block, a very useful feature for extremely
long blocks.

Table 5.1 Symbol Table for the Example “Conveyor Belt Control System”

Symbol Address Data Type Comment

Belt_control FC 11 FC 11 Belt control system

Basic_st I 0.0 BOOL Set controllers to the basic state

Man_on I 0.1 BOOL Switch on conveyor belt motor

/Stop I 0.2 BOOL Stop conveyor belt motor (zero-active)

Start I 0.3 BOOL Start conveyor belt

Continue I 0.4 BOOL Acknowledgment that parts were removed

Light barrier1 I 1.0 BOOL (Light barrier) sensor signal “End of belt” for belt 1

/Mfault1 I 2.0 BOOL Motor protection switch belt 1, zero-active

Readyload Q 4.0 BOOL Load new parts onto belt (ready to load)

Ready_rem Q 4.1 BOOL Remove parts from belt (ready to remove)

Beltmot1_on Q 5.0 BOOL Switch on belt motor for belt 1

Load M 2.0 BOOL Load parts command

Remove M 2.1 BOOL Remove parts command

EM_Rem_N M 2.2 BOOL Edge memory bit for negative edge of “remove”

EM_Rem_P M 2.3 BOOL Edge memory bit for positive edge of “remove”

EM_Loa_N M 2.4 BOOL Edge memory bit for negative edge of “load”

EM_Loa_P M 2.5 BOOL Edge memory bit for positive edge of “load”

5.5 Example of a Conveyor Belt Control System

157

Figure 5.5 Program of the Example of a Conveyor Belt Control System

FUNCTION Belt_control: VOID
TITLE = Control of a conveyor belt
//Example of binary logic operations and memory functions, without block parameters
NAME : Belt1
AUTHOR : Berger
FAMILY : STL_Book
VERSION : 01.00
BEGIN
NETWORK
TITLE = Load parts
//This network generates the command "Load" that initiates transport of parts
//to the end of the belt.
 A Start; //Start conveyor belt
 S Load;
 O Light_barrier1; //Parts have reached end of belt
 O Basic_st;
 ON "/Mfault1"; //Motor protection switch (zero active)
 R Load;
NETWORK
TITLE = Parts ready for removal
//When parts have reached end of belt, they are ready for removal.
 A Load; //When end of belt has been reached,
 FN EM_Loa_N; //"Load" is reset.
 S Ready_rem; //Parts are then "ready for removal"
 A Remove;
 FP EM_Rem_P; //The parts are removed
 O Basic_st;
 ON "/Mfault1";
 R Ready_rem;
NETWORK
TITLE = Remove parts
//The "Remove" command initiates removal of the parts from the belt.
 A Continue; //Switch belt back on
 S Remove;
 ON Ligh_barrier1; //Parts leave the belt
 O Basic_st;
 ON "/Mfault1"; //Motor protection switch (zero active)
 R Remove;
NETWORK
TITLE = Belt ready for loading
//The belt is ready for loading when the parts have left the belt.
 A Remove;
 FN EM_Rem_N: //Parts have left the belt
 O Basic_st;
 S Readyload; //Belt is empty
 A Load;
 FP EM_Loa_P; //Belt is started
 ON "/Mfault1";
 R Readyload;
NETWORK
TITLE = Control belt motor
//The belt motor is switched on and off in this network.
 A(;
 O Load; //Load parts onto belt
 O Remove; //Remove parts from belt
 O Man_on; //Start with "Man_on" (non-retentive)
);
 A "/Stop"; //Stop and motor fault prevent
 A "/Mfault1"; //belt motor from running
 = Belt_motor1;
NETWORK
TITLE = Block end
 BE;
END_FUNCTION

5 Memory Functions

158

Figure 5.6 Example of a Conveyor Belt Control System

6 Move Functions

159

6 Move Functions

This chapter describes functions for the STL
programming language which interchange data
with the accumulators (registers). These
include

b Load functions
The load functions are used to fill the accu-
mulators for subsequent digital post-pro-
cessing, for instance compare, compute, and
so on.

b Transfer functions
The transfer functions transfer the digital re-
sults from accumulator 1 to memory areas
in the CPU, for instance bit memory.

b Accumulator functions
These functions transfer information from
one accumulator to another or replace infor-
mation in accumulator 1.

You also need load functions to specify initial
values for timers and counters or to process cur-
rent times and counts.

System functions SFC 20 BLKMOV, SFC 81
UBLKMOV, SFC 21 FILL, SFC 83 READ_
DBL and SFC 84 WRIT_DBL are available for
copying larger volumes of data in memory or to
preset data areas.

You need the load and transfer functions to
address modules via the user data area; when
you address modules via the system data area,
you must use system functions to transfer data
records. You can also use these system func-
tions to parameterize the modules.

The examples in this chapter can be found in
function block FB 106 or in the source file
Chap_6 in the STL_Book library under the
“Basic Functions” program which you can
download from the publisher’s web site (see
page 8).

6.1 General Remarks on Loading
and Transferring Data

The load and transfer functions enable the
exchange of information between different
areas of memory. This information exchange
does not take place directly, but instead is
“routed through” accumulator 1. An accumula-
tor is a special register in the processor, and
serves as “intermediate buffer”.

When information is exchanged, the direction
in which the information flows is indicated by
the instruction used to transfer that information.
The information flow from a memory area to
accumulator 1 is called loading, the reverse
direction of flow is called transferring (the con-
tents of the accumulator are “transferred” to the
memory area).

Loading and transferring are the prerequisites
for the use of the digital functions, which
manipulate a digital value (convert or shift, for
example) or combine two digital values (for
instance compare or add). In order to combine
two digital values, two intermediate buffers are
needed, namely accumulator 1 and accumulator
2. All CPUs are equipped with these two spe-
cial registers. The S7-400 CPUs have two addi-
tional intermediate buffers, accumulator 3 and
accumulator 4, which are used primarily in con-
junction with arithmetic functions. The group
of functions called the accumulator functions is
used to copy the contents of one accumulator to
another.

These associations are illustrated graphically in
Figure 6.1. The load function transfers informa-
tion from system memory, work memory and
the I/O to accumulator 1, shifting the “old” (that
is to say, current) contents of accumulator 1
over to accumulator 2. The digital functions
manipulate the contents of accumulator 1 or
combine the contents of accumulators 1 and 2
and write the result back into accumulator 1.

6 Move Functions

160

The accumulator functions can access the con-
tents of all accumulators. The source for trans-
ferring information to system memory, work
memory or the I/O is always and only accumu-
lator 1.

Each accumulator comprises 32 bits, while all
memory areas are byte-oriented. Information
can be exchanged between the memory areas
and accumulator 1 by byte, word, or double-
word.

In this chapter, the load and transfer functions
are discussed in conjunction with the address
areas for inputs, outputs, memory bits, I/O, and
the loading of constants.

The load and transfer functions can also be
combined with the following address areas:

b Timers and counters
(Chapter 7 “Timer Functions” and Chapter
8 “Counter Functions”)

Figure 6.1 Memory Areas for Loading and Transferring

6.2 Load Functions

161

b Status word
(Chapter 15 “Status Bits”)

b Temporary local data
(L stack, Chapter 18.1.5 “Temporary Local
Data”)

b Data addresses, lengths and numbers of data
blocks
(Chapter 18.2 “Block Functions for Data
Blocks”)

b Address registers, pointers
(Chapter 25 “Indirect Addressing”)

b Variable address
(Chapter 26 “Direct Variable Access”)

6.2 Load Functions

6.2.1 General Representation of a Load
Function

The load function consists of the operation code
L (for load) and a constant, a variable, or an
address with address identifier whose contents
the function loads into accumulator 1.

L +1200 Constant
(immediate addressing)

L IW 16 Digital memory location
(direct addressing)

L Actualvalue Variable
(symbolic addressing)

The CPU executes the load function without
regard to the result of the logic operation or to
the status bits. The load function affects neither
the RLO nor the status bits.

Effect on accumulator 2

The load function also changes the contents of
accumulator 2. While the value of the address,
constant or variable specified in the load state-
ment is loaded into accumulator 1, the current
contents of accumulator 1 are transferred to
accumulator 2. The load function transfers the
entire contents of accumulator 1 to accumulator
2. The original contents of accumulator 2 are
lost.

The load function does not affect the contents
of accumulators 3 and 4 on the S7-400 CPUs
and with the CPU 318.

Loading in general

The digital address specified in the load func-
tion may be that of a byte, a word, or a double-
word (Figure 6.2).

Loading a byte

When a byte is loaded, its contents are written
right-justified into accumulator 1. The remain-
ing bytes in the accumulator are padded with
“0”.

Loading a word

When a word is loaded, its contents are written
right-justified into accumulator 1. The high-
value byte of the word (n+1) is right-justified in
the accumulator, the low-value byte of the word
(byte n) is at its immediate left. The remaining
bytes in the accumulator are padded with “0”.

Loading a doubleword

When a doubleword is loaded, its contents are
written into accumulator 1. The lowest-value
byte (byte n) is at the far left in the accumulator,
the highest-value byte (byte n+3) at the far right.

6.2.2 Loading the Contents of Memory
Locations

Loading inputs

L IB n Loads an input byte

L IW n Loads an input word

L ID n Loads an input doubleword

With the S7-300 CPUs and, from 10/98 also
with the S7-400 CPUs, loading inputs is also
permissible if the relevant input modules are
not available.

Loading outputs

L QB n Loads an output byte

L QW n Loads an output word

L QD n Loads an output doubleword

With the S7-300 CPUs and, from 10/98 also
with the S7-400 CPUs, loading outputs is also
permissible if the relevant output modules are
not available.

6 Move Functions

162

Loading from the I/O

L PIB n Loads a peripheral input byte

L PIW n Loads a peripheral input word

L PID n Loads a peripheral input double-
word

When loading from the I/O area, the input mod-
ules are referenced as peripheral inputs (PIs).
Only the existing modules may be referenced.

Note that direct loading of an I/O module may
produce a different value than the loading of
inputs on a module with that same address, for
whereas the signal states of the inputs are the
same as they were at the start of the program
scan cycle (when the CPU updated the process
image), direct loading of the I/O modules loads
the current value.

Loading bit memory

L MB n Loads a memory byte

L MW n Loads a memory word

L MD n Loads a memory doubleword

Loading from the bit memory is always
allowed, as this entire area in the CPU. Note,

however, that different CPUs have different-
sized bit memory areas.

6.2.3 Loading Constants

Loading constants of elementary data type

You can load a constant, or fixed value, directly
into the accumulator. For better readability, you
can represent these constants in different for-
mats. In Chapter 3 “SIMATIC S7 Program”,
you will find an overview of the permissible
formats. All constants which can be loaded into
the accumulator are of elementary data type.

Examples:

L B#16#F1 Loads a 2-digit
hexadecimal number

L –1000 Loads an INT number

L 5.0 Loads a REAL number

L S5T#2s Loads an S5 timer

L C#250 Loads a BCD number
(count value)

L TOD#8:30:00 Loads a time of day

Figure 6.2 Loading and Transferring Bytes, Words and Doublewords

6.3 Transfer Functions

163

Chapter 24 “Data Types” describes the bit
assignments of the constants (structure of the
data type).

Loading pointers

Pointers are a special form of constant, and are
used for calculating memory locations. You can
load the following pointers into the accumulator:

L P#1.0 Loads an area-internal counter

L P#M2.1 Loads an area-crossing counter

L P#name Loads the address of a local
variable

You cannot load a DB pointer or an ANY
pointer into the accumulator, as these pointers
exceed 32 bits.

You will find further information on this topic
in Chapters 25 “Indirect Addressing” and 26
“Direct Variable Access”.

6.3 Transfer Functions

6.3.1 General Representation of
a Transfer Function

The transfer function comprises the operation
code T (for transfer) and the digital address to
which the contents of accumulator are to be
transferred.

T MW 120 Transfer accumulator con-
tents to the specified memory
location (absolute address-
ing)

T Setpoint Transfer accumulator contents
to a variable (symbolic
addressing)

The CPU executes the transfer statement with-
out regard to the result of the logic operation or
to the status bits. The function affects neither
the RLO nor the status bits.

The transfer function transfers the contents of
accumulator 1 by byte, word or doubleword to
the specified address. The contents of accumu-
lator 1 remain unchanged, making multiple
transfers possible.

The transfer function may be used for accumu-
lator 1 only. If you want to transfer a value from
another accumulator, you must transfer that
value to accumulator 1 using the accumulator
functions, then transfer it to the desired address
in memory.

Transferring in general

The digital address specified in the transfer
statement may be that of a byte, a word, or a
doubleword (Figure 6.2).

Transferring a byte

Transferring a byte shifts the rightmost byte in
accumulator 1 to the byte specified in the trans-
fer statement.

Transferring a word

Transferring a word shifts the contents of the
rightmost word in accumulator 1 to the word
specified in the transfer statement. The right
byte of the word (low-order byte) is transferred
to the byte with the higher address (n+1), the
left word (high-order byte) to the byte with the
lower address (n).

Transferring a doubleword

Transferring a doubleword shifts the contents of
accumulator 1 to the doubleword specified in the
transfer statement. The leftmost byte in the accu-
mulator is transferred to the byte with the lowest
address (n), the rightmost byte in the accumula-
tor to the byte with the highest address (n+3).

6.3.2 Transferring to Various Memory Areas

Transferring to inputs

T IB n Transfer to input byte

T IW n Transfer to input word

T ID n Transfer to input doubleword

With the S7-300 CPUs and, from 10/98 also
with the S7-400 CPUs, transferring to inputs is
also permissible if the relevant input modules
are not available.

Transfers to inputs affect only the bits in the
process image, just like the setting and resetting

6 Move Functions

164

of inputs. A possible application is in specify-
ing values for debugging or startup: if you mod-
ify the inputs at the start of the program with the
signal states you desire, the program then
works with these new values and not with the
values from the input modules.

Transferring to outputs

T QB n Transfer to output byte

T QW n Transfer to output word

T QD n Transfer to output doubleword

With the S7-300 CPUs and, from 10/98 also
with the S7-400 CPUs, transferring to outputs
is also permissible if the relevant output mod-
ules are not available.

Transferring to the I/O area

T PQB n Transfer to peripheral byte

T PQW n Transfer to a peripheral word

T PQD n Transfer to a peripheral double-
word

When transferring the contents of accumulator
1 to the I/O area, the output modules are refer-
enced as peripheral outputs (PQs). Only
addresses on output modules may be specified.

Transfers to I/O modules which have a process-
image output table updates this table so that
there is no difference between outputs and
peripheral outputs with the same address.

Transferring to bit memory

T MB n Transfer to a memory byte

T MW n Transfer to a memory word

T MD n Transfer to a memory double-
word

Transfers to the memory areas are always per-
missible, since this entire area is located on the
CPU. Note, however, that different CPUs have
different-sized bit memory areas.

6.4 Accumulator Functions

The accumulator functions transfer values from
one accumulator to another, or replace bytes in
accumulator 1. Accumulator functions are exe-
cuted without regard to the result of the logic
operation or to the status bits. These functions
affect neither the RLO nor the status bits.

6.4.1 Direct Transfers Between
Accumulators

PUSH Shift accumulator contents
“forward”

POP Shift accumulator contents “back”

ENT Shift accumulator contents
“forward” (without accumulator 1)

LEAVE Shift accumulator contents “back”
(without accumulator 1)

TAK Exchange contents of accumulators
1 and 2

CPUs with 2 rechargeable batteries (S7-300
and ET 200) only need the operations PUSH,
POP, and TAK; with CPUs and 4 rechargeable
batteries (S7-400), all operations are available
(Figure 6.3).

PUSH

PUSH pushes the contents of accumulators 1 to
3 into the next higher accumulator (1 to 2, 2 to
3, and 3 to 4). The contents of accumulator 1
remain unchanged.

You can use PUSH to enter the same value into
more than one accumulator.

POP

POP transfers the contents of accumulators 4 to
2 into the next lower accumulator (4 to 3, 3 to
2, 2 to 1). The contents of accumulator 4 remain
unchanged.

POP puts the values in accumulators 2 to 4 into
accumulator 1, from whence they can be trans-
ferred to memory.

6.4 Accumulator Functions

165

TAK

TAK exchanges the contents of accumulators 1
and 2. The contents of accumulators 3 and 4
remain unchanged.

ENT

ENT shifts the contents of accumulators 2 and
3 to the next higher accumulator. The contents
of accumulators 1 and 2 remain unchanged.

If ENT is immediately followed by a load state-
ment, the load shifts the contents of accumulators
1 to 3 “forward” (in a manner similar to that of
PUSH); the new value is then in accumulator 1.

LEAVE

LEAVE shifts the contents of accumulators 3
and 4 into the next lower accumulator. The con-
tents of accumulators 4 and 1 remain unchanged.

The arithmetic functions include LEAVE func-
tionality. Using LEAVE, you can also simulate
the same functionality in other digital logic
operations (in word logic, for example).

When programmed after a digital logic opera-
tion, LEAVE places the contents of accumula-
tors 3 and 4 into accumulators 2 and 3; the
result of the digital logic operation remains
unchanged in accumulator 1.

6.4.2 Exchange Bytes in Accumulator 1

CAW Exchange bytes in accumulator 1,
low-order word

CAD Exchange bytes in entire
accumulator 1

The CAW operation swaps the two low-order
bytes in accumulator 1 (Figure 6.4). The high-
order bytes remain unaffected.

The CAD operation swaps all bytes in accumu-
lator 1. The highest-order byte then becomes
the lowest following CAD; the two bytes in the
middle change places.

Figure 6.3 Direct Transfers between Accumulators on S7-300 and S7-400 CPUs

Accumulator 2 Accumulator 1 Accumulator 2 Accumulator 1 Accumulator 1

Accumulator 1 Accumulator 1 Accumulator 3 Accumulator 2 Accumulator 3

Accumulator 3 Accumulator 2 Accumulator 4 Accumulator 2 Accumulator 4

Accumulator 4 Accumulator 3 Accumulator 4 Accumulator 3 Accumulator 4

Accumulator 1

Accumulator 3

Accumulator 4

Accumulator 2

TAK PUSH POP ENT LEAVE

Assignment of accumulators after executing the operation

Functional scope for S7 300 CPUs

Figure 6.4 Exchanging Bytes in Accumulator 1

6 Move Functions

166

6.5 System Functions for Data
Transfer

The following system functions are available
for data transfer

b SFC 20 BLKMOV
Copy memory area

b SFC 21 FILL
Initializing a memory area

b SFC 81 UBLKMOV
Uninterruptible copying of variables

b SFC 83 READ_DBL
Read from load memory

b SFC 84 WRIT_DBL
Write into load memory

ANY parameter with the SFC 20, 21 and 81

Each of these system functions has two param-
eters of data type ANY (Table 6.1). Theoreti-
cally, each of these parameters may specify an
arbitrary address, variable, or absolute memory
location.

If you specify a variable of complex data type,
it must be a “complete” variable; components
of a variable (such as individual array or struc-
ture components) are not permitted. For abso-
lute addressing, use an ANY pointer; these
pointers are discussed in detail in Chapter 25.1
“Pointers”. With an ANY pointer of type BOOL
(e.g. with a field), the length must be dividable
by 8.

You can also copy individual variables of the
data type STRING. However, the STL program

editor and the SCL program editor behave dif-
ferently in this case (see Chapter 6.5.4 “Copy-
ing STRING Variables”).

If you use temporary local data as actual param-
eter in a block parameter of type ANY, the edi-
tor assumes that this actual parameter has the
structure of an ANY pointer. In this way, you
can generate an ANY pointer in the temporary
local data that can be modified at runtime, that
is, you can set up a variable area. The “Store
Frame” example in Chapter 26 “Direct Variable
Access”, shows how to use this “variable ANY
pointer”.

ANY parameter with SFCs 83 and 84

The system functions SFC 83 READ_DBL and
SFC 84 WRIT_DBL transmit data between data
blocks present in the load and work memories.
Complete data blocks or parts of data blocks are
permissible as actual parameters for the block
parameters SRCBLK and DSTBLK. With sym-
bolic addressing, only “complete” variables are
accepted which are present in a data block; sin-
gle field or structure components are not permis-
sible. Enter a memory area with absolute
addressing as follows: P#Datablock.Dataoper-
and Type Number. With an ANY pointer of type
BOOL (e.g. with a field), the length must be
dividable by 8.

6.5.1 Copying Memory Area

System function SFC 20 BLKMOV copies, in
the direction of ascending addresses (incremen-
tally), the contents of a source area (SRCBLK

Table 6.1 Parameters for SFC 20, 21 and 81

SFC Parameter Declaration Data Type Contents, Description

20 SRCBLK INPUT ANY Source area from which data are to be copied

RET_VAL RETURN INT Error information

DSTBLK OUTPUT ANY Destination to which data are to be copied

21 BVAL INPUT ANY Source area to be copied

RET_VAL RETURN INT Error information

BLK OUTPUT ANY Destination to which the source area is to be copied
(including multiple copies)

81 SRCBLK INPUT ANY Source area from which data are to be copied

RET_VAL RETURN INT Error information

DSTBLK OUTPUT ANY Destination to which data are to be copied

6.5 System Functions for Data Transfer

167

parameter) to a target area (DSTBLK parame-
ter).

The following actual parameters may be speci-
fied:

b Any variable from the address areas for in-
puts (I), outputs (Q), memory bits (M) or da-
ta blocks (variables from global data blocks
and instance data blocks)

b Variables from the temporary local data
(special case for data type ANY)

b Absolute-addressed data areas by specify-
ing an ANY pointer

You cannot use SFC 20 to copy timers or coun-
ters, or to copy information from or to the mod-
ules (I/O area) or system data blocks (SDBs).

In the case of inputs and outputs, the specified
area is copied regardless of whether or not the
addresses specified are on the input or output
modules. If the CPU does not possess an SFC
83 READ_DBL, you may also specify a vari-
able or the address of an area in a data block in
load memory.

Source and destination may not overlap. If
source area and target area are of different
lengths, the shorter of the two determines the
transfer.

Example: The variable Frame (a structured
variable as user data type, for example) in data
block “Rec_mailb” is to be copied to variable
Frame1 (which is of the same data type as
Frame) in data block “Buffer”. The function
value is to be entered in the variable Copyerror
in data block “Evaluation”.

CALL BLKMOV (
SRCBLK := Rec_mailb.Frame,
RET_VAL := Evaluation.Copyerror,
DSTBLK := Buffer.Frame1);

6.5.2 Uninterruptible Copying of Variables

System function SFC 81 UBLKMOV copies
the contents of a source area (SRCBLK param-
eter) to a target area (DSTBLK parameter) in
the direction of rising addresses (increment-
ing). The copy operation cannot be interrupted,
so under certain circumstances, the response
times to interrupts may increase. Up to 512
bytes are copied.

The following actual parameters can be applied
to the parameters:

b Any variables from the address areas inputs
I, outputs Q, memory bits M, data blocks
(variables from global data blocks and from
instance data blocks)

b Variables and temporary local data (special
case for data type ANY)

b Absolute-addressed memory areas with
specification of an ANY pointer

You cannot copy the following with SFC 81:
timer and counter functions, information from
and to the modules (I/O address area), system
blocks SDBs and data blocks in load memory
(data blocks programmed with the keyword
UNLINKED).

In the case of inputs and outputs, the area spec-
ified is copied regardless of the actual assign-
ment to input modules or output modules.

Source and target areas must not overlap. If the
source and target areas are of differing lengths,
the transfer is carried out only to the length of
the smaller area.

Example: From the data block “Buffer”, the
first component of the array Data is to be cop-
ied to the Frame variable in the data block
“Send_mailb”. The function value is to be
stored in the Copyerror variable in the data
block “Evaluation”.

CALL UBLKMOV (
SRCBLK := Buffer.Data[1],
RET_VAL := Evaluation.Copyerror,
DSTBLK := Send_mailb.Frame);

6.5.3 Initializing a Memory Area

System function SFC 21 FILL copies a speci-
fied value (source area) to a memory area (tar-
get area) until the target area is completely
filled. The transfer is in the direction of ascend-
ing addresses (incremental). The parameters
may be assigned the following actual values:

b Any variables from the address areas for in-
puts (I), outputs (Q), memory bits (M), or
data blocks (variables from global data
blocks and instance data blocks)

b Absolute-addressed data areas by specify-
ing an ANY pointer

6 Move Functions

168

b Variables in the temporary local data of data
type ANY (special case)

You cannot use SFC 21 to copy timers or coun-
ters, or to copy information from or to the mod-
ules (I/O area) or system data blocks (SDB).

In the case of inputs and outputs, the specified
area is copied without regard to the whether or
not the addresses are those on input or output
modules.

Source and destination may not overlap. The
target area is always completely filled, even
when the source area is longer than the target
area or when the length of the target area is not
an integer multiple of the length of the source
area.

Example: Data block DB 13 consists of 128
data bytes, all of which are to be set to the value
of memory byte MB 80.

CALL SFC 21 (

BVAL := MB 80,

RET_VAL := MW 32,

BLK := P#DB13.DBX0.0 BYTE 128);

6.5.4 Copying STRING Variables

You can copy individual STRING variables
with the system functions SFC 20 BLKMOV
and SFC 81 UBLKMOV. The STL program
editor and the SCL program editor behave dif-
ferently here.

The STL program editor handles the STRING
variable like a BYTE array in this case, so that
the SFC transfers the individual bytes 1:1
(including the two first bytes with the length
specifications). If, for example, you transfer a
BYTE array to a STRING variable, you must
assign the correct length of the length bytes in
the STRING variable to the BYTE array.

The SCL program editor writes the data type
STRING to the ANY pointer. The SFC then
transfers only the relevant “character positions”
of the STRING variable. If the STRING vari-
able is the destination, the actual length is cor-
rected, if necessary. In this way, you can, for
example, easily transfer a STRING variable to
an ARRAY of CHAR and vice versa.

Both the STL and the SCL program editors
copy a STRING variable correctly to another
STRING variable.

6.5.5 Reading from Load Memory

The system function SFC 83 READ_DBL
reads data from a data block present in the load
memory, and writes them into a data block pres-
ent in the work memory. The contents of the
read data block are not changed. The block
parameters are described in Table 6.2.

The system function SFC 83 READ_DBL
operates asynchronously: you trigger the read

Table 6.2 Parameters for SFC 83 and 84

SFC Parameter Declaration Data Type Contents, Description

83 REQ INPUT BOOL Trigger for reading with signal status “1”

SRCBLK INPUT ANY Data area in load memory which is read

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL With signal status “1”: reading not yet finished

DSTBLK OUTPUT ANY Data area in work memory which is written

84 REQ INPUT BOOL Trade for writing with signal status “1”

SRCBLK INPUT ANY Data area in work memory which is read

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL With signal status “1”: writing not yet finished

DSTBLK OUTPUT ANY Data area in load memory which is written

6.5 System Functions for Data Transfer

169

operation by a signal status “1” on the parame-
ter REQ. You may only access the read and
written data areas again when the BUSY
parameter has the signal status “0” again.
Please also note the system resources of the
CPU when using asynchronous system func-
tions.

A data block is normally present twice in the
user memory of a CPU: once in the load memory
and – the sequence-relevant part – in the work
memory. If a data block has the property
Unlinked, it is only present in the load memory
(Figure 6.5). The SFC 83 READ_DBL only
reads the values from the load memory. The ini-
tial values of the data addresses are present here,
and may differ from the current values in the
work memory (see also Chapter 2.6.5 “Block
Handling” under “Data blocks offline/online”).

For the parameters SRCBLK and DSTBLK, it
is possible to specify complete data blocks, e.g.
DB 100 or “Recipe 1”, variables from data

blocks, or an absolute address data area as ANY
pointers, e.g. P#DB100.DBX16.0 BYTE 64.

If the source area is smaller than the target area,
the former is written completely into the latter.
The remaining bytes of the target area are not
changed. If the source area is larger than the tar-
get area, the latter is written completely; the
remaining bytes of the source area are ignored.

6.5.6 Writing into the Load Memory

The system function SFC 84 WRIT_DBL reads
data from a data block present in the work
memory, and writes them into a data block pres-
ent in the load memory. The contents of the read
data block are not changed. The block parame-
ters are described in Table 6.2.

The system function SFC 84 WRIT_DBL oper-
ates asynchronously: you trigger the write oper-
ation with signal status “1” for the parameter
REQ. You can only access the read and written

Figure 6.5 Data Blocks in User Memory

6 Move Functions

170

data areas again if the parameter BUSY has the
signal status “0” again. Please also consider the
system resources of the CPU when using asyn-
chronous system functions.

A data block is normally present twice in the user
memory of a CPU: once in the load memory and
– the sequence-relevant part – in the work mem-
ory. If a data block has the property Unlinked, it
is only present in the load memory (Figure 6.5).
The SFC 84 WRIT_DBL only reads the values
from the work memory. The initial values of the
data addresses are present here, and may differ
from the current values in the load memory (see
also Chapter 2.6.5 “Block Handling” under
“Data blocks offline/online”).

For the parameters SRCBLK and DSTBLK, it
is possible to specify complete data blocks,
e.g. DB 200 or “Archive 1”, variables from
data blocks, or an absolute addressed data area

as ANY pointers, e.g. P#DB200.DBX0.0
WORD 4.

If the source area is smaller than the target area,
the former is written completely into the latter.
The remaining bytes of the target area are not
changed. If the source area is larger than the tar-
get area, the latter is written completely; the
remaining bytes of the source area are ignored.

If the data block has been generated in the load
memory by a system function during runtime,
the checksum of the user program is not
changed by writing with the SFC 84 WRIT_
DBL. With (manual) creation of the data block,
writing with the SFC 84 WRIT_DBL changes
the user program checksum.

Please note that – for physical reasons – the load
memory can usually only permit a limited num-
ber of write operations. Too frequent writing,
e.g. cyclic, limits the service life of the load
memory.

7 Timer Functions

171

7 Timer Functions

Timer functions are used to implement timing
sequences, such as, for example, waiting and
monitoring times, measuring a period of time,
or the generation of pulses.

The statements for the STL programming lan-
guage are described in this chapter; in the SCL
programming language, the timer functions are
included among the standard functions (see
Chapter 30.1 “Timer Functions”).

The following timer types are available:

b Pulse timer

b Extended pulse timer

b On-delay timer

b Retentive on-delay timer

b Off-delay timer

When you start a timer, you specify the
dynamic response and the duration, the latter
being the length of time the timer is to run; you
can also reset or enable (“retrigger”) timers.
Binary logic operations are used to check tim-
ers (“timer running”). Load functions are used

to transfer the current time value, in binary or
BCD, to accumulator 1.

The examples in this chapter and the IEC timer
calls can be found in function block FB 107 or
in the source file Chap_7 in the STL_Book
library under the “Basic Functions” program,
which you can download from the publisher’s
web site (see page 8).

7.1 Programming a Timer

7.1.1 Starting a Timer

A timer is started (begins running) when the
result of the logic operation (RLO) changes
prior to the start instruction. In the case of an
off-delay timer, the RLO must change from “1”
to “0”; in all other cases, the timer begins run-
ning when the RLO goes from “0” to “1”.

You can start any timer as one of five possible
types (Figure 7.1). However, it is not a good
idea to use a given timer as more than one type.

Figure 7.1 Start Instructions for Timers

7 Timer Functions

172

7.1.2 Specifying the Time

When a timer is started, it takes the value in
accumulator 1 as its running time, or duration.
How and when the value gets into the accumu-
lator is of no consequence. To make your pro-
gram more readable, the best way would be to
load the running time directly into the accumu-
lator before starting the timer, either as a con-
stant (direct specification of the value) or as a
variable (for example a memory word contain-
ing the value).

Note: accumulator 1 must contain a valid time
value even if the time is not started when the
start instruction is processed.

Specifying the duration as a constant

L S5TIME#10s; //Duration 10 s

L S5T#1m10ms; //Duration 1 min + 10 ms

In the basic languages STL, LAD and FBD, the
duration, or running time, is specified in hours,
minutes, seconds and milliseconds. The
defined number range extends from
S5TIME#10ms to S5TIME#2h46m30s (which
corresponds to 9990 s). You may use either
S5TIME# or S5T# to identify a constant.

Specifying the duration as a variable

L S5T#10m; //Duration 10 min

T MW 20; //Save duration

... ;

L MW 20; //Load duration

Structure of the duration

Internally, the duration is composed of the time
value and the time base. The duration is equal
to time value x time base. The duration is the
period of time during which the timer is active
(“timer running”). The time value represents
the number of timing periods the timer is to run.
The time base specifies the timing period the
CPU operating system is to use to decrement
the timer (Figure 7.2).

You can also set up the duration directly in the
word. The smaller the time base, the more accu-
rately the actual duration processed. For exam-
ple, if you want to implement a duration of 1 s,
you can do so in one of three different ways:

Duration = 2001hex Time base 1 s

Duration = 1010hex Time base 100 ms

Duration = 0100hex Time base 10 ms

The last of the three is the preferred method in
this case.

When a timer is started, the CPU uses the pro-
grammed time value as the timer's running
time. The operating system updates timers at
fixed intervals and independently of the user
program scan, that is, it decrements an active
timer's time value as per the timing period indi-
cated by the time base.

When the value reaches zero, the timer is
regarded as expired. The CPU then sets the
timer status (signal state “0” or “1”, depending
on the type of timer involved) and drops all fur-
ther activities until the timer is started again.

Figure 7.2 Bit Assignments in the Duration

7.1 Programming a Timer

173

When a time value of zero is specified, the
timer remains active until the CPU processes it
and discovers that the timer has expired.

Timers are updated asynchronously to the pro-
gram scan. It is therefore possible that the status
of the timer at the start of the cycle may differ
from its status at the end of the cycle. If you use
timer instructions at only one location in the
program and in the suggested order (see
below), there will be no errors due to asynchro-
nous timer updating.

7.1.3 Resetting a Timer

R T n Resets a timer

A timer is reset when the RLO is “1” when the
reset statement is encountered. As long as the
RLO is “1”, timer checks for “1” will return a
check result of “0” and timer checks for “0” will
return a check result of “1”. Resetting a timer
sets the time value and the time base to zero.

Note: resetting a timer function does not reset
the internal edge memory bit for starting. To
start again, the start instruction must be pro-
cessed with RLO “0” before the timer function
can be started with a signal edge.

7.1.4 Enabling a Timer

FR T n Enables a timer

The enable instruction is used to “retrigger” an
active timer, that is, to restart it.

A timer is enabled if the enable instruction is
processed with a positive (rising) edge. Then
the internal edge memory bit is reset for starting
the timer. If the RLO is then “1” when the start
instruction is next processed, the timer is
started even if there is no signal edge at the start
instruction.

An enable instruction is not required to start or
reset a timer, that is to say, it is not necessary to
normal timer operation.

7.1.5 Checking a Timer

Checking the timer status

A T n Check for signal state “1” and
combine according to AND

O T n Check for signal state “1” and
combine according to OR

X T n Check for signal state “1” and
combine according to Exclusive
OR

AN T n Check for signal state “0” and
combine according to AND

ON T n Check for signal state “0” and
combine according to OR

XN T n Check for signal state “0” and
combine according to Exclusive
OR

You can check a timer as you would an input,
for instance, and further process the result.
Depending on the type of timer, a check for sig-
nal state “1” produces different variations in the
timing sequence (see the description of the
dynamic response in the coming chapters).

As it does in the case of inputs, a check for sig-
nal state “0” returns precisely the reverse result
as does the check for signal state “1”.

Checking the time value

L T n Loads a binary time value

LC T n Loads a BCD time value

Load functions L T and LC T check the speci-
fied time value and make it available in accu-
mulator 1 in binary (L) or in binary-coded dec-
imal (LC). The value loaded into the accumula-
tor is the value current at the instant of the
check (in the case of an active timer, the time
value, in this case the value loaded into the
accumulator, is counted down in the direction
of zero).

7 Timer Functions

174

Loading a time value (direct load)

The value specified in the timer instruction is in
binary, and can be loaded into accumulator 1 in
this form. The time base is lost in this case, and
in its place in accumulator 1 is the value “0”.

The value in accumulator 1 therefore corre-
sponds to a positive number in INT format, and
can be further processed with, for example,
compare functions. Please note that it is the
time value that is in the accumulator, not the
duration.

Example:

L T 15; //Load current time value

T MW 34; //and save

Loading a time value (coded load)

You can also use a “coded load” instruction to
load a binary value into accumulator 1. In this
case, both the time value and the time base are
available in binary-coded decimal (BCD). The
contents of the accumulator are the same as
when a time value is specified (see above), that
is, the left-hand word (high-order word) in the
accumulator contains zero.

Example:

LC T 16; //Load current time value
in BCD

T MW 122; //and save

7.1.6 Sequence of Timer Instructions

When you program a timer, you do not need to
use all of the statements that are available for
timers, but only those statements applicable to
the timer you want to implement. Normally,
this would include starting the timer with the
specified duration, and binary checking of the
timer.

In order for a timer to perform as described in
the preceding sections, a certain order must be
observed when programming timer operations.

Table 7.1 shows the optimum order for all timer
operations. Simply omit the statements that are
not needed, such as enabling the timer.

If a timer is started and reset “simultaneously”
in the statement sequence shown, the timer will
start, but the subsequent reset statement will
immediately reset it. When the timer is then
checked, the fact that it was started will there-
fore go unnoticed.

7.1.7 Clock Generator Example

The example shows a clock generator with a
different pulse-pause ratio, implemented with a
single timer.

Start_input starts the clock generator. If the
time is not running or if it has run out, it is
started as an extended pulse. At every start, the
binary scaler Output changes its signal state and
with this also determines the duration with
which the time is to be started.

AN Start_input;
R Timer;
R Output;
SPB M1;
A Timer;
SPB M2;
AN Output;
= Output;
L Pulse_duration;
SPB M2;
L Pause_duration;

M2: AN Timer;
SE Timer;

M1: ; //remaining program

Table 7.1 Sequence of Timer Operations

Timer Operation Examples:

Enable timer A I 16.5
FR T 5

Start timer A I 17.5
L S5T#1s
SI T 5

Reset timer A I 18.0
R T 5

Digital timer check L T 5
T MW 20
LC T 5
T MW 22

Binary timer check A T 5
= Q 2.0

7.2 Pulse Timers

175

7.2 Pulse Timers

The complete STL sequence of statements for
starting a timer as a pulse is as follows:

A Enable_input;
FR Timer;
A Start_input;
L Duration;
SI Timer;
A Reset_input;
R Timer;
L Timer;
T Binary_time_value;
LD Timer;
T BCD_time_value;
A Timer;
= Timer_status;

For SCL, calling a timer as a pulse is pro-
grammed as follows:

BCD_time_value:= S_PULSE (
T_NO := Timer,
S := Start_input,
TV := Duration,
R := Reset_input,
Q := Timer_status,
BI := Binary_time_value);

Starting a pulse timer

The diagram in Figure 7.3 describes the
dynamic response of a timer that was started as
a pulse timer, and its behavior when it is reset.
The description is valid if you adhere to the
sequence of operations shown opposite for STL
(starting before resetting before checking).
Enabling is not required for the “normal”
sequence, and in SCL it is also not available.

a The timer is started when the signal state
at its Start input changes from “0” to “1”
(positive edge). It runs for the pro-
grammed duration as long as the signal
state at the Start input remains at “1”.
Checks for signal state “1” (timer status)
return a check result of “1” as long as the
timer is running.

The time is counted down from the initial
value with the set time base.

s The timer stops if the signal state at its
Start input goes to “0” before the time has
elapsed. Checking the timer for signal
state “1” (timer status) returns a check re-
sult of “0”. The time value shows the time
remaining, which also shows at what
point the timing sequence was premature-
ly interrupted.

Figure 7.3 Response when Starting and Resetting a Pulse Timer

7 Timer Functions

176

Resetting a pulse timer

Resetting of a pulse timer has a static effect and
takes precedence over the starting of a timer
(Figure 7.3).

d Signal state “1” at the Reset input of an
active timer resets that timer. A check for
signal state “1” (timer status) then returns
a check result of “0”. The time value and
the time base are also set to zero. A
change in the signal state from “1” to “0”
at the Reset input while signal state “1” is
present at the Start input has no effect on
the timer.

f If a timer is not running, signal state “1”
at its Reset input has no effect.

g If the signal state at the Start input chang-
es from “0” to “1” (positive edge) while
the Reset signal is present, the timer is
started but the subsequent reset instruc-
tion resets it immediately (indicated by a
line in the diagram). If checking of the
timer status is programmed after reset-
ting, the brief starting of the timer will
have no effect on the check.

Enabling a pulse timer

The timer is “retriggered”, i.e. prompted to
restart, with a positive edge at the enable input.
Enabling is only possible in the STL program-
ming language.

Figure 7.4 shows enabling of a timer started as
a pulse timer.

a If the signal state goes from “0” to “1”
(positive edge) at the enable input, the
timer, if active, will be restarted when the
start instruction is processed, provided the
start input still has signal state “1”. The
programmed duration is taken as the cur-
rent time value for the restart. A change in
the signal state from “1” to “0” at the en-
able input has no effect.

s If the signal state at the enable input
changes from “0” to “1” (positive edge)
and if the start input still has signal state
“1”, the timer is also started with the pro-
grammed duration as a pulse timer.

d If the signal state at the Start input is “0”,
a positive signal edge at the enable input
will have no effect.

Figure 7.4 Enabling a Pulse Timer

7.3 Extended Pulse Timers

177

7.3 Extended Pulse Timers

The complete STL statement list for starting a
timer as an extended pulse is as follows:

A Enable_input;
FR Timer;
A Start_input;
L Duration;
SE Timer;
A Reset_input;
R Timer;
L Timer;
T Binary_time_value;
LD Timer;
T BCD_time_value;
A Timer;
= Timer_status;

For SCL, calling a timer as an extended pulse is
programmed as follows:

BCD_time_value:= S_PEXT (
T_NO := Timer,
S := Start_input,
TV := Duration,
R := Reset_input,
Q := Timer_status,
BI := Binary_time_value);

Starting an extended pulse timer

The diagram in Figure 7.5 describes a timer's
performance after it is started as an extended
pulse timer and when it is reset. The description
is valid if you adhere to the sequence of opera-
tions shown opposite for STL (starting before
resetting before checking). Enabling is not
required for the “normal” sequence, and in SCL
it is also not available.

as When the signal state at the timer's Start
input changes from “0” to “1” (positive
edge), the timer is started. It runs for the
programmed duration, even if the signal
state at the start input changes back to
“0”. The checks for signal state “1” (timer
status) return a check result of “1” as long
as the timer is running.

The time is counted down from the initial
value with the set time base.

d If the signal state at the Start input goes
from “0” to “1” (positive edge) while the
timer is running, the timer is restarted
with the programmed time value (that is,
the timer is “retriggered”). It can be re-
started as often as required without the
time having to expire first.

Figure 7.5 Response of an Extended Pulse Timer

7 Timer Functions

178

Resetting an extended pulse timer

Resetting of an extended pulse timer has a static
effect and takes precedence over the starting of
a timer (Figure 7.5).

fg Signal state “1” at an active timer's Reset
input resets the timer. A check for signal
state “1” (timer status) returns a check re-
sult of “0” if a timer is reset. The time val-
ue and the time base are also set to zero.

h If the timer is not running, processing of
the reset input with signal state “1” has no
effect.

j If the signal state at the Start input goes
from “0” to “1” (positive edge) while the
Reset signal is present, the timer is started
but the subsequent reset resets it immedi-
ately (indicated by a line in the diagram).
If checking of the timer status is pro-
grammed after resetting, this brief starting
of the timer will not affect a check.

Enabling an extended pulse timer

The timer is “retriggered”, i.e. prompted to
restart, with a positive edge at the enable input.
Enabling is only possible in the STL program-
ming language.

Figure 7.6 shows enabling of a timer started as
an extended pulse timer.

a When the signal state at an active timer's
enable input goes from “0” to “1” (posi-
tive edge), the timer is restarted when the
start instruction is processed, provided the
start input still has signal state “1”. The
programmed duration is taken as the cur-
rent time value for the restart. A change in
the signal state from “1” to “0” at the en-
able input has no effect.

s If the signal state at the enable input of an
inactive timer goes from “0” to “1” (posi-
tive edge) and if the start input still has
signal state “1”, the timer is also started
with the programmed duration as an ex-
tended pulse timer.

df If the signal state at the Start input is “0”,
a positive signal edge at the enable input
will have no effect.

Figure 7.6 Enabling an Extended Pulse Timer

7.4 On-Delay Timers

179

7.4 On-Delay Timers

The complete STL statement list for starting a
timer as an on-delay is as follows:

A Enable_input;
FR Timer;
A Start_input;
L Duration;
SD Timer;
A Reset_input;
R Timer;
L Timer;
T Binary_time_value;
LD Timer;
T BCD_time_value;
A Timer;
= Timer_status;

For SCL, calling a timer as an on-delay is pro-
grammed as follows:

BCD_time_value:= S_ODT (
T_NO := Timer,
S := Start_input,
TV := Duration,
R := Reset_input,
Q := Timer_status,
BI := Binary_time_value);

Starting an on-delay timer

The diagram in Figure 7.7 describes a timer's
dynamic performance after it is started as an
on-delay timer and when it is restarted. The
description is valid if you adhere to the
sequence of operations shown opposite for STL
(starting before resetting before checking).
Enabling is not required for the “normal”
sequence, and in SCL it is also not available.

a When the signal state at the timer's Start
input changes from “0” to “1” (positive
edge), the timer is started. The timer runs
with the programmed duration as the time
value. Checks for signal state “1” (timer
status) return a check result of “1” if the
time expires without incident and the sig-
nal state at the Start input is still “1” (on
delay).

The time is counted down from the initial
value with the set time base.

s If the signal state at the Start input of a
running timer goes from “1” to “0”, the
timer stops. In such cases, a check for sig-
nal state “1” (timer status) always returns
a check result of “0”. The time value
shows the time remaining, that is, the pe-
riod by which the timer was prematurely
interrupted.

Figure 7.7 Response of an On-Delay Timer

7 Timer Functions

180

Resetting an on-delay timer

Resetting of an on-delay timer has a static effect
and takes precedence over the starting of a
timer (Figure 7.7).

df Signal state “1” at the Reset input resets
the timer whether the time is running or
not. A check for signal state “1” (timer
status) returns a check result of “0”, even
when the timer is not running and signal
state “1” is still present at the Start input.
Time value and time base are also set to
zero.

A change in the signal state at the Reset
input from “1” to “0” while signal state
“1” is still present at the Start input has no
effect on the timer.

g If the signal state at the Start input chang-
es from “0” to “1” (positive edge) while
the Reset signal is still present, the timer
is started but the subsequent reset resets it
again immediately (indicated by a line in
the diagram). If checking of the timer sta-
tus is programmed after resetting, this
brief starting of the timer will not affect a
check.

Enabling an on-delay timer

The timer is “retriggered”, i.e. prompted to
restart, with a positive edge at the enable input
(in STL only). Figure 7.8 shows enabling of a
timer as an on-delay timer.

a If the signal state at a running timer's en-
able input changes from “0” to “1” (posi-
tive edge), the time is restarted when the
start operation is processed, provided the
start input still has signal state “1”. The
programmed duration is taken as the cur-
rent time value for the restart. A change in
the signal state from “1” to “0” at the en-
able input has no effect.

s If the signal state at the enable input goes
from “0” to “1” (positive edge) after the
time has elapsed without incident, pro-
cessing of the start operation does not af-
fect the timer.

df If there is a positive signal edge at the en-
able input and the timer is reset, the timer
restarts if the start input still has signal
state “1”. The timer restarts with the pro-
grammed duration as the current time
value.

If the signal state at the Start input is “0”, a pos-
itive edge at the enable input has no effect.

Figure 7.8 Enabling an On-Delay Timer

7.5 Retentive On-Delay Timers

181

7.5 Retentive On-Delay Timers

The complete STL statement list for starting a
timer as a retentive on-delay is as follows:

A Enable_input;
FR Timer;
A Start_input;
L Duration;
SS Timer;
A Reset_input;
R Timer;
L Timer;
T Binary_time_value;
LD Timer;
T BCD_time_value;
A Timer;
= Timer_status;

For SCL, calling a timer as a retentive on-delay
is programmed as follows:

BCD_time_value:= S_ODTS (
T_NO := Timer,
S := Start_input,
TV := Duration,
R := Reset_input,
Q := Timer_status,
BI := Binary_time_value);

Starting a retentive on-delay timer

The diagram in Figure 7.9 describes a timer's
dynamic performance after it is started as a
retentive on-delay timer, and after it is
restarted. The description is valid if you adhere
to the sequence of operations shown opposite
for STL (starting before resetting before check-
ing). Enabling is not required for the “normal”
sequence, and in SCL it is also not available.

as When the signal state at the timer's Start
input changes from “0” to “1” (positive
edge), the timer is started. It runs with the
programmed duration even if the signal
state at the start input changes back to
“0”. When the time has elapsed, checks
for signal state “1” (timer status) return a
check result of “1”, regardless of the sig-
nal state at the Start input. The check re-
sult is not “0” until the timer has been re-
set, regardless of what the signal state at
the Start input is. The time is counted
down from the initial value with the set
time base

d If the signal state at the Start input goes
from “0” to “1” (positive edge) while the
timer is running, the timer is restarted
with the programmed time value (that is,
the timer is “retriggered”). The timer may
be restarted as often as required without
the time having to elapse first.

Figure 7.9 Response of a Retentive On-Delay Timer

7 Timer Functions

182

Resetting a retentive on-delay timer

Resetting of a retentive on-delay timer has a
static effect and takes precedence over the start-
ing of a timer (Figure 7.9).

fg Signal state “1” at the Reset input resets
the timer without regard to the signal state
at the Start input. Checks for signal state
“1” (timer status) then return a check re-
sult of “0”. Time value and time base are
set to zero.

h If the signal state at the Start input chang-
es from “0” to “1” (positive edge) while
the Reset signal is present, the timer is
started, but the subsequent reset resets it
again immediately (indicated by a line in
the diagram). If checking of the timer sta-
tus is programmed after resetting, the
brief start will have no effect on the
check.

Enabling a retentive on-delay timer

The timer is “retriggered”, i.e. prompted to
restart, with a positive edge at the enable input.
Enabling is only possible in the STL program-
ming language.

Figure 7.10 shows enabling of a timer as a
retentive on-delay timer.

a If the signal state at a running timer's en-
able input changes from “0” to “1” (posi-
tive edge), the timer is restarted when the
start instruction is processed, provided the
start input still has signal state “1”. The
timer restarts with the programmed dura-
tion as the time value. A change in the sig-
nal state at the enable input from “1” to
“0” has no effect.

s When the signal state at the enable input
goes from “0” to “1” (positive edge) after
the timer has expired without incident, the
start instruction has no effect on the timer.

d When the signal state at the Start input is
“0”, a positive signal edge at the enable
input has no effect.

fg If there is a positive edge at the enable in-
put when the timer is reset and the start in-
put has signal state “1”, the timer is re-
started. The timer restarts with the pro-
grammed duration as the current time
value.

Figure 7.10 Enabling a Retentive On-Delay Timer

t programmed duration

t t t t t

Signal state at
the reset input

Signal state at
the start input

Signal state at
the enable input

Time running
(internal)

Timer status
(scan for "1")

7.6 Off-Delay Timers

183

7.6 Off-Delay Timers

The complete STL statement list for starting a
timer as an off-delay is as follows:

A Enable_input;
FR Timer;
A Start_input;
L Duration;
SF Timer;
A Reset_input;
R Timer;
L Timer;
T Binary_time_value;
LD Timer;
T BCD_time_value;
A Timer;
= Timer_status;

For SCL, calling a timer as a retentive off-delay
is programmed as follows:

BCD_time_value:= S_OFFDT (
T_NO := Timer,
S := Start_input,
TV := Duration,
R := Reset_input,
Q := Timer_status,
BI := Binary_time_value);

Starting an off-delay timer

The diagram in Figure 7.11 describes the
dynamic performance of a timer after it is
started as off-delay timer, and when it is
restarted. The description is valid if you adhere
to the sequence of operations shown opposite
for STL (starting before resetting before check-
ing). Enabling is not required for the “normal”
sequence, and in SCL it is also not available.

ad When the signal state at the timer's Start
input goes from “0” to “1” (negative
edge), the timer is started. It runs with the
programmed duration as the time value.
Checks for signal state “1” (timer status)
return a check result of “1” when the sig-
nal state at the Start input is “1” or when
the timer is running (off delay).

The time is counted down from the initial
value with the set time base.

s When the signal state at the Start input
changes from “0” to “1” (positive edge)
while the timer is running, the timer is re-
set. The timer is not restarted until there is
a negative edge at the Start input.

Figure 7.11 Response of an Off-Delay Timer

7 Timer Functions

184

Resetting an off-delay timer

Resetting of an off-delay timer has a static
effect and takes precedence over the starting of
a timer (Figure 7.11).

f Signal state “1” at the Reset input of a
running timer resets the timer. Checks for
signal state “1” (timer status) then return
a check result of “0”. Time value and time
base are also set to zero.

gh Signal state “1” at the Start input and at
the Reset input resets the timer's binary
output (a check for signal state “1” (timer
status) then returns a check result of “0”).
If the signal state at the Reset input then
changes back to “0”, the timer's output
goes back to “1”.

j If the signal state at the Start input chang-
es from “1” to “0” (negative edge) while
the Reset signal is present, the timer is
started but the subsequent reset resets it
again immediately (indicated by a line in
the diagram). A check for signal state “1”
(timer status) then immediately returns a
check result of “0”.

Enabling an off-delay timer

The timer is “retriggered”, i.e. prompted to
restart, with a positive edge at the enable input.
Enabling is only possible in the STL program-
ming language.

Figure 7.12 shows enabling of a timer as an off-
delay timer.

a If the signal state at the enable input of an
inactive timer changes from “0” to “1”
(positive edge), the timer is not affected
by the execution of the start operation. A
change in the signal state at the enable in-
put from “1” to “0” also has no effect.

s If the signal state at the enable input of a
running (active) timer changes from “0”
to “1” (positive edge), the timer is restart-
ed when the start operation is processed.
The timer uses the programmed duration
as the current time value for the restart.

d There is no effect from a change in the
signal state at the enable input from “0” to
“1” (positive edge) or a change in the sig-
nal state from “1” to “0” (negative edge)
at the enable input when the time is not
running.

Figure 7.12 Enabling an Off-Delay Timer

7.7 IEC Timer Functions

185

7.7 IEC Timer Functions

The IEC timer functions are integrated into the
operating system of the CPU as system function
blocks SFBs.

In appropriately equipped CPUs, the following
functions are available:

b SFB 3 TP
Pulse generation

b SFB 4 TON
On delay

b SFB 5 TOF
Off delay

Figure 7.13 shows the dynamic response of
these timers.

You call these SFBs with an instance data block
or you use these SFBs as local instances in a
function block.

You can find the interface description for
offline programming in the Standard Library
under the System Function Blocks program.

Call examples can be found in the STL_Book
library under the “Basic Functions” program in
function block FB 107, or in the source file
Chap_7, or in the SCL_Book library under the
“30 SCL Functions” program. You can down-
load the library from the publisher’s web site.

7.7.1 Pulse Generation SFB 3 TP

The IEC timer SFB 3 TP has the parameters
shown in Table 7.2.

If the RLO at the start input of the timer
changes from “0” to “1”, the timer starts. It runs
with the programmed duration regardless of
any further changes in the RLO at the start
input. Output Q returns signal state “1” as long
as the time runs.

Output ET returns the time duration set at out-
put Q. This duration begins at T#0s and ends at
the set time PT. If PT has elapsed, ET remains
at the elapsed value until input IN changes back
to “0”. If input IN has signal state “0” before PT
has elapsed, output ET changes to T#0s imme-
diately after PT has elapsed.

Table 7.2 Parameters for the IEC Timer Functions

Name Declaration Data type Description

IN INPUT BOOL Start input

PT INPUT TIME Pulse length or
delay duration

Q OUTPUT BOOL Timer status

ET OUTPUT TIME Elapsed time

Figure 7.13 Dynamic Response of the IEC Timer Functions

7 Timer Functions

186

If you want to reinitialize the timer, start with
the time duration PT = T#0s.

SFB 3 TP runs in the operating states
RESTART and RUN. It is reset (initialized) at
cold restart.

7.7.2 On Delay SFB 4 TON

The IEC timer SFB 4 TON has the parameters
shown in Table 7.2.

If the RLO at the start input of the timer
changes from “0” to “1”, the timer starts. It runs
with the programmed duration. Output Q
returns signal state “1” if the time has elapsed.
If the RLO at the start input changes from “1”
to “0” before the time has elapsed, the running
time is reset. It starts again with the next posi-
tive edge.

Output ET returns the time duration run by the
timer. This duration begins at T#0s and ends at
the set time PT. If PT has elapsed, ET remains
at the elapsed value until input IN changes back
to “0”. If input IN has signal state “0” before PT
has elapsed, output ET changes to T#0s imme-
diately.

If you want to reinitialize the timer, start with
the time duration PT = T#0s.

SFB 4 TON runs in the operating states
RESTART and RUN. It is reset at cold restart.

7.7.3 Off Delay SFB 5 TOF

The IEC timer SFB 5 TOF has the parameters
shown in Table 7.2.

If the RLO at the start input of the timer
changes from “0” to “1”, output Q has signal
state “1”. If the RLO at the start input changes
back to “0”, the timer starts. Output Q remains
at signal state “1” while the timer runs. When
the time has elapsed, output Q is reset. If the
RLO at the start input changes again to “1”
before the time has elapsed, the timer is reset
and output Q remains “1”.

Output ET returns the time duration run by the
timer. This duration begins at T#0s and ends at
the set time PT. If PT has elapsed, ET remains
at the elapsed value until input IN changes back
to “1”. If input IN has signal state “1” before PT
has elapsed, output ET changes to T#0s imme-
diately after PT has elapsed.

If you want to reinitialize the timer, start with
the time duration PT = T#0s.

SFB 5 TOF runs in the operating states
RESTART and RUN. It is reset at cold restart.

8 Counter Functions

187

8 Counter Functions

Counter functions allow you to have counting
tasks carried out directly by the central proces-
sor. The counters can count up and down, and
the counting range extends over three decades
(from 000 to 999).

This chapter describes the statements for the
STL programming language. In the SCL pro-
gramming language, the counter functions are
included among the SCL standard functions
(see Chapter 30.2 “Counter Functions”).

The counting rate of these counters depends on
your program's scan time! In order to count, the
CPU must detect a signal state change in the
input pulse, that is to say, an input pulse (or
space (interpulse period)) must be present for
at least one program scan cycle. The longer the
program scan cycle, the lower the counting
rate.

Note: the integrated functions of the compact
CPUs with S7-300 (CPU 3xxC) also contain
counter functions that can count via a special
counter input at up to 10, 30 or 60 kHz depend-
ing on the CPU.

The counters described in this chapter are
stored in the system memory of the CPU. You
can set counters to an initial value, reset them,
count up, and count down. You can find out
whether the count is zero or not zero by check-
ing a counter. The current count can be loaded
into accumulator 1 in binary or in binary-coded
decimal (BCD).

The examples in this chapter and the calls for
IEC counters can be found in the STL_Book
library under the “Basic Functions” program in
function block FB 108 or source file Chap_8.
You can download the library from the pub-
lisher’s web site (see page 8).

8.1 Setting and Resetting Counters

Setting a counter

S C n Sets a counter

A counter is set when the RLO goes from “0” to
“1” prior to the Set operation S. A positive edge
is always required to set a counter.

“Set counter” means to load the counter with an
initial value. The initial value with which it is to
be loaded is in accumulator 1 (see below). The
range extends from 0 to 999.

Specifying the count

The “set counter” statement takes the value in
accumulator 1 as count value. How and when
that value got into accumulator 1 is of no con-
cern.

To make your program more readable, you
should load the count value into the accumula-
tor immediately before the Set statement, either
in the form of a constant (direct specification of
a count value) or a variable (such as a memory
word containing the count value).

Note: accumulator 1 must contain a valid coun-
ter value even if the counter is not set when the
set statement is processed.

Specifying a count in the form of a constant

L C#100; //Count value 100

L W#16#0100; //Count value 100

A count comprises three decades, and may be in
the range from 000 to 999. Only positive BCD
values are permitted; the counters cannot pro-
cess negative values. You may use C# or

8 Counter Functions

188

W#16# (in conjunction with decimal digits
only) to identify a constant.

Specifying a count in the form of a variable

L C#200; //Count value 200

T MW 56; //Save count value

.. ;

L MW 56; //Load count value

The Set operation expects there to be a count in
accumulator 1 consisting of three right-justified
decades. The meanings of the bits in the count
(data type C#) are described in detail in Chapter
24 “Data Types”.

Resetting a counter

R C n Resets a counter

A counter is reset when the RLO is “1” when
the Reset statement is encountered. As long as
RLO “1” is present, counter checks for “1”
return a check result of “0” and counter checks
for “0” return a counter result of “1”. Resetting
a counter sets the count value to “0”.

Note: Resetting a counter function does not
reset the internal edge memory bit for setting,
up counting and down counting. For setting or
counting again, the relevant statement must
first be processed with RLO “0” before the
counter function can be set again or counting
can begin again. You can also use enabling of
the counter function for this purpose.

8.2 Counting

Counting up

CU C n Count up

A counter is counted up (incremented) when
the RLO changes from “0” to “1” prior to the
CU (count up) statement. Up counting always
requires a positive signal edge.

Each positive edge preceding the CU operation
increases the count value by one unit until the
upper limit value of 999 is reached. A positive
edge at the CU input then has no further effect.

There is no carry.

Counting down

CD C n Count down

A counter is counted down (decremented)
when the RLO changes from “0” to “1” prior to
the CD (count down) statement. Down count-
ing always requires a positive signal edge.

Each positive edge preceding the CD statement
decreases the count value by one unit until the
lower limit value of 0 has been reached. A pos-
itive edge at the CD input then has no further
effect.

The count value does not go into the negative
range.

Figure 8.1 Bit Assignments of the Counter Value

8.3 Checking a Counter

189

8.3 Checking a Counter

Binary counter check

A C n Check for signal state “1” and com-
bine according to AND

O C n Check for signal state “1” and com-
bine according to OR

X C n Check for signal state “1” and com-
bine according to Exclusive OR

AN C n Check for signal state “0” and com-
bine according to AND

ON C n Check for signal state “0” and com-
bine according to OR

XN C n Check for signal state “0” and com-
bine according to Exclusive OR

You can check a logical counter combination as
you would an input, for instance, and further
combine the result of the check. Checks for sig-
nal state “1” return a check result of “1” when
the count is greater than zero, and a check result
of “0” when the count is zero.

Direct loading of a count value

L C n Direct loading of a count value

The load function L C transfers the count spec-
ified in the counter function into accumulator 1
in the form of a binary number. This value is the
value current at the instant of the check. The
value now in accumulator 1 corresponds to a
positive number in INT format, and can be fur-
ther processed, for example with arithmetic
functions.

Example:

L C 99; //Load current count

T MW 76; //and save

Coded loading of a count value

LD C n Coded loading of a count value

The load function LC C transfers the count
specified in the counter function to accumulator
1 in the form of a binary-coded decimal num-
ber. This value is the value current at the instant
of the check. The count is subsequently avail-
able in the accumulator as a right-justified BCD
number. It has the same structure as the speci-
fied count.

Example:

LD C 99; //Load current count value

T MW 50; //and save

8.4 Enabling a Counter

FR C n Enable counter

When you enable a counter, you can set the
counter and use it for counting without a posi-
tive signal edge having to precede the relevant
operation. However, this is possible only when
the relevant operation is processed while the
RLO is “1”.

The enable is active when the RLO goes from
“0” to “1” before the enable instruction is
encountered. A positive signal edge is always
required to enable a counter.

A counter need not be enabled in order for it to
be set, reset, or used for counting (that is to say,
for normal operation of a counter).

Note: Enable affects setting, counting up and
counting down simultaneously! A positive
edge at the time of the enable instruction causes
all subsequent instructions (S, CU and CD)
which have signal state “1” to be executed.

The counter function example below is
designed to show the functional principle of the
enable instruction on the remaining inputs (the
diagram is shown in Figure 8.2):

A "Enable";
FR "Counter";
A "Count up";
CU "Counter";
A "Count down";
CD "Counter";
A "Set";
L C#020;
S "Counter";
A "Reset";
R "Counter";
A "Counter";
= "Counter status";

a The positive edge at the set input sets the
counter to the initial value of 20.

s A positive edge at the CU input incre-
ments the counter by one unit.

8 Counter Functions

190

d Because the signal state at the set input is
“1”, an enable instruction increments the
count by one unit.

f The positive edge at the reset input decre-
ments the count by one unit.

g The enable instruction causes the state-
ments for up counting and down counting
to be executed, as signal state “1” is pres-
ent at both inputs.

h The positive edge at the set input sets the
counter to the initial value of 20.

j Signal state “1” at the reset input resets
the counter. A check for signal state “1”
returns a check result of “0”.

k Because signal state “1” is still present at
the set input, the enable instruction again
sets the counter to 20. A check for signal
state “1” returns a check result of “1”.

8.5 Sequence of Counter
Instructions

When programming a counter, you do not need
all the statements available for it. You need pro-
gram only those statements required for the
timer in question. For example, all that is

needed for a down counter is the setting of the
initial value, down counting, and a binary check
for “0”.

For a counter to perform as described in the last
several sections, you must observe a specific
sequence when programming the counter
instructions. Table 8.1 shows the optimum
sequence for all counter instructions. Simply
omit the unneeded statements when you write
your program, for example, enabling the coun-
ter function.

If a Reset is to have a “static” effect on the CU,
CD and S statements and be independent of the
result of the logic operation (RLO), you have to
write the Reset statement for the counter in
question after these statements and before the
check statement for the counter.

If the counter is then set and reset “simultane-
ously”, it will still be assigned a value, but is
then immediately reset by the Reset statement.
The subsequent check therefore does not recog-
nize the fact that the counter had been briefly set.

If the setting of a counter is to have a “static”
effect on the counter statements and be inde-
pendent of the RLO, the Set instruction for that
counter must be programmed after the counting
instructions. If a counter is set and reset “simul-

Figure 8.2 Enabling a Counter

8.6 IEC Counter Functions

191

taneously”, the counting instructions still affect
the count, but the count is subsequently set to
the programmed value, which it retains for the
remainder of the program scan.

The sequence of statements for up and down
counting is not relevant.

8.6 IEC Counter Functions

The IEC counter functions are integrated into
the operating system of the CPU as system
function blocks SFBs. In appropriately
equipped CPUs, the following functions are
available:

b SFB 0 CTU
Up counter

b SFB 1 CTD
Down counter

b SFB 2 CTUD
Up-down counter

You call these SFBs with an instance data block
or you use these SFBs as local instances in a
function block.

You can find the interface description for
offline programming in the Standard Library
under the System Function Blocks program.

Call examples can be found in the STL_Book
library under the “Basic Functions” program in
function block FB 108, or in the source file
Chap_8, and in the SCL_Book library under the
“30 SCL Functions” program. You can down-
load both libraries from the publisher’s web site
(see page 8).

8.6.1 Up Counter SFB 0 CTU

The IEC counter function SFB 0 CTU has the
parameters shown in Table 8.2.

If the signal state at the up counter input CU
changes from “0” to “1” (positive edge), the
current counter value is incremented by 1 and
displayed at output CV. When called for the
first time (with signal state “0” at reset input R),
the counter value corresponds to the preset
value at input PV.

If the current counter value reaches the upper
limit of 32,767, it is no longer incremented. CU
then remains without effect.

The counter value is reset to zero if reset input
R has signal state “1”. A positive edge at CU
remains without effect while input R has signal
state “1”.

Output Q has signal state “1” if the value at CV
is greater than or equal to the value at PV.

SFB 0 CTU runs in the operating states
RESTART and RUN. It is reset at cold restart.

8.6.2 Down Counter SFB 1 CTD

The IEC counter SFB 1 CTD has the parame-
ters shown in Table 8.2.

If the signal state at the down counter input CD
changes from “0” to “1” (positive edge), the
current counter value is decremented by 1 and
displayed at output CV. When called for the
first time (with signal state “0” at the LOAD
input), the counter value corresponds to the pre-
set value at input PV.

If the current counter value reaches the lower
limit of –32,768, it is no longer decremented.
CD then remains without effect.

The counter value is reset to the preset value PV
if the LOAD input has signal state “1”. A posi-

Table 8.1 Sequence of Counter Instructions

Counter Instruction Examples

Enable counter A I 22.0
FR C 17

Count up A I 22.1
CU C 17

Count down A I 22.2
CD C 17

Set counter A I 22.3
L C#500
S C 17

Reset counter A I 22.4
R C 17

Digital check L C 17
T MW 30
LC C 17
T MW 32

Binary check A C 17
= Q 13.0

8 Counter Functions

192

tive edge at CD remains without effect while
the LOAD input has signal state “1”.

Output Q has signal state “1” if the value at CV
is less than or equal to zero.

SFB 1 CTD runs in the operating states
RESTART and RUN. It is reset at cold restart.

8.6.3 Up-Down Counter SFB 2 CTUD

The IEC counter SFB 2 CTUD has the parame-
ters shown in Table 8.2.

If the signal state at the up count input CU
changes from “0” to “1” (positive edge), the
counter value is incremented by 1 and dis-
played at output CV. If the signal state at the
down count input CD changes from “0” to “1”
(positive edge), the counter value is decre-
mented by 1 and displayed at output CV. If both
counter inputs have a positive edge, the current
counter value does not change.

If the current counter value reaches the upper
limit of 32,767, it is no longer incremented if
there is a positive edge at up count input CU.
CU then remains without effect.

If the current counter value reaches the lower
limit of –32,768, it is no longer decremented if
there is a positive edge at down counter input
CD. CD then remains without effect.

The counter value is reset to the preset value PV
if the LOAD input has signal state “1”. Positive
signal edges at the counter inputs remain with-
out effect while the LOAD input has signal
state “1”.

The counter value is reset to zero if reset input
R has signal state “1”. Positive signal edges at
the counter inputs and signal state “1” at the
LOAD input remain without effect while input
R has signal state “1”.

Output QU has signal state “1” if the value at
CV is greater than or equal to zero.

Output QD has signal state “1” if the value at
CV is less than or equal to zero.

SFB 2 CTUD runs in the operating states
RESTART and RUN. It is reset at cold restart.

8.7 Parts Counter Example

The example illustrates the handling of timers
and counters. It is programmed with inputs,
outputs and memory bits so that it can be pro-
grammed at any point in any block. A function
without block parameters has been used in the
example.

Functional description

Parts are transported on a conveyor belt. A light
barrier detects and counts the parts. After a set
number, the counter sends the signal “Fin-
ished”. The counter is equipped with a monitor-
ing circuit. If the signal state of the light barrier
does not change within a specified time, the
monitoring circuit emits a signal.

The Set input gives the counter its initial value
(the number of parts to be counted). A positive

Table 8.2 Parameters for the IEC Counter Functions

Name Present in SFB Declaration Data Type Description

CU 0 - 2 INPUT BOOL Up count input

CD - 1 2 INPUT BOOL Down count input

R 0 - 2 INPUT BOOL Reset input

LOAD - 1 2 INPUT BOOL Load input

PV 0 1 2 INPUT INT Preset value

Q 0 1 - OUTPUT BOOL Counter status

QU - - 2 OUTPUT BOOL Count counter status up

QD - - 2 OUTPUT BOOL Count counter status down

CV 0 1 2 OUTPUT INT Current counter value

8.7 Parts Counter Example

193

edge at the light barrier decrements the counter
by one unit. When the count reaches zero, the
counter sends the “Finished” signal. Prerequi-
site is that the parts are lying individually (at
intervals from one another) on the conveyor
belt (Figure 8.3).

The Set input also sets the “Active” signal. The
controller monitors a signal state change of the
light barrier only in the active state. The Active
signal is reset when counting is finished and the
last item counted has exited the light barrier.

In the active state, a positive edge of the light
barrier starts the timer with the time value Dura1
as retentive pulse timer. If the timer's Start input
is processed with “0” in the next scan cycle, it
nevertheless continues to run. A new positive
signal edge “retriggers”, that is, restarts, the
timer. The next positive edge for restarting the
timer is generated when the light barrier signals
a negative edge. The timer is then started with

time value Dura2. If the light barrier is broken
for a length of time exceeding Dura1, or free for
a period of time which exceeds Dura2, the time
elapses and the timer signals Fault. The first
Active signal starts the timer with the time value
Dura2.

The Set signal activates the counter and the
monitoring circuit. The light barrier uses posi-
tive and negative signal edges to control the
counter, the Active state, selection of the time
value, and the starting (retriggering) of the
watchdog timer.

Evaluation of the light barrier's positive and neg-
ative edge is required often, and temporary local
data are suitable here as “scratchpad memory”.
Temporary local data are block-local variables,
and are declared in the block (not in the symbol
table). In the example, the edge evaluation's
pulse memory bits are stored in temporary local

(see page 195 for program)

Figure 8.3 Parts Counter Example

8 Counter Functions

194

data. (The edge memory bits also require their
signal states in the next scan cycle, and must
therefore not be temporary local data.)

The program is located in a function without
block parameters. You can call this function, in
OB 1 for example, as follows:

CALL "Counter_control";

The program is available as source text with
symbolic addressing. The global symbols can
also be used without quotation marks as long as
they contain no special characters. If a special
character (such as an umlaut or a space) is
located in a symbol, then it must be enclosed in
quotation marks. The editor shows all global

symbols with quotation marks in the compiled
block.

The program is subdivided into networks for
better readability. The last network, which has
the network title BLOCK END, is not abso-
lutely necessary. However, it is a visual sign of
the end of the block, which is very useful, par-
ticularly in the case of extremely long blocks.

You will find this example in the STL_Book
library in the “Conveyor Example” program
which you can download from the publisher’s
web site (see page 8). The Symbols object con-
tains the symbol table, the Source Files con-
tainer source the program “Conveyor”, and the
Blocks container the compiled program in the
function FC 12.

8.7 Parts Counter Example

195

FUNCTION "Counter_control" : VOID
TITLE = Parts counter with monitoring circuit
//Example of timer and counter functions
NAME : Count
AUTHOR : Berger
FAMILY : STL_Book
Version : 01.00
VAR_TEMP
PM_LB_P : BOOL; //Pulse positive edge light barrier
PM_LB_N : BOOL; //Pulse negative edge light barrier

END_VAR
BEGIN
NETWORK
TITLE = Counter_control

A Light_barrier1; //When light barrier is tripped,
CD Count; //decrement counter by 1
A Set;
L Quantity; //Preset count with "Quantity"
S Count;
A Acknowledge;
R Count;
AN Count; //When count reaches zero,
= Finished; //output "Finished" signal

NETWORK
TITLE = Activate monitor

A Light_barrier1;
FP EM_LB_P; //Generate pulse memory bit
= PM_LB_P; //on positive edge of light barrier
A Light_barrier1;
FN EM_LB_N; //Generate pulse memory bit
= PM_LB_N; //on negative edge of light barrier
A Set;
FP EM_ST_P;
S Active; //Activate monitoring circuit
A Finished;
A PM_LB_N;
O Acknowledge;
R Active; //Deactivate monitoring circuit

NETWORK
TITLE = Monitoring circuit

L Dura1; //If light barrier is "1"
A Light_barrier1; //jump JC to D1 is executed and the
JC D1; //accumulator contains "Dura1" otherwise
L Dura2; //the accumulator contains "Dura2"

D1: A Active;
FP EM_Ac_P; //If there is a positive edge at "active"
O PM_LB_P; //or a positive edge at the light barrier,
O PM_LB_N; //or a negative edge at the light barrier,
SE Monitor; //the timer is started or retriggered
AN Monitor;
A Active; //If time elapses while "active",
= Fault; //"Fault" is signaled

NETWORK
TITLE = Block End
 BE;
END_FUNCTION

Digital Functions

196

Digital Functions

The digital functions process digital values pre-
dominantly of data type INT, DINT and REAL,
and thus extend the functionality of the PLC.
The digital functions for the STL programming
language are described at this point. In the SCL
programming language, comparisons, word
logic operations and arithmetic functions are
implemented with operators (Chapter 27.4 “Ex-
pressions”); the remaining digital functions are
included in SCL among the standard functions
(Chapters 30.3 “Math Functions”, 30.4 “Shift-
ing and Rotating” and 30.5 “Conversion Func-
tions”).

The comparison functions form a binary result
from the comparison of two values. They take
into account the data types INT, DINT and
REAL.

You use the arithmetic functions to make cal-
culations in your program. All basic arithmetic
operations in data types INT, DINT and REAL
are available.

The math functions extend the calculation op-
tions beyond the basic arithmetic operations to
include such additions as trigonometric func-
tions.

Before and after performing calculations, you
match the digital values to the required data
type using the conversion functions.

The shift functions make it possible to align
the contents of the accumulator by shifting
them to the right or left. It is always possible to
scan the last bit shifted.

Word logic is used to mask digital values by
targeting individual bits and setting them to “1”
or “0”.

Digital logic operations work mainly with val-
ues in data blocks. These can be global data
blocks or instance data blocks if static local da-
ta are used. Chapter 18.2 “Block Functions for
Data Blocks” deals with the use of data blocks
and the addressing options for data.

With the exception of the accumulators, the
temporary local data are extremely well suited
for storing temporary results.

9 Comparison Functions
Compare for equal to, not equal to, great-
er than, greater than or equal to, less than,
and less than or equal to; comparison
function in a binary logic operation

10 Arithmetic Functions
Basic arithmetic operations; chain calcu-
lations; constant addition; decrementation
and incrementation

11 Mathematical Functions
Trigonometric functions; inverse trigono-
metric functions; squaring, square-root
extraction, exponentiation and logarithms

12 Conversion functions
Conversion from INT/DINT to BCD and
vice versa; conversion from DINT to RE-
AL and vice versa with different methods
of rounding; one's complement, negation
and absolute-value generation

13 Shift Functions
Shifting to left and right, by word and
doubleword, shifting according to the
rules for signs; rotating to left and right
and through accumulator 1; shifting and
rotating with a constant or with the con-
tents of accumulator 2

14 Word Logic
AND, OR, Exclusive OR; logic opera-
tions by word and doubleword, with a
constant or with the contents of accumu-
lator 2

9 Comparison Functions

197

9 Comparison Functions

The comparison functions compare two digital
values, one of which is in accumulator 1, the
other in accumulator 2. As the result of the
comparison, the comparison function sets the
result of the logic operation (RLO) and status
bits CC0 and CC1. The result can be post-pro-
cessed with binary logic operations, memory
functions, or jump statements. Table 9.1 pro-
vides an overview of the available comparison
functions.

In Chapter 15 “Status Bits” you will learn how
the comparison functions set status bits CC0
and CC1.

The comparison functions for the STL pro-
gramming language are described in this chap-
ter. In the SCL programming language, the
comparison functions are formulated with com-
parison expressions (Chapter 27.4.2 “Compari-
son Expressions”).

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the STL_Book library under the
“Digital Functions” program in function block
FB 109 or source file Chap_9.

9.1 General Representation of a
Comparison Function

You program a comparison function according
to the following general scheme:

To begin with, the first of the addresses to be
compared is loaded into accumulator 1. When
the second address is loaded, the contents of ac-
cumulator 1 are shifted into accumulator 2 (see
Chapter 6.2 “Load Functions”). Now the con-
tents of accumulators 1 and 2 can be compared
with each other using the comparison function.

The comparison function returns a binary result
(data type BOOL) that can be assigned to a bi-
nary address or combined with other binary
checks.

A comparison function does not modify the
contents of the accumulators. It is always exe-
cuted without regard to any conditions.

Table 9.2 shows an example for the various data
types. The comparison instruction carries out
the comparison according to the specified char-
acteristic, without regard to the contents of the
accumulators.

In the case of data type INT, the CPU compares
only the right-hand (low-order) words of the ac-
cumulators; the contents of the left-hand (high-
order) words are not taken into account.

In comparisons involving data type REAL, a
check is made to make sure that the accumula-
tors contains valid REAL numbers. If they do
not, the CPU sets the RLO to “0” and status bits
CC0, CC1, OV and OS to “1”.

Table 9.1
General Representation of a Comparison Function

Comparison According To
Data Type

Comparison for INT DINT REAL

equal to ==I ==D ==R

not equal to <>I <>D <>R

greater than >I >D >R

greater than or
equal to

>=I >=D >=R

less than <I <D <R

less than or equal to <=I <=D <=R

Load Operand1;
Load Operand2;
Comparison function;
Assign Result;

9 Comparison Functions

198

9.2 Description of the Comparison
Functions

Comparison for equal to

The “comparison for equal to” instruction inter-
prets the contents of the accumulators in accor-
dance with the data type specified in the in-
struction and checks to see if the two values are
equal. The RLO is “1” following the operation
in the following cases:

b Data type INT
If the contents of the low-order word of ac-
cumulator 2 is equal to the contents of the
low-order word of accumulator 1.

b Data type DINT
If the contents of accumulator 2 are equal to
the contents of accumulator 1.

b Data type REAL
If the contents of accumulator 2 are equal to
the contents of accumulator 1, on condition
that both accumulators contains valid RE-
AL numbers.

If two REAL numbers are equal but invalid, the
“equal to” condition is not fulfilled (RLO =
“0”).

Comparison for not equal to

The “comparison for not equal to” instruction
interprets the contents of the accumulators in
accordance with the data type specified in the
comparison instruction and checks to see
whether the two values differ. The RLO is “1”

following the comparison operation in the fol-
lowing cases

b Data type INT
If the contents of the low-order word of ac-
cumulator 2 are not equal to the contents of
the low-order word of accumulator 1.

b Data type DINT
If the contents of accumulator 2 are not
equal to the contents of accumulator 1.

b Data type REAL
If the contents of accumulator 2 are not
equal to the contents of accumulator 1, on
condition that both accumulators contain
valid REAL numbers.

If two REAL numbers are not equal but one or
both of them is invalid, the “not equal to” con-
dition is not fulfilled (RLO = “0”).

Comparison for greater than

The “comparison for greater than” instruction
interprets the contents of the accumulators in
accordance with the data type specified in the
comparison instruction and checks to see
whether the value in accumulator 2 is greater
than the value in accumulator 1. Following the
operation, the RLO is “1” in the following in-
stances:

b Data type INT
If the contents of the low-order word of ac-
cumulator 2 are greater than the contents of
the low-order word of accumulator 1.

Table 9.2 Examples of Comparison Functions

Comparison
According to
INT

Memory bit M99.0 is reset if the value in memory
word MW 92 is equal to 120, otherwise it is not.

L MW 92;
L 120;
==I ;
R M 99.0;

Comparison
According to
DINT

The variable “CompResult” in data block
“Global_DB” is set if variable “CompVal1” is
less than “CompVal2”; otherwise it is reset.

L "Global_DB".CompVal1;
L "Global_DB".CompVal2;
<D ;
= "Global_DB".CompResult;

Comparison
According to
REAL

If variable #Actval is greater than or equal to vari-
able #Calibra, #Recali is set, otherwise not.

L #Actval;
L #CALIBRA;
>=R ;
S #Recali;

9.3 Comparison Function in a Logic Operation

199

b Data type DINT
If the contents of accumulator 2 are greater
than the contents of accumulator 1.

b Data type REAL
If the contents of accumulator 2 are greater
than the contents of accumulator 1, on con-
dition that both accumulators contain valid
REAL numbers.

Comparison for greater than or equal to

The “comparison for greater than or equal to”
instruction interprets the contents of the accu-
mulators in accordance with the data type spec-
ified in the comparison statement and checks to
see whether the value in accumulator 2 is great-
er than or equal to the value in accumulator 1.
Following the comparison, the RLO is “1” in
the following instances:

b Data type INT
If the contents of the low-order word of ac-
cumulator 2 is greater than the contents of
the low-order word of accumulator 1 or if
the bit patterns of the two words are equal.

b Data type DINT
If the contents of accumulator 2 are greater
than the contents of accumulator 1 or if the
bit patterns in the two accumulators are
equal.

b Data type REAL
If the contents of accumulator 2 are greater
than the contents of accumulator 1 or if the
contents of the two accumulators are equal
on condition that both accumulators contain
valid REAL numbers.

Comparison for less than

The “comparison for less than” instruction in-
terprets the contents of the accumulators in ac-
cordance with the data type specified in the
comparison operation and checks whether the
value in accumulator 2 is less than the value in
accumulator 1. Following the comparison, the
RLO is “1” in the following instances:

b Data type INT
If the contents of the low-order word of ac-
cumulator 2 are less than the contents of the
low-order word of accumulator 1.

b Data type DINT
If the contents of accumulator 2 are less than
the contents of accumulator 1.

b Data type REAL
If the contents of accumulator 2 are less than
the contents of accumulator 1 on condition
that both accumulators contain valid REAL
numbers.

Comparison for less than or equal to

The “comparison for less than or equal to” op-
eration interprets the contents of the accumula-
tors in accordance with the data type specified
in the comparison instruction and checks
whether the value in accumulator 2 is less than
or equal to the value in accumulator 1. Follow-
ing the comparison operation, the RLO is “1” in
the following instances:

b Data type INT
If the contents of the low-order word of ac-
cumulator 2 are less than the contents of the
low-order word of accumulator 1 or if the
bit patterns of the two words are equal.

b Data type DINT
If the contents of accumulator 2 are less than
the contents of accumulator 1 or if the bit
patterns of the values in the two accumula-
tors are equal.

b Data type REAL
If the contents of accumulator 2 are less than
the contents of accumulator 1 or if the con-
tents of the two accumulators are equal on
condition that both contain valid REAL
numbers.

9.3 Comparison Function in
a Logic Operation

The comparison function returns a binary RLO
and can therefore be used in conjunction with
other binary functions. The comparison func-
tion sets status bit FC, that is to say, in binary
logic operations, a comparison function is al-
ways a first check.

9 Comparison Functions

200

Comparison at the start of a logic operation

At the start of a logic operation, a comparison
function is always a first check. The RLO re-
turned by the comparison function can be di-
rectly combined using binary checks.

L MW 120;
L 512;
>I ;
A Input1;
= Output1;

In the example, Output1 is set if the comparison
condition is fulfilled and Input1 has a signal
state of “1”.

Comparison within a logic operation

A comparison function within a binary logic
operation must be enclosed, as the comparison
function begins a new logic step (first check).

O Input2;
O(;
L MW 122;
L 200;
<=I ;
) ;
O Input3;
= Output2;
In the example, Output2 is set if Input2 or
Input3 has a signal state of “1” or if the compare
condition is fulfilled.

Multiple comparisons

Because a comparison function does not alter
the contents of the accumulators, multiple suc-
cessive comparisons are possible in STL.

L MW 124;
L 1200;
>I ;
JC GREA;
==I ;
JC EQUA;

In the example, two comparison functions are
applied to the same accumulator contents. The
first comparison generates RLO = “1” if
MW 124 is greater than 1200, so that the jump
to GREA is executed. Without reloading the
accumulators, the second comparison function
compares for equal to and generates a new
RLO.

The comparison function sets the status bits
based on the relationship between the values
compared, that is, independently of the condi-
tion on which the comparison is based. You can
make use of this fact by checking the status bits
with the relevant jump functions. The example
above can also be programmed as follows:

L MW 124;
L 1200;
>I ;
JP GREA;
JZ EQUA;

In this example, the comparison is evaluated on
the basis of status bits CC0 and CC1. The com-
parison itself, in this case “greater than”, does
not affect the setting of the status bits; a differ-
ent comparison, for example for “less than”,
could also have been used. JP scans to see
whether the first comparison value is greater
than the second, JZ to see whether they are
equal.

10 Arithmetic Functions

201

10 Arithmetic Functions

The arithmetic functions combine two digital
values in accumulators 1 and 2 in accordance
with one of the basic arithmetic operations. The
result is placed in accumulator 1. Status bits
CC0, CC1, OV and OS provide information
about the result and the progress of the calcula-
tion (see Chapter 15 “Status Bits”). Table 10.1
provides an overview of the available arithme-
tic functions.

In addition to applying the basic arithmetic op-
erations to values in accumulator 2, you can al-
so add constants directly to the contents of ac-
cumulator 1 or modify the contents of accumu-
lator 1 by a fixed amount.

The statements for the STL programming lan-
guage are described in this chapter. In the SCL
programming language, the arithmetic func-
tions are formulated using arithmetic expres-
sions (Chapter 27.4.1 “Arithmetic Expres-
sions”).

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the STL_Book library under the
“Digital Functions” program in function block
FB 110 or source file Chap_10.

10.1 General Representation of an
Arithmetic Function

You program an arithmetic function according
to the following general scheme:

To begin with, the first of the addresses to be
combined is loaded into accumulator 1. When
the second address is loaded, the contents of ac-
cumulator 1 are shifted into accumulator 2 (see
Chapter 6.2 “Load Functions”). Now the con-
tents of accumulators 1 and 2 can be combined
with each other using the arithmetic function.
The result is stored in accumulator 1.

An arithmetic function executes the calculation
according to the characteristics specified re-
gardless of the contents of the accumulators and
regardless of conditions. Table 10.2 shows an
example for each of the different data types.

For data type INT, an arithmetic function uses
only the low-order accumulator words; the
high-order words are ignored. In the case of da-
ta type REAL, the accumulators are checked to
make sure that both contain valid REAL num-
bers.

On the S7-300 CPUs, execution of an arithme-
tic function does not alter the contents of accu-
mulator 2; on S7-400 CPUs, the contents of ac-
cumulator 2 are overwritten by the contents of
accumulator 3. The contents of accumulator 4
are then “shifted over” to accumulator 3 (Figure
10.1).

Table 10.1
Overview of the Arithmetic Functions

Arithmetic Functions With Data Type

INT DINT REAL

Addition +I +D +R

Subtraction –I –D –R

Multiplication *I *D *R

Division with
quotient as result

/I /D /R

Division with
remainder as result

- MOD -

Load Operand1;
Load Operand2;
Arithmetic function ;
Transfer Result;

10 Arithmetic Functions

202

10.2 Calculating with Data Type INT

INT addition

The +I function interprets the values in the low-
order words of accumulators 1 and 2 as num-
bers of data type INT. It adds the two numbers
and stores the sum in accumulator 1.

After the calculation has been performed, status
bits CC0 and CC1 indicate whether the sum is
negative, zero, or positive. Status bits OV and
OS flag any range violations.

The high-order word of accumulator 1 remains
unchanged.

INT subtraction

The –I function interprets the values in the low-
order words of accumulators 1 and 2 as num-
bers of data type INT. It subtracts the value in
accumulator 1 from the value in accumulator 2
and stores the difference in accumulator 1.

After the calculation has been performed, status
bits CC0 and CC1 indicate whether the differ-

Table 10.2 Examples for Arithmetic Functions

INT The value in memory word MW 100 is divided by
250; the integer result is stored in memory word
MW 102.

L MW 100;
L 250;
/I ;
T MW 102;

DINT The values in variables “ArithVal1” and
“ArithVal2” are added and the result stored in
variable “ArithResult”. All variables are in data
block “Global_DB”.

L "Global_DB".ArithVal1;
L "Global_DB".ArithVal2;
+D ;
T "Global_DB".ArithResult;

REAL Variables #Actval and #Factor are multiplied; the
product is transferred to variable #Display.

L #Actval;
L #FACTOR;
*R ;
T #DISPLAY;

Figure 10.1 Contents of the Accumulators When Executing Arithmetic Functions

Accumulator 1

Accumulator 2

Accumulator 3

Accumulator 4 <Accumulator 4>

Operand 1

<Accumulator 4>

Operand1

ResultOperand 2

<Accumulator 3>Operand 1

<Accumulator 4>

Result

<Accumulator 3>

Operand 2

before

before

after

after

S7-300 S7-400

++

10.3 Calculating with Data Type DINT

203

ence is negative, zero, or positive. Status bits
OV and OS flag any range violations.

The high-order word of accumulator 1 remains
unchanged.

INT multiplication

The *I function interprets the values in the low-
order words of accumulators 1 and 2 as num-
bers of data type INT. It multiplies the two
numbers and stores the product as a number of
data type DINT in accumulator 1.

After the calculation has been performed, status
bits CC0 and CC1 indicate whether the product
is negative, zero, or positive. Status bits OV and
OS flag any INT range violations.

Following execution of the *I function, the
product is available as a DINT number in accu-
mulator 1.

INT division

The /I function interprets the values in the low-
order words of accumulators 1 and 2 as num-
bers of data type INT. It divides the value in ac-
cumulator 2 (dividend) by the value in accumu-
lator 1 (divisor) and returns two results: the
quotient and the remainder, both of which are
of data type INT (Figure 10.2).

After the function has executed, the low-order
word of accumulator 1 contains the quotient.
The quotient is the integer result of the division
operation. The quotient is zero when the divi-
dend is zero and the divisor is not zero or when

the dividend is smaller than the divisor. The
quotient is negative if the divisor is negative.

After the /I function has executed, the high-order
word contains the remainder of the division (not
the places after the decimal point!). If the divi-
dend is negative, the remainder is also negative.

After the calculation has been performed, status
bits CC0 and CC1 indicate whether the quotient
is negative, zero, or positive. Status bits OV and
OS flag any range violations.

Division by zero returns a quotient of zero and
a remainder of zero, and sets status bits CC0,
CC1, OV and OS to “1”.

10.3 Calculating with Data Type DINT

DINT addition

The +D function interprets the values in accu-
mulators 1 and 2 as numbers of data type DINT.
It adds the two numbers and stores the sum in
accumulator 1.

Following execution of the function, status bits
CC0 and CC1 indicate whether the sum is neg-
ative, zero, or positive. Status bits OV and OS
flag any range violations.

DINT subtraction

The –D function interprets the values in accu-
mulators 1 and 2 as numbers of data type DINT.
It subtracts the value in accumulator 1 from the
value in accumulator 2 and stores the difference
in accumulator 1.

Figure 10.2 Results Returned by the Arithmetic Function /I

10 Arithmetic Functions

204

Following execution, status bits CC0 and CC1
indicate whether the difference is negative, ze-
ro, or positive. Status bits OV and OS flag any
range violations.

DINT multiplication

The *D function interprets the values in accu-
mulators 1 and 2 as numbers of data type DINT.
It multiplies the two numbers and stores the
product in accumulator 1.

Following execution of the function, status bits
CC0 and CC1 indicate whether the product is
negative, zero, or positive. Status bits OV and
OS flag any range violations.

DINT division with quotient as result

The /D function interprets the values in accu-
mulators 1 and 2 as numbers of data type DINT.
It divides the value in accumulator 2 (dividend)
by the value in accumulator 1 (divisor) and
stores the quotient in accumulator 1.

The quotient is the integer result of the division.
It is zero if the dividend is zero and the divisor
is not zero or when the dividend is smaller than
the divisor. The quotient is negative if the divi-
sor is negative.

Following execution of the function, status bits
CC0 and CC1 indicate whether the quotient is
negative, zero, or positive. Status bits OV and
OS flag any range violations.

Division by zero returns a quotient of zero and
sets status bits CC0, CC1, OV and OS to “1”.

DINT division with remainder as result

The MOD function interprets the values in ac-
cumulators 1 and 2 as numbers of data type
DINT. It divides the value in accumulator 2
(dividend) by the value in accumulator 1 (divi-
sor) and stores the remainder of the division in
accumulator 1.

The remainder is what is left over from the di-
vision; it does not correspond to the decimal
places. If the dividend is negative, the remain-
der is also negative.

Following execution of the function, status bits
CC0 and CC1 indicate whether the remainder is
negative, zero, or positive. Status bits OV and
OS flag any range violations.

Division by zero returns a remainder of zero
and sets status bits CC0, CC1, OV and OS to
“1”.

10.4 Calculating with Data Type REAL

REAL addition

The +R function interprets the values in accu-
mulators 1 and 2 as numbers of data type
REAL. It adds the two numbers and stores the
sum in accumulator 1.

Following execution of the function, status bits
CC0 and CC1 indicate whether the sum is neg-
ative, zero, or positive. Status bits OV and OS
flag any range violations.

In the case of an impermissible calculation (one
of the input values is an invalid REAL number
or you tried to add 1. and 2.), +R returns an
invalid value in accumulator 1 and sets status
bits CC0, CC1, OV and OS to “1”.

REAL subtraction

The –R function interprets the values in accu-
mulators 1 and 2 as numbers of data type
REAL. It subtracts the number in accumulator
1 from the number in accumulator 2 and stores
the difference in accumulator 1.

Following execution of the function, status bits
CC0 and CC1 indicate whether the difference is
negative, zero, or positive. Status bits OV and
OS flag any range violations.

In the case of an impermissible calculation (one
of the input values is an invalid REAL number
or you attempted to subtract 1. and 1.), –R
returns an invalid value in accumulator 1 and
sets status bits CC0, CC1, OV and OS to “1”.

REAL multiplication

The *R function interprets the values in accu-
mulators 1 and 2 as numbers of data type
REAL. It multiplies the two numbers and stores
the product in accumulator 1.

Following execution of the statement, status
bits CC0 and CC1 indicate whether the product
is negative, zero, or positive. Status bits OV and
OS flag any range violations.

10.5 Successive Arithmetic Functions

205

In the case of an impermissible calculation (one
of the input values is an invalid REAL number
or you attempted to multiply . and 0), *R re-
turns an invalid value in accumulator 1 and sets
status bits CC0, CC1, OV and OS to “1”.

REAL division

The /R function interprets the values in accu-
mulators 1 and 2 as numbers of data type
REAL. It divides the number in accumulator 2
(dividend) by the number in accumulator 1 (di-
visor) and stores the quotient in accumulator 1.

Following execution of the function, status bits
CC0 and CC1 indicate whether the quotient is
negative, zero, or positive. Status bits OV and
OS flag any range violations.

In the case of an impermissible calculation (one
of the input values is an invalid REAL number
or you attempted to divide . by . or 0 by 0), /
R returns an invalid value in accumulator 1 and
sets status bits CC0, CC1, OV and OS to “1”.

10.5 Successive Arithmetic Functions

You can program one arithmetic function im-
mediately behind another, in which case the re-
sult of the first function is post-processed by the
second, the accumulators serving as temporary
storage.

Note: Please note that S7-300 CPUs, S7-400
CPUs and CPU 318 handle successive arithme-
tic functions differently (the S7-300 CPUs have
only 2 accumulators while the S7-400 CPUs
and the CPU 318 have 4).

Chain calculation with S7-300

A chain calculation is performed by following
an arithmetic function with the loading and sub-
sequent combining of the next value.

Example: Result1 := Value1 + Value2 – Value3

L Value1;
L Value2;
+I ; //Value1 + Value2
L Value3;
-I ; //Sum - Value3
T Result1;

On CPUs with two accumulators, the first value
loaded remains unchanged in accumulator 2
during execution of the arithmetic function, and
can be reused without having to be reloaded.

Example: Result2 := Value5 + 2 x Value6

L Value6;
L Value5;
+R ; //Value5 + Value6
+R ; //Sum + Value6
T Result2;

Example: Result3 := Value7 x (Value8)2

L Value8;
L Value7;
*D ; //Value7 * Value8
*D ; //Product * Value8
T Result3;

Chain calculation with S7-400

A chain calculation is performed by following
an arithmetic function with the loading and sub-
sequent combining of the next value. On CPUs
with four accumulators, the value in accumula-
tor 3 “shifts over” to accumulator 3 following
execution of the arithmetic function. Before-
hand, you can store an intermediate result in ac-
cumulator 3 (in the case of a dot-before-line
calculation, for instance) with an ENT instruc-
tion (see Chapter 6.4 “Accumulator Func-
tions”).

Example:
Result4 := (Value1 + Value2) x (Value3 – Value4)

L Value1;
L Value2;
+I ;
L Value3;
ENT ;
L Value4;
-I ;
*I ;
T Result4;
First, the sum of Value1 and Value2 is comput-
ed. While Value3 is being loaded into accumu-
lator 1, this sum is moved over to accumulator
2. From there, the ENT instruction copies it into
accumulator 3. After Value4 is loaded, the con-
tents of Value3 are in accumulator 2. When the

10 Arithmetic Functions

206

two values are subtracted, the sum is “fetched
back” into accumulator 2 from accumulator 3.
The sum and the difference can now be multi-
plied.

10.6 Adding Constants to
Accumulator 1

+ B#16#bb Adds a byte constant

+ +w Adds a word constant

+ L#+d Adds a doubleword constant

You program the addition of a constant accord-
ing to the following general scheme:

The constant addition is preferred for calculat-
ing addresses because, in contrast to an arith-
metic function, it affects neither the contents of
the remaining accumulators nor the status bits.

The “Add Constant” instruction adds the con-
stant specified in the instruction to the contents
of accumulator 1. You may specify this con-
stant as a hexadecimal byte constant or as a dec-
imal word or decimal doubleword constant. If
you want to add a word constant using DINT,
precede the constant with #L. If a decimal con-
stant exceeds the permissible INT range, the
calculation automatically becomes DINT.

You may write a decimal number with a minus
sign, thus making it possible to subtract con-
stants. Before a byte constant is added, it is ex-
panded into a signed INT number.

As does a calculation with data type INT, the
addition of a byte constant or word constant af-
fects only the low-order word of accumulator 1;
there is no carry to the high-order word.

If the INT value range is exceeded, bit 15
(which is the sign bit) is overwritten. The addi-
tion of a doubleword constant affects all 32 bits
of accumulator 1, corresponding to a DINT cal-
culation.

Execution of these statements is independent of
any conditions.

Examples for adding constants:

L AddValue1;
+ B#16#21;
T AddResult1;

The value of variable AddValue1 is increased
by 33 and transferred to variable AddResult1.

L AddValue2;
+ -33;
T AddResult2;

The value of variable AddValue2 is decreased
by 33 and stored in variable AddResult2.

L AddValue3;
+ L#-1;
T AddResult3;

The value of variable AddValue3 is decreased
by 1 and stored in variable AddResult3. The
subtraction is as for a DINT calculation.

10.7 Decrementing and Incrementing

DEC n Decrement

INC n Increment

You program decrementing and incrementing
according to the following general scheme:

The Decrement and Increment statements alter
the value in accumulator 1. That value is de-
creased (decremented) or increased (increment-
ed) by the number of units specified in the state-
ment parameter. The parameter may assume a
value between 0 and 255.

Only the value in the low-order byte of the ac-
cumulator is altered. There is no carry to the
high-order byte. The calculation is carried out
in “modulo 256”, that is, when incrementation

Load Operand;
Addition of constants;
Transfer Result;

Load Operand;
Decrementing Decrement;
Transfer Result;

Load Operand;
Incrementing Increment;
Transfer Result;

10.7 Decrementing and Incrementing

207

produces a value which exceeds 255, the
“count” begins again from the beginning, or if
decrementation produces a value which falls
below 0, the “count” begins again at 255.

The Decrement and Increment instructions are
executed without regard to the RLO. They are
always executed when encountered, and affect
neither the RLO nor the status bits.

Examples:

L IncValue;
INC 5;
T IncValue;

The value of variable IncValue is incremented
by 5.

L DecValue;
DEC 7;
T DecValue;

The value of variable DecValue is decremented
by 7.

11 Math Functions

208

11 Math Functions

“Math functions” include the following:

b Sine, cosine, tangent

b Arc sine, arc cosine, arc tangent

b Squaring, square-root extraction

b Exponential function to base e,
natural logarithm

All math functions process numbers in data for-
mat REAL. Depending on the result, a math
function sets status bits CC0, CC1, OV and OS
as described in Chapter 15 “Status Bits”.

The statements for the STL programming lan-
guage are described in this chapter. In the SCL
programming language, the math functions are
included among the SCL standard functions
(Chapter 30.3 “Math Functions”).

The examples in this chapter are presented in
the STL_Book library under the "Digital Func-
tions" program in function block FB 111 or in
the source file Chap_11. You can download the
library from the publisher's web site (see page 8).

11.1 Processing a Math Function

A mathematical function takes the value pres-
ent in accumulator 1 as an input value for the
function to be performed and stores the result in
accumulator 1. You program a mathematical
function according to the following general
scheme:

A math function alters only the contents of ac-
cumulator 1; the contents of all other accumu-
lators remain unchanged. A math function is
executed without regard to any conditions.

Table 11.1 shows three examples of math func-
tions. A math function computes in accordance
with the rules governing REAL numbers, even
when absolute addressing is used and no data
types are declared.

If accumulator 1 contains an invalid REAL
number at the time the function is executed, the
math function returns an invalid REAL number
and sets status bits CC0, CC1, OV and OS to
“1”.

Load Operand;
Mathematical function ;
Transfer Result;

Table 11.1 Examples of Math Functions

Sine The value in memory doubleword MD 110 con-
tains an angle in radian measure. The sine of this
angle is generated and stored in memory dou-
bleword MD 104.

L MD 110;
SIN ;
T MD 104;

Square root The square root of the value in variable
“MathValue1” is generated and stored in the
variable “MathRoot”.

L "Global_DB".MathValue1;
SQRT;
T "Global_DB".MathRoot;

Exponent Variable #Result contains the power of e and
#Exponent.

L #Exponent;
EXP ;
T #Result;

11.2 Trigonometric Functions

209

11.2 Trigonometric Functions

The trigonometric functions

b SIN Sine,

b COS Cosine and

b TAN Tangent

assume an angle in radian measure in form of a
REAL number in accumulator 1.

Two units are normally used for the size of an
angle: degrees from 0° to 360° and radian mea-
sure from 0 to 2p (where p = +3.141593e+00).
Both can be converted proportionally. For ex-
ample, the radian measure for a 90° angle is p/
2 or +1.570796e+00.

With values greater than 2p (+6.283185e+00),
2p or a multiple thereof is subtracted until the
input value for the trigonometric function is
less than 2p.

Example:
Computing the idle power
Ps = U x I x sin()

L PHI;

SIN ;

L Current;

*R ;

L Voltage;

*R ;

T I_Power;

Please note that the angle must be specified in
radian measure. If an angle is available in de-
grees, you must multiply it by the factor

p/180 = +1.745329e–02

before you can process it with a trigonometric
function.

11.3 Arc Functions

The arc functions (inverse trigonometric func-
tions)

b ASIN Arc sine,

b ACOS Arc cosine and

b ATAN Arc tangent

are the inverse functions of the corresponding
trigonometric functions. They assume a REAL
number in a specific range in accumulator 1,
and return an angle in radian measure (Table
11.2).

If the permissible range is exceeded, the arc
function returns an invalid REAL number and
sets status bits CC0, CC1, OV and OS to “1”.

Example: In a right-angled triangle, one of the
short sides of the triangle and the hypotenuse
form an aspect ratio of 0.343. How big is the an-
gle between them in degrees?

Arcsin (0.343) returns the angle in radian
measure; multiplication with factor 360/2p
(= 57.2958) gives you the angle in degrees
(approx. 20°).

L 0.343;

ASIN ;

L 57.2958;

*R ;

T Angle_Degree;

11.4 Other Math Functions

The following math functions are also available

b SQR Squaring,

b SQRT Square-root extraction,

b EXP Exponential function to base e
and

b LN Compute natural logarithm
(logarithm to base e).

Table 11.2 Value Ranges for Arc Functions

Function Permissible Value
Range

Value Returned

ASIN –1 to +1 –p/2 to +p/2

ACOS –1 to +1 0 to p

ATAN Entire range –p/2 to +p/2

11 Math Functions

210

Squaring

The SQR function squares the value in accumu-
lator 1.

Example:
Computing the volume of a cylinder V = r2ph

L Radius;
SQR ;
L Height;
*R ;
L 3.141592;
*R ;
T Volume;

Square-root extraction

The SQRT function extracts the square root of
the value in accumulator 1. If the value in accu-
mulator 1 is less than zero, SQRT sets status
bits CC0, CC1, OV and OS to “1” and returns
an invalid REAL number. If accumulator 1 con-
tains –0 (minus zero), –0 is returned.

Example:

L #a;
SQR ;
L #b;
SQR ;
+R ;
SQRT ;
T #c;

(If a or b is declared as a local variable, it must
be preceded by # if the compiler is to recognize
it as a local variable; if a or b is a global vari-
able, it must be enclosed in quotation marks.)

Exponentiation to base e

The EXP function computes the power from
base e (= 2.718282e+00) and the value in accu-
mulator 1 (eAccu1).

Example: Any power can be computed with the
formula

ab = eb ln a

L Value_a;

LN ;

L Value_b;

*R ;

EXP ;

T Power;

Computing the natural logarithm

The LN function computes the natural loga-
rithm to base e (= 2.718282e+00) from the
number in accumulator 1. If accumulator 1 con-
tains a value less than or equal to zero, LN sets
status bits CC0, CC1, OV and OS to “1” and re-
turns an invalid REAL number.

The natural logarithm is the inverse of the ex-
ponential function: If y = ex then x = ln (y).

Example: Computing a logarithm to base 10
and to any other base.

The basic formula is

where b or n is any base. If you make n = e, you
can compute a logarithm to any base using the
natural logarithm:

In the special case for base 10, the formula is:

lg a = = 0.4342945 · ln a

c a
2

b
2

+=

b alog n alog

n blog
-------------=

b alog
aln
bln

--------=

aln
10ln

12 Conversion Functions

211

12 Conversion Functions

The conversion functions convert the data type
of the value in accumulator 1. Figure 12.1 pro-
vides an overview of the data type conversions
described in this chapter.

The statements for the STL programming lan-
guage are described in this chapter. In the SCL
programming language, the conversion func-
tions are included among the SCL standard
functions (Chapter 30.5 “Conversion Func-
tions”).

You will find details on the bits of the data for-
mats in Chapter 24 “Data Types”, and informa-
tion on how the conversion functions set the
status bits in Chapter 15 “Status Bits”.

The examples in this chapter are presented in
the STL_Book library under the "Digital Func-
tions" program in function block FB 112 or in
the source file Chap_12. You can download the
library from the publisher's web site (see page 8).

12.1 Processing a Conversion
Function

The conversion functions affect only accumula-
tor 1. Some functions affect only the low-order
word (bits 0 to 15), others the entire accumula-
tor. The conversion functions do not change the
contents of any other accumulator.

You program a conversion function according
to the following general scheme:

The Table 12.1shows an example for each of
the various data types. A conversion function is
carried out according to the defined character-
istic even if no data types have been declared
when using absolutely addressed operands. A
conversion function is carried out independent
of conditions.

Successive conversion functions

You can subject the contents of accumulator 1
to several successive conversions and so carry
out conversions in stages without having to
temporarily store the converted values.

Example:

L BCD_Number;

BTI ; //BCD to INT

ITD ; //INT to DINT

DTR ; //DINT to REAL

T REAL_Number;

This example converts a BCD number with 3
decades to a REAL number.Figure 12.1 Overview of conversion functions

Load Operand;
Conversion function;
Transfer Result;

12 Conversion Functions

212

12.2 Converting INT and DINT
Numbers

The following functions are provided for con-
verting INT and DINT numbers:

b ITD Converts INT to DINT

b ITB Converts INT to BCD

b DTB Converts DINT to BCD

b DTR Converts DINT to REAL

Converting INT to DINT

The ITD statement interprets the value in the
low-order word of accumulator 1 (bits 0 to 15)
as a number of data type INT and transfers the
signal state of bit 15 (the sign) to the high-order
word, that is, bits 16 to 31.

The conversion of INT to DINT sets no status
bits.

Converting INT to BCD

The ITB statement interprets the value in the
low-order word of accumulator 1 (bits 0 to 15)
as a number of data type INT and converts it to
a 3-decade BCD number. The three decades are
right-justified in accumulator 1 and represent
the value of the decimal number. The sign is in
bits 12 to 15. If all bits are “0”, the sign is pos-
itive; if all bits are “1”, it is negative. The con-
tents of the high-order word (bits 16 to 31) re-
main unchanged.

If the INT number is too large to be converted
to BCD (> 999), the ITB statement sets status
bits OV and OS. The conversion is not per-
formed in this case.

Converting DINT to BCD

The DTB statement interprets the value in accu-
mulator 1 as a number of data type DINT and
converts it to a 7-decade BCD number. The sev-
en decades are right-justified in accumulator 1
and represent the value of the decimal number.
The sign is in bits 28 to 31. If all bits are “0”,
the sign is positive; if all bits are “1”, it is neg-
ative.

If the DINT number is too large to be converted
to BCD (> 9 999 999), status bits OV and OS
are set and the conversion is not carried out.

Converting DINT to REAL

The DTR statement interprets the contents of
accumulator 1 as a number in DINT format and
converts it to a number in REAL format.

Since a number in DINT format has a higher ac-
curacy than a number in REAL format, round-
ing may take place during conversion, but only
to the next whole number (as per the RND
statement).

DTR sets no status bits.

12.3 Converting BCD Numbers

The following functions are available for con-
verting BCD numbers:

b BTI Converts BCD to INT

b BTD Converts BCD to DINT

Table 12.1 Examples for Conversion Functions

Converting
INT Numbers

The value in memory doubleword MW 120 is
interpreted as an INT number and stored in
memory word MW 122 as a BCD number.

L MW 120;
ITB ;
T MW 122;

Converting
DINT Num-
bers

The value in variable “ConvertDINT” is inter-
preted as a DINT number and stored as a REAL
number in the variable “ConvertREAL”.

L "Global_DB".ConvertDINT;
DTR ;
T "Global_DB".ConvertREAL;

Converting
REAL Num-
bers

The absolute value is generated from the vari-
able #Display.

L #Display;
ABS ;
T #Display;

12.4 Converting REAL Numbers

213

Converting BCD to INT

The BTI statement interprets the value in the
low-order word of accumulator 1 (bits 0 to 15)
as a 3-decade BCD number. The three decades
are right-justified in the accumulator and repre-
sent the value of the decimal number. The sign
is in bits 12 to 15. If all bits are “0”, the sign is
positive; if all bits are “1”, it is negative. During
conversion, only the signal state of bit 15 is tak-
en into account. The contents of the high-order
word of accumulator 1 (bits 16 to 31) remain
unchanged.

If there is a pseudo tetrad in the BCD number
(numerical value 10 to 15 or A to F in hexadec-
imal), the CPU reports a parameter assignment
error and calls organization block 121 (syn-
chronous errors). If OB 121 has not been pro-
grammed, the CPU goes to STOP.

The BTI statement sets no status bits.

Converting BCD to DINT

The BTD statement interprets the value in accu-
mulator 1 as a 7-decade BCD number. The sev-
en decades are right-justified in the accumula-
tor and represent the value of the decimal num-
ber. Bits 28 to 31 contain the sign. If these bits
are all “0”, the sign is positive; if they are all
“1”, the sign is negative. During conversion,
only the signal state of bit 31 is taken into ac-
count.

If the BCD number contains a pseudo tetrad
(numerical value 10 to 15 or A to F in hexadec-
imal), the CPU reports a parameter assignment
error and calls organization block OB 121 (syn-
chronous errors). If OB 121 is not available, the
CPU goes to STOP.

The BTD statement sets no status bits.

12.4 Converting REAL Numbers

There are several statements for converting a
number in REAL format to DINT format (con-
version of a fractional value to an integer val-
ue). They differ from one another in the way
they perform rounding.

Table 12.2 shows the different effect of the
REAL conversion functions according to

DINT. The range between –1 and +1 has been
selected as example.

b RND+ With rounding to the next higher
integer

b RND– With rounding to the next lower
integer

b RND With rounding to the next integer

b TRUNC No rounding

Rounding to the next higher integer number

The RND+ statement interprets the contents of
accumulator 1 as a number in REAL format and
converts it to a number in DINT format.

The RND+ statement returns an integer greater
than or equal to the number to be converted.

If the value in accumulator 1 exceeds or falls
short of the permissible range for a DINT num-
ber or if it is not a REAL number, RND+ sets
status bits OV and OS. The conversion is not
carried out.

Rounding to the next lower integer

The RND– statement interprets the contents of
accumulator 1 as a number in RAL format and
converts it to a number in DINT format.

The RND– statement returns an integer less
than or equal to the number to be converted.

If the value in accumulator 1 exceeds or falls
short of the permissible range for a DINT num-
ber or if it is not a REAL number, RND– sets
status bits OV and OS. The conversion is not
carried out.

Rounding to the next integer

The RND statement interprets the contents of
accumulator 1 as a number in REAL format and
converts it to a number in DINT format. The
RND statement returns the next higher or next
lower integer, whichever is closest to the true
result. If the result lies exactly between an even
and an odd number, the even number takes pri-
ority.

If the value in accumulator 1 exceeds or falls
short of the permissible range for a DINT num-
ber or if it is not a REAL number, RND sets sta-

12 Conversion Functions

214

tus bits OV and OS. The conversion is not car-
ried out.

No rounding

The TRUNC statement interprets the contents
of accumulator 1 as a number in REAL format
and converts it to a number in DINT format.
The TRUNC statement returns the integer com-
ponent of the number to be converted; the frac-
tional component is “truncated”.

If the value in accumulator 1 exceeds or falls
short of the permissible range for a DINT num-
ber or if it is not a REAL number, TRUNC sets
status bits OV and OS. The conversion is not
carried out.

12.5 Other Conversion Functions

Other available conversion functions are:

b INVI One's complement INT

b INVD One's complement DINT

b NEGI Negation of an INT number
(two's complement)

b NEGD Negation of a DINT number
(two's complement)

b NEGR Negation of a REAL number

b ABS Generation of an absolute
REAL number

One's complement INT

The INVI statement negates the value in the
low-value word of accumulator 1 (bits 0 to 15)
bit for bit. It replaces the zeroes with ones and
vice versa. The contents of the high-order word
(bits 16 to 31) remain unchanged.

The INVI statement sets no status bits.

One's complement DINT

The INVD statement negates the value in accu-
mulator 1 bit for bit. It replaces the zeroes with
ones and vice versa.

The INVD statement sets no status bits.

Negation INT

The NEGI statement interprets the value in the
low-order word of accumulator 1 (bits 0 to 15)

Table 12.2 Rounding Modes for the Conversion of REAL Numbers

Input Value Result

REAL DW#16# RND RND+ RND- TRUNC

1.0000001 3F80 0001 1 2 1 1

1.00000000 3F80 0000 1 1 1 1

0.99999995 3F7F FFFF 1 1 0 0

0.50000005 3F00 0001 1 1 0 0

0.50000000 3F00 0000 0 1 0 0

0.49999996 3EFF FFFF 0 1 0 0

5.877476E–39 0080 0000 0 1 0 0

0.0 0000 0000 0 0 0 0

–5.877476E–39 8080 0000 0 0 –1 0

–0.49999996 BEFF FFFF 0 0 –1 0

–0.50000000 BF00 0000 0 0 –1 0

–0.50000005 BF00 0001 –1 0 –1 0

–0.99999995 BF7F FFFF –1 0 –1 0

–1.00000000 BF80 0000 –1 –1 –1 –1

–1.0000001 BF80 0001 –1 –1 –2 –1

12.5 Other Conversion Functions

215

as an INT number and changes the sign by gen-
erating the two's complement. This operation is
identical to multiplication with –1. The high-or-
der word of accumulator 1 (bits 16 to 31) re-
mains unchanged.

The NEGI statement sets status bits CC0, CC1,
OV and OS.

Negation DINT

The NEGD statement interprets the value in ac-
cumulator 1 as DINT number and changes the
sign by generating the two's complement. This
operation is identical to multiplication with –1.

The NEGD statement sets status bits CC0,
CC1, OV and OS.

Negation REAL

The NEGR statement interprets the value in ac-
cumulator 1 as a REAL number and multiplies
this number by –1 (it changes the sign of the
mantissa, even if the number in the accumulator
is not a valid REAL number).

The NEGR statement sets no status bits.

Absolute-value generation REAL

The ABS statement interprets the value in accu-
mulator 1 as a REAL number and generates the
absolute value of this number (it sets the sign of
the mantissa to “0”, even if the number in the
accumulator is not a valid REAL number).

The ABS statement sets no status bits.

13 Shift Functions

216

13 Shift Functions

The shift functions shift the contents of accu-
mulator 1 bit by bit to the left or right. Table
13.1 provides an overview of the available shift
functions.

The statements for the STL programming lan-
guage are described in this chapter. In the SCL
programming language, the shift functions are
included among the SCL standard functions
(Chapter 30.4 “Shifting and Rotating”).

The examples in this chapter can be found in the
download files (download address: see pages 8-
9) in the STL_Book library under the “Digital
Functions” program in function block FB 113 or
source file Chap_13.

13.1 Processing a Shift Function

The contents of accumulator 1 are shifted bit by
bit to the left or right; depending on the func-
tion, the accumulator contains either a word or
a doubleword. The bits that are shifted out are
either lost (Shift operations) or are added at the
other side of the word or doubleword (Rotate

operations). The shift functions have no effect
on the other accumulators.

The shift functions are executed without regard
to any conditions. They affect only the contents
of accumulator 1. The result of the logic opera-
tion (RLO) is not affected.

You can program a shift function in two ways:

b With the number of positions in accumula-
tor 2

b With the number of positions as a parameter

The general schemes are as follows:

The shift functions set status bit CC0 to “0” and
status bit CC1 to the signal state of the last bit
shifted (Figure 13.1). The status bits are evalu-
ated with binary check or jump instructions as
described in Chapter 15 “Status Bits”, and
Chapter 16 “Jump Functions”.

Load Shift number;
Load Operand;
Shift function ;
Transfer Result;

Load Operand;
Shift function Shift number;
Transfer Result;

Table 13.1 Overview of the Shift Functions

Shift Functions Word Doubleword

with no. of posi-
tions as a parame-
ter

with no. of posi-
tions in accum2

with no. of posi-
tions as a parame-
ter

with no. of posi-
tions in accum2

Shift left SLW n SLW SLD n SLD

Shift right SRW n SRW SRD n SRD

Shift with sign SSI n SSI SSD n SSD

Rotate left - - RLD n RLD

Rotate right - - RRD n RRD

Rotate left through CC1 - - RLDA 1) -

Rotate right through CC1 - - RRDA 1) -
1) Without parameter, as only one bit is shifted

13.2 Shifting

217

Table 13.2 shows several examples of shift
functions. A word shift changes only the low-
order word of accumulator 1; the contents of
the high-order word are not affected. Rotation
through status bit CC1 shifts the contents of the
accumulator by one bit position.

Successive shift functions

Shift functions can be applied as often as re-
quired to the contents of the accumulator.

Example:

L Value1;

SSD 4;

SLD 2;

T Result1;

In the example, a value is shifted, with sign, to
the right by (effectively) 2 positions, whereby
the two right bit positions are reset to “0”.

13.2 Shifting

Shift left word

SLW n Shift left word by n bits

SLW Shift left word by the number of bits
in accumulator 2

Shift function SLW shifts bits 0 to 15 of accu-
mulator 1 bit by bit to the left. The bit positions
freed by the shift operation are padded with ze-
roes. The high-order word of accumulator 1 re-
mains unchanged; there is no carry to bit 16.

The number of positions may be specified as a
parameter in the SLW statement or loaded as a
positive number in INT format right-justified
into accumulator 2. If the number of positions
is = 0, the statement is not executed (no opera-
tion, or NOP); if it is greater than 15, the low-
order word of accumulator 1 contains zero fol-
lowing execution of the SLW statement.

Figure 13.1 How Shift Functions Work

13 Shift Functions

218

If the contents of accumulator 1 (low-order
word) are interpreted as a number in INT for-
mat, a shift to the left would be equivalent to
multiplication with a power to base 2. The ex-
ponent is then the number of positions.

Shift left doubleword

SLD n Shift left doubleword by n bits

SLD Shift left doubleword by the number
of bits in accumulator 2

Shift function SLD shifts the entire accumula-
tor bit by bit to the left. The bit positions freed
by the shift operation are padded with zeroes.

The number of positions may be specified as a
parameter in the SLD statement or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the
statement is not executed (no operation, or
NOP); if it exceeds 31, accumulator 1 contains
zero following execution of the SLD statement.

If the contents of accumulator 2 are interpreted
as a number in DINT format, it would corre-
spond to multiplication with a power to base 2,
with the exponent as the number of positions.

Shift right word

SRW n Shift right word by n bits

SRW Shift right word by the number of
bits in accumulator 2

Shift function SRW shifts bits 0 to 15 of accu-
mulator 1 bit by bit to the right. The bit posi-
tions freed by the shift operation are padded
with zeroes. Bits 16 to 31 are not affected.

The number of positions may be specified as a
parameter in the SRW operation or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the
statement is not executed (no operation, or
NOP); if it exceeds 15, the low-order word of
accumulator 1 contains zero following execu-
tion of the SRW statement.

If the contents of accumulator 1 (low-order
word) are interpreted as a number in INT for-
mat, a shift to the right is equivalent to division
by a power to base 2, with the exponent as the
number of positions. Because the freed bits are
padded with zeroes, this applies only to positive
numbers. The result of such a division corre-
sponds to the rounded integer component.

Shift right doubleword

SRD n Shift right doubleword by n bits

SRD Shift right doubleword by the num-
ber of bits in accumulator 2

Shift function SRD shifts the entire accumula-
tor bit by bit to the right. The bit positions freed
by the shift operation are padded with zeroes.

The number of positions may be specified as a
parameter in the SRD statement or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the

Table 13.2 Examples for Shift Functions

Shifting
word variables

The value in memory word MW 130 is
shifted 4 positions to the left and stored in
memory word MW 132. Here, the num-
ber of positions appears as a parameter in
the shift operation.

L MW 130;
SLW 4;
T MW 132;

Shifting
doubleword variables

The value in variable “ShiftOn” is shifted
right by “ShiftPos” positions and stored
in “ShiftOff”. Here, the number of posi-
tions is in accumulator 2.

L "Global_DB".ShiftPos;
L "Global_DB".ShiftOn;
SRD ;
T "Global_DB".ShiftOff;

Shifting
with sign

The variable #Actval is shifted, with sign,
2 positions to the right and transferred to
the variable #Display.

L #Actval;
SSI 2;
T #Display;

13.3 Rotating

219

statement is not executed (no operation, or
NOP); if it exceeds 31, accumulator 1 contains
zero following execution of the SRD statement.

If the contents of accumulator 1 are interpreted
as a number in DINT format, a shift to the right
is equivalent to division with a power to base 2.
The exponent is the number of positions. Be-
cause the freed bits are padded with zeroes, this
applies only to a positive number. The result of
such a division corresponds to the rounded in-
teger component.

Shift word with sign

SSI n Shift word with sign by n bits

SSI Shift word with sign by the number
of bits in accumulator 2

Shift function SSI shifts bits 0 to 15 of accumu-
lator 1 bit by bit to the right. The bit positions
freed by the shift operation are padded with the
signal state of bit 15 (which is the sign of an
INT number), that is to say, with “0” in the case
of a positive number and “1” in the case of a
negative number.

Bits 16 to 31 are not affected.

The number of positions may be specified as a
parameter in the SSI statement or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the
operation is not executed (no operation, or
NOP); if it exceeds 15, the sign is in all bit po-
sitions of the low-order word of accumulator 1
following execution of the statement.

If the contents of accumulator 1 (low-order
word) are interpreted as a number in INT for-
mat, a shift to the right is equivalent to division
by a power to base 2, with the exponent as the
number of positions. The result of such a divi-
sion corresponds to the rounded integer compo-
nent.

Shift doubleword with sign

SSD n Shift doubleword with sign by n bits

SSD Shift doubleword with sign by the
number of bits in accumulator 2

Shift function SSD shifts the entire accumula-
tor 1 bit by bit to the right. The bit positions
freed by the shift operation are padded with the
signal state of bit 31 (which is the sign of a
DINT number), that is to say, with “0” in the
case of a positive number and with “1” in the
case of a negative number.

The number of positions may be specified as a
parameter in the SSD statement or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the
statement is not executed (no operation, or
NOP); if it exceeds 31, the sign is in all bit po-
sitions of accumulator 1 following execution of
the statement.

If the contents of accumulator 1 are interpreted
as a number in DINT format, a shift to the right
is equivalent to division by the power to base 2,
with the exponent as the number of positions.
The result of such a division corresponds to the
rounded integer component.

13.3 Rotating

Rotate left

RLD n Rotate left by n bits

RLD Rotate left by the number of bits in
accumulator 2

Shift function RLD shifts the entire accumula-
tor 1 bit by bit to the left. The bit positions freed
by the shift operation are padded with the con-
tents of the bit positions that were shifted out.

The number of positions may be specified as a
parameter in the RLD statement or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the
statement is not executed (no operation, or
NOP); if it exceeds 32, the contents of accumu-
lator 1 remain unchanged and status bit CC1 as-
sumes the signal state of the last bit shifted (bit
0). If the number of positions is 33, the accumu-
lator is shifted by one bit position, if 34 by two
bit positions, and so on (the shift is executed
modulo 32).

Rotate right

RRD n Rotate right by n bits

13 Shift Functions

220

RRD Rotate right by the number of bits in
accumulator 2

Shift function RRD shifts the entire accumula-
tor 1 bit by bit to the right. The bit positions
freed by the shift operation are padded with the
values of the bit positions that were shifted out.

The number of positions may be specified as a
parameter in the RRD statement or as a positive
number in INT format right-justified in accu-
mulator 2. If the number of positions is = 0, the
statement is not executed (no operation, or
NOP); if it exceeds 32, the contents of accumu-
lator remain unchanged and status bit CC1 as-
sumes the signal state of the last bit shifted (bit
31). If the number of positions is 33, the con-
tents of the accumulator are shifted by one po-
sition, if 34 by two positions, and so on (the
shift is executed modulo 32).

Rotate left through CC1

RLDA Rotate left through status bit 1 by
one position

The RLDA function shifts the entire contents of
accumulator 1 one bit to the left. The bit posi-
tion freed by the shift (bit 0) assumes the signal
state of status bit CC1. Status bit CC1 assumes
the signal state of the bit that was shifted out
(bit 31); status bit CC0 is set to “0”.

Rotate right through CC1

RRDA Rotate right through status bit CC1
by one position

The RRDA function shifts the entire contents of
accumulator 1 one bit to the right. The bit posi-
tion freed by the shift (bit 31) assumes the sig-
nal state of status bit CC1. Status bit CC1 as-
sumes the signal state of the bit that was shifted
out (bit 0); status bit CC0 is set to “0”.

14 Word Logic

221

14 Word Logic

Word logic operations combine the value in ac-
cumulator 1 bit by bit with a constant or with
the contents of accumulator 2 and store the re-
sult in accumulator 1. The logic operation can
be performed on a word or a doubleword.

The following word logic operations are avail-
able:

b AND

b OR

b Exclusive OR

The operations for the STL programming lan-
guage are described in this chapter. In the SCL
programming language, the word logic opera-
tions are formulated using logic expressions
(Chapter 27.4.3 “Logical Expressions”).

Chapter 15 “Status Bits” provides information
on the status bits set by these instructions.

The examples in this chapter can be found in the
download files (download address: see pages 8-
9) in the STL_Book library under the “Digital
Functions” program in function block FB 114 or
source file Chap_14.

14.1 Processing a Word Logic
Operation

You perform a word logic operation according
to one of the two general schemes below:

Word logic operations execute without regard
to any conditions. They do not affect the RLO.

Generating the result of a word logic
operation

A word logic operation generates the result bit
by bit, exactly as described in Chapter 4 “Bina-
ry Logic Operations” (Table 14.1).

The operation combines bit 0 of accumulator 1
with bit 0 of accumulator 2 or the constant spec-
ified in the instruction; the result is stored in bit
0 of the accumulator. The same logic is used on
bit 1, bit 2, and, up to and including bit 15 (word
instructions) or 31 (doubleword instructions).
The contents of accumulator 2 remain un-
changed.

Word logic with the contents of
accumulator 2

The actual word logic operation is preceded by
two load operations, one for each of the two
values to be combined. When the word logic
operation has executed, the result is in accumu-
lator 1.

Example:

L MW 142; //Address 1
L MW 144; //Address 2
AW ; //Logic operation
T MW 146; //Result

Word logic with a constant

The address to be combined is loaded into accu-
mulator 1 and then combined with the value
specified as a constant in the instruction. Fol-

Load Operand1;
Load Operand2;
Word logic operation;
Transfer Result;

Load Operand;
Word logic operationConstant;
Transfer Result;

Table 14.1
Generating the Result of Word Logic Operations

Contents of accumulator 2
or bit in the constant 0 0 1 1

Contents of accumulator 1 0 1 0 1

Result of AW, AD 0 0 0 1

Result of OW, OD 0 1 1 1

Result of XOW, XOD 0 1 1 0

14 Word Logic

222

lowing execution, the result of the word logic
operation is in accumulator 1.

Example:

L MW 148;
AW W#16#807F;
T MW 150;

L MD 152;
OD DW#16#8000_F000;
T MD 156;

In the example above, the logic operation is
performed on a word; in the example below, it
is performed on the entire accumulator, that is,
on a doubleword.

Performing word logic operations on words

The logic operations for words affect only the
low-order word (bits 0 to 15) of the two accu-
mulators. The high-order word (bits 16 to 31)
remains unchanged (Figure 14.1).

Successive word logic operations

Following execution of a word logic operation,
you can proceed immediately to the next (load
the addresses and execute the word logic oper-
ation or execute the word logic operation using

a constant) without having to store the interme-
diate result (in the local data area, for instance).
The accumulators serve here as temporary
stores. Examples:

L Value1;
L Value2;
AW ;
L Value3;
OW ;
T Result1;

The result of the AW instruction is in accumu-
lator 1, and is moved to accumulator 2 when
Value3 is loaded. The two values can now be
combined with OW.

L Value4;
L Value5;
XOW ;
AW W#16#FFF0;
T Result2;

The result of the XOW instruction is in accu-
mulator 1. Bits 0 to 3 of accumulator 1 are set
to “0” with the AW statement.

Table 14.2 shows one example for each of the
different word logic operations.

Table 14.2 Examples for Word Logic Operations

AND logic The four high-order bits of memory word MW
138 are set to “0”; the result is stored in memory
word MW 140.

L MW 138;
AW W#16#0FFF;
T MW 140;

OR logic Variables “WLogicVal1” and “WLogicVal2”
are combined bit for bit according to OR and the
result stored in “WLogicReslt”.

L "Global_DB".WLogicVal1;
L "Global_DB".WLogicVal2;
OD ;
T "Global_DB".WLogicReslt;

Exclusive OR The value generated by combining variables
#Input and #Mask with Exclusive OR is in vari-
able #Buffer.

L #Input;
L #Mask
XOW ;
T #Buffer;

Figure 14.1 Performing Word Logic Operations on Words

14.2 Description of the Word Logic Operations

223

14.2 Description of the Word Logic
Operations

Digital AND operation

AW AND operation (word) with
accum2 and accum1

AW W#16# AND operation (word) with
constant and accum1

AD AND operation (doubleword)
with accum2 and accum1

AD DW#16# AND operation (doubleword)
with constant and accum1

The digital AND operation combines the bits of
the value in accumulator 1 with the correspond-
ing bits of the value in accumulator 2 or the
constant according to AND. A bit in the result
word is “1” only when the corresponding bits in
both of the values being ANDed (combined ac-
cording to logic AND) are also “1”.

Since those bits in accumulator 2 or the con-
stant which are “0” also set the corresponding
bits in the result to “0”, regardless of their sig-
nal state in accumulator 1, one also says of
these bits that they are “masked”. This so-
called “masking” is the main purpose of the
digital AND operation.

Digital OR operation

OW OR operation (word) with
accum2 and accum1

OW W#16# OR operation (word) with
constant and accum1

OD OR operation (doubleword)
with accum2 and accum1

OD DW#16# OR operation (doubleword)
with constant and accum1

The digital OR operation combines the bits of
the value in accumulator 1 with the correspond-
ing bits of the value in accumulator 2 according

to OR. A bit in the result word is “0” only when
the corresponding bits in both of the values be-
ing ORed (combine according to logic OR) are
also “0”.

Since those bits in accumulator 2 or the con-
stant which are “1” also set the corresponding
bits in the result to “1”, regardless of their sig-
nal state in accumulator 1, one also says of
these bits that they are “masked”. This so-
called “masking” is the main purpose of the
digital OR operation.

Digital Exclusive OR operation

XOW Exclusive OR operation
(word) with accum2 and
accum1

XOW W#16# Exclusive OR operation
(word) with constant and
accum1

XOD Exclusive OR operation
(doubleword) with accum2
and accum1

XOD DW#16# Exclusive OR operation
(doubleword) with constant
and accum1

The digital Exclusive OR operation combines
the bits of the value in accumulator 1 with the
corresponding bits of the value in accumulator
2 according to Exclusive OR. A bit in the result
word is “1” only when precisely one of the cor-
responding bits being combined is “1”. If a bit
in accumulator 2 or the constant has signal state
“1”, the result at this point contains the reverse
of the previous signal state of the bit in accumu-
lator 1.

In the result, only those bits are “1” that had dif-
ferent signal states in the two accumulators or
in accumulator 1 and the constant prior to exe-
cution of the Exclusive OR instruction. Ascer-
taining these bits or “negating” the signal states
of individual bits is the primary purpose of the
digital Exclusive OR operation.

Program Flow Control

224

Program Flow Control

STEP 7 provides you with a variety of possibil-
ities for controlling the flow of the program.
You can exit linear program execution within a
block or you can structure the program with pa-
rameterizable block calls. You can influence
program execution depending on values calcu-
lated at runtime, or depending on process pa-
rameters, or according to your plant status.

The status bits provide information on the re-
sult of an arithmetic or math function and on er-
rors (for example, number range violation in a
calculation). You can incorporate the signal
state of the status bits direct into your program
using binary logic combinations.

You can use the jump functions to branch
within your program either unconditionally or
dependent on the status bits, the RLO or the bi-
nary result. With STL, you can execute the
jumps with calculated jump width (jump dis-
tributor) or you can easily implement program
loops (loop jump).

A further method of influencing program exe-
cution is provided by the Master Control Re-
lay (MCR). Originally developed for relay con-
tactor controls, STL offers a software version
of this program control method.

STL provides the block functions as a means
for you to structure your program. You can use
functions and function blocks again and again
by defining block parameters.

For details of how to program blocks in STL
(with the keywords for source-file-oriented
programming), see Chapter 3.4 “Programming
Code Blocks with STL”. Chapters 18 “Block
Functions” and 19 “Block Parameters” contin-
ue this topic. The corresponding references for
the SCL programming language are Chapter
3.5 “Programming Code Blocks with SCL” and
Chapter 29 “SCL Blocks”.

Chapter 26 “Direct Variable Access” contains
further information on the block parameters,
such as how they are stored in memory and how

they can be used in conjunction with complex
data types.

15 Status Bits
Status bits RLO, BR, CC0, CC1 and over-
flow; checking the status bits; status
word; EN/ENO

16 Jump Functions
Unconditional jump; jump conditional on
the RLO, BR, CC0, CC1 and overflow;
jump distributor; loop jump

17 Master Control Relay
MCR-dependence; MCR range; MCR
zone

18 Block Functions
Block types, block call, block end; static
local data; handling data blocks, data
block register, handling data addresses

19 Block Parameters
Parameter declaration; formal parame-
ters, actual parameters; passing parame-
ters on to called blocks; Examples: Con-
veyor belt, parts counter and feed

15 Status Bits

225

15 Status Bits

The status bits are binary flags (indicator bits).
The CPU uses them for controlling the binary
logic operations and sets them in digital pro-
cessing. You can check these status bits (for ex-
ample, as a result check in calculations) or you
can influence specific bits. The status bits are
combined into a word, the status word.

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the STL_Book library under the “Pro-
gram Flow Control” program in function block
FB 115 or source file Chap_15.

15.1 Description of the Status Bits

Table 15.1 shows the status bits available with
STL. The first column shows the bit number in
the status word. The CPU uses the binary flags
for controlling the binary functions; the digital
flags indicate primarily results of arithmetic
and math functions.

First check

The /FC status bit steers the binary logic opera-
tion within a logic control system. A binary
logic step always starts with /FC = “0” and a
binary check instruction, the first check, as
shown in the description of binary logic opera-
tions. The first check sets /FC = “1”. A binary
logic step ends with a binary value assignment
or with a conditional jump or a block change.
These set /FC = “0”. The next binary check is
then the start of a new binary logic combination.

Result of logic operation (RLO)

The RLO status bit is the intermediate buffer in
binary logic operations. In first check, the CPU
transfers the check result to the RLO, combines
the check result with the stored RLO at each
subsequent check, and stores the result, in turn,
in the RLO (as described in Chapter 4 “Binary
Logic Operations”). You can also set, reset or
negate the RLO direct or store it in the BR.

Memory, timer and counter functions are con-
trolled using the RLO and certain jump func-
tions are executed.

Status

The STA status bit corresponds to the signal
state of the addressed binary address or of the
checked condition in the case of binary logic
operations (A, AN, O, ON, X, XN).

In the case of memory functions (S, R, =), the
value of STA is the same value as the written
value or (if no write operation takes place, for
example, in the case of RLO = “0” or MCR ac-
tive), STA corresponds to the value of the ad-
dressed (and unmodified) binary address.

With edge evaluations FP or FN, the value of
the RLO prior to the edge evaluation is stored
in STA. All other binary statements set STA =
“1”; also the binary flag-dependent jumps JC,
JCN, JBI, JNBI (Exception: CLR sets STA =
“0”).

The STA status bit has no effect on the process-
ing of STL statements. It is displayed in the
programming device test functions (such as
program status) so that you can use it to trace
binary logic sequences or for troubleshooting.

Table 15.1 Status Bits

Bit Binary Flags

0 /FC First check

1 RLO Result of logic operation

2 STA Status

3 OR OR status bit

8 BR Binary result

Digital Flags

4 OS Stored overflow

5 OV Overflow

6 CC0 CC0 (condition code) status bit

7 CC1 CC1 (condition code) status bit

15 Status Bits

226

OR status bit

The OR status bit stores the result of a fulfilled
AND operation (“1”) and indicates to a subse-
quent OR operation that the result is already
fixed (in conjunction with the O statement in an
AND before OR operation). All other binary
statements reset the OR status bit.

Table 15.2 (under “Binary Flags”) uses the ex-
ample of a binary logic step to show how the bi-
nary flags are affected. The binary logic step
starts with the first check following a memory
function and ends with the last memory func-
tion prior to a check.

Overflow

The OV status bit indicates a number range
overflow or the use of invalid REAL numbers.

The following functions influence the OV sta-
tus bit: Arithmetic functions, math functions,
some conversion functions, REAL comparison
functions.

You can evaluate the OV status bit with check
statements or with JO jump statement.

Stored overflow

The OS status bit stores an OV status bit set-
ting: When the CPU sets the OV status bit, it al-
so always sets the OS status bit. However,
while the next properly executed operation re-
sets OV, OS remains set. This provides you
with the opportunity of evaluating, even at a lat-
er point in your program, a number range over-
flow or an operation with an invalid REAL
number.

Table 15.2 Example of Influencing the Status Bits

Binary Flags:

STL Statements /FC RLO STA OR Remark

...
= M 10.0
A I 4.0
AN I 4.1
O
O I 4.2
ON I 4.3
= Q 8.0
R Q 8.1
S Q 8.2
A I 5.0
...

0
1
1
1
1
1
0
0
0
1

x
1
1
1
1
1
1
1
1
x

x
1
0
1
0
1
1
0
1
x

0
0
1
0
0
0
0
0
0

I 4.0 has “1”
I 4.1 has “0”

I 4.2 has “0”
I 4.3 has “1”
Q 8.0 to “1”
Q 8.1 to “0”
Q 8.2 to “1”

The shaded area is a
binary logic step

Digital Flags:

STL Statements CC0 CC1 OV OS Remark

...
T MW 10
L +12
L +15
-I
L +20000
*I
L +20
+I
T MW 30
L MW 40
...

x
x
x
1
1
0
0
0
0
1

x
x
x
x
0
0
1
1
1
1

x
x
x
0
0
1
1
0
0
0

x
x
x
0
0
1
1
1
1
1

Result negative

Overflow

OV becomes “0”

OV and OS to “1”

OS remains “1”

15.2 Setting the Status Bits and the Binary Flags

227

You can evaluate the OS status bit with check
statements or with the JOS jump statement.
JOS or a block change reset the OS status bit.

CC0 and CC1 status bits
(condition code bits)

The CC0 and CC1 status bits provide informa-
tion on the result of a comparison function, an
arithmetic or math function, a word logic oper-
ation or on the shifted out bit in the case of a
shift function.

You can evaluate all digital flags with jump
functions and check statements (see below in
this chapter). Table 15.2 shows an example of
setting digital flags in the lower section “Digital
Flags”.

Binary result

The BR status bit helps in the implementation
of the EN/ENO mechanism for block calls (in
conjunction with graphical languages). Chapter
15.4 “Using the Binary Result” shows you how
STEP 7 uses the binary result. You can also set
or reset the BR status bit yourself and check it
with binary checks or with jump statements.

Status word

The status word contains all status bits. You can
load it into accumulator 1 or write it out of ac-
cumulator 1 with a value.

L STW; //Load the status word
//...

T STW; //Transfer to the status word

See Chapter 6 “Move Functions” for a descrip-
tion of the load and transfer statements; Table
15.1 contains the assignment of the status word
with the status bits.

You can use the status word to check the status
bits or to set them according to your wishes. In
this way, you can store a current status word or
begin a program section with a specific assign-
ment of status bits.

Please note that the S7-300-CPUs do not load
status bits /FC, STA and OR into the accumula-
tor; the accumulator contains “0” at these loca-
tions.

15.2 Setting the Status Bits and
the Binary Flags

The digital functions affect the CC0, CC1, OV
and OS status bits as shown in Table 15.3.
There are special STL statements for influenc-
ing the RLO and BR status bits.

Status bits with INT and DINT calculation

The arithmetic functions with data formats INT
and DINT set all digital flags (status bits). A re-
sult of zero sets CC0 and CC1 to “0”. CC0 =
“0” and CC1 = “1” indicates a positive result,
CC0 = “1” and CC1 = “0” indicates a negative
result. A number range overflow sets OV and
OS (please note the other meaning of CC0 and
CC1 in the case of overflow). Division by zero
is indicated by “1” at all digital status bits.

Status bits with REAL calculation

The arithmetic functions with data format RE-
AL and the math functions set all digital status
bits. A result of zero sets CC0 and CC1 to “0”.
CC0 = “0” and CC1 = “1” indicates a positive
result, CC0 = “1” and CC1 = “0” indicates a
negative result. A number range overflow sets
OV and OS (please note the other meaning of
CC0 and CC1 in the case of overflow). An in-
valid REAL number is indicated with “1” at all
digital status bits.

A REAL number is referred to as “denormal-
ized” if it is represented with reduced accuracy.
the exponent is then zero; the absolute value of
a denormalized REAL number is less than
1.175 494 x 10-38 (see also the Chapter 24 “Da-
ta Types”). S7-300 CPUs treat denormalized
REAL numbers as equal to zero.

Status bits with the conversion functions

Of the conversion functions, the two’s comple-
ments affect all digital status bits. In addition,
the following conversion functions set status
bits OV and OS in the event of an error (number
range overflow or invalid REAL number):

b ITB and DTB:
Conversion of INT or DINT to BCD

b RND+, RND–, RND, TRUNC:
Conversion of REAL to DINT

15 Status Bits

228

Table 15.3 Setting the Status Bits

INT Calculation DINT Calculation

The result is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

< –32 768(+I, –I) 0 1 1 1 < –2 147 483 648
(+D, –D)

0 1 1 1

< –32 768(*I) 1 0 1 1 < -2 147 483 648(*D) 1 0 1 1

–32 768 to –1 1 0 0 - –2 147 483 648 to –1 1 0 0 -

0 0 0 0 - 0 0 0 0 -

+1 to +32 767 0 1 0 - +1 to +2 147 483 647 0 1 0 -

> +32 767(+I, –I) 1 0 1 1 > +2 147 483 647
(+D, –D)

1 0 1 1

> +32 767(*I) 0 1 1 1 > +2 147 483 647(*D) 0 1 1 1

32 768(/I) 0 1 1 1 2 147 483 648(/D) 0 1 1 1

(–) 65 536 0 0 1 1 (–) 4 294 967 296 0 0 1 1

Division by zero 1 1 1 1 Division by zero
(/D, MOD)

1 1 1 1

REAL Calculation Comparison

The result is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

+ normalized 0 1 0 - equal to 0 0 0 -

± denormalized 0 0 1 1 greater than 0 1 0 -

± zero 0 0 0 - less than 1 0 0 -

– normalized 1 0 0 - invalid REAL number 1 1 1 1

+ infinite
(division by zero)

0 1 1 1

– infinite
(division by zero)

1 0 1 1

± invalid REAL number 1 1 1 1

Conversion NEG_I Conversion NEG_D

The result is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

+1 to +32 767 0 1 0 - +1 to +2 147 483 647 0 1 0 -

0 0 0 0 - 0 0 0 0 -

–1 to –32 767 1 0 0 - –1 to –2 147 483 647 1 0 0 -

(–) 32 768 1 0 1 1 (–) 2 147 483 648 1 0 1 1

Shift function Word logic

The shifted out bit is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

“0” 0 0 0 - zero 0 0 0 -

“1” 0 1 0 - not zero 0 1 0 -

with number of positions 0 - - - -

15.3 Evaluating the Status Bit

229

Status bits with comparison functions

The comparison functions set the CC0 and CC1
status bits. The flags are set independently of
the executed comparison function; it depends
only on the relation between the two values in-
volved in the comparison function. A REAL
comparison checks for valid REAL numbers.

Status bits with word logic operations and
shift functions

Word logic operations and shift functions set
the CC0 and CC1 status bits. OV is reset.

Setting and resetting the RLO

SET sets the RLO to “1” and CLR sets it to “0”.
In parallel with this, the STA status bit is also
set to “1” or to “0”. Both statements are execut-
ed unconditionally.

SET and CLR also reset the OR and /FC status
bits, that is, after SET or CLR a new logic op-
eration starts with the next scan (check).

You can program an absolute set or reset of bi-
nary addresses with SET:

SET ;
S M 8.0; //Memory bit is set
R M 8.1; //Memory bit is reset
CLR ;
S C 1; //Reset edge memory bit

//for "Set counter"
Direct setting and resetting of the RLO is also
useful in conjunction with timers and counters.

To start a timer or counter, you require a change
of the RLO from “0” to “1” (please note that
you also require a positive edge for enabling).
In program sections with predominantly digital
logic operations, the RLO is generally not de-
fined, for example, following the jump func-
tions for evaluating the digital flags (status
bits). Here you can use SET and CLR for de-
fined setting or resetting of the RLO or for pro-
gramming an RLO change.

See Chapter 4 “Binary Logic Operations” for
details of how to negate the RLO with NOT.

Setting and resetting the BR

With SAVE you can save the RLO in the binary
result. SAVE transfers the signal state from the
RLO to the BR status bit. SAVE operates un-
conditionally and does not affect any other sta-
tus bits.

SET ;
SAVE ; //Set BR to "1"
...
AN OV;
SAVE ; //Set BR to "0" on overflow

15.3 Evaluating the Status Bit

The status bits RLO and BR and all digital flags
can be evaluated with binary checks and jump
functions. It is also possible to further process

A - Check for fulfilled condition and logic AND
O - Check for fulfilled condition and logic OR
X - Check for fulfilled condition and logic exclusive OR

AN - Check for unfulfilled condition and logic AND
ON - Check for unfulfilled condition and logic OR
XN - Check for unfulfilled condition and logic exclusive OR

>0 Result greater than zero [(CC0=0) & (CC1=1)]
>=0 Result greater than or equal to zero [(CC0=0)]
<0 Result less than zero [(CC0=1) & (CC1=0)]
<=0 Result less than or equal to zero [(CC1=0)]
<>0 Result not equal to zero [(CC0=0) & (CC1=1) v (CC0=1) & (CC1=0)]
==0 Result equal to zero [(CC0=0) & (CC1=0)]

UO Result invalid (unordered) [(CC0=1) & (CC1=1)]
OV Overflow [OV=1]
OS Stored overflow [OS=1]

BR Binary result

15 Status Bits

230

all status bits after loading the status word into
the accumulator.

Evaluation with binary checks

You can use all checks described in Chapter 4
“Binary Logic Operations” to check the digital
flags and the binary result (see before). The
principle of operation is the same as for check-
ing an input, for example.

Evaluation with jump functions

You can evaluate the RLO and BR status bits,
all combinations of CC0 and CC1 and the OV
and OS status bits with the relevant jump func-
tions (Table 15.4). Chapter 16 “Jump Func-
tions” contains a detailed description.

Notes on evaluating a number range
overflow

A calculation result outside the number range
defined for the data type sets the OV status bit
and the OS (stored overflow) status bit in paral-
lel.

If the result of a subsequent function (in the
case of a chain calculation, for example) is
within the permissible number range, the OV
flag is reset. The OS flag, however, remains set,
so that a result overflow within a chain calcula-
tion can also be detected at the end of the calcu-
lation.

OS is not reset until the JOS jump function or a
block change (call or block end).

You can evaluate an overflow with:

Binary checks

L Value1;
L Value2;
+I ;
A OV; //Individual evaluation
= Status1;
L Value3;
+I ;
A OV; //Individual evaluation
= Status2;
L Value4;
+I ;
A OS; //Overall evaluation
= Status_overall;
T Result;

Jump functions

L Value1;
L Value2;
+I ;
JO ST1; //Individual evaluation
L Value3;
+I ;
JO ST2; //Individual evaluation
L Value4;
+I ;
JOS STOV; //Overall evaluation
T Result;
You can evaluate a number overflow either af-
ter every calculation operation (check the OV
status bit) or after the overall calculation (check
the OS status bit).

Table 15.4 Evaluating the Status Bits Using Jump Functions

RLO BR CC0 CC1 OV OS Executed jump functions

“1” - - - - - JC, JCB

“0” - - - - - JCN, JNB

- “1” - - - - JBI

- “0” - - - - JNBI

- - 0 0 - - JZ, JMZ, JPZ

- - 0 1 - - JN, JP, JPZ

- - 1 0 - - JN, JM, JMZ

- - 1 1 - - JUO

- - - - 1 - JO

- - - - - 1 JOS

15.4 Using the Binary Result

231

15.4 Using the Binary Result

STEP 7 uses the binary result to represent the
EN/ENO mechanism in the ladder diagram
LAD and function block diagram FBD pro-
gramming languages. You can ignore this if you
program only in STL; you then have the binary
result at your disposal as an additional RLO
memory.

However, you can use BR as a group error flag,
even with pure STL programming, in order to
indicate errors in block processing (as used by
the SFB and SFC system blocks and some stan-
dard blocks).

EN/ENO mechanism

In the LAD and FBD programming languages,
all boxes have an enable input EN and an en-
able output ENO. If the enable input has “1”,
the function in the box is executed. If the box is
executed properly, the enable output then also
has signal state “1”. If an error occurs during
execution of the box, (for example, overflow in
the case of an arithmetic function), ENO is set
to “0”. If EN has signal state “0”, ENO is also
set to “0”.

You can use these characteristics of EN and
ENO to link several boxes in a chain, with the

Figure 15.1 Example of the EN/ENO Mechanism

15 Status Bits

232

enable output ENO leading to the enable input
EN of the next box (Figure 15.1). This makes it
possible to “switch off” the entire chain (no box
is processed if input I E 1.0 in the example has
signal state “0”) or the remainder of the chain is
no longer processed if one box signals an error.

The EN input and the ENO output are not block
parameters but statement results that the LAD/
FBD Editor generates itself prior to and follow-
ing all boxes (even in the case of functions and
function blocks). Here, the LAD/FBD Editor
uses the binary result to store the signal state at
EN during block processing or to check the er-
ror message from the box.

You can find the statement sequence shown in
Figure 15.1 in Network 8 of FB 115 in the “Pro-
gram Flow Control” program (STL_Book li-
brary). If you view this network FB 115 on
screen, you can switch to Ladder diagram rep-
resentation with VIEW LAD. The Editor then
displays the LAD graphics.

If you write your own functions or function
blocks and you want to use these in, for exam-
ple, ladder or function block diagram represen-
tation, you must influence the binary result in
such a way that BR will be set to “0” if an error
is detected (see below).

Group error message in blocks

You can use the binary result as a group error
message in blocks. If a block has been executed
properly, set BR to “1”. BR is set to “0” if a
block signals an error.

Example: At the start of the block, BR is set to
“1”. If an error now occurs during execution of
the block, for example, a result exceeds the de-
fined range, so that further processing must be
stopped, set the binary result to “0” with JNB
and jump to the block end, for example (in the
event of an error, the condition must supply sig-
nal state “0”).

SET ;
SAVE ; //BR = "1"
...
L 10_000;
L Result; //if result>10000
<=I ; //then BR = "0"
JNB ERR; //and jump to ERR
...

The “Clock entry” example in Chapter 26.4
“Brief Description of the Message Frame
Example” also uses BR as a group error
message.

16 Jump Functions

233

16 Jump Functions

With jump functions you can interrupt linear
execution of the program and continue it at an-
other point in the block. This program branch-
ing can be executed either conditionally or un-
conditionally.

The jump distributor (case branching) and the
loop jump are available as special forms of the
jump functions.

Overview

JU label Unconditional jump

JC label Jump if RLO = “1”

JCN label Jump if RLO = “0”

JCB label Jump if RLO = “1” and save
RLO

JNB label Jump if RLO = “0” and save
RLO

JBI label Jump if BR = “1”

JBI label Jump if BR = “0”

JZ label Jump if result is zero

JN label Jump if result is not zero

JP label Jump if result is greater than
zero (positive)

JPZ label Jump if result is greater than
or equal to zero

JM label Jump if result is less than zero
(negative)

JMZ label Jump if result is less than or
equal to zero

JUO label Jump if result is invalid

JO label Jump if overflow

JOS label Jump if stored overflow

JL label Jump distributor

LOOP label Loop jump

This chapter describes the jump functions for
the STL programming language. In the SCL
programming language, there are various meth-
ods for branching within the program, e.g. with

the IF statement (see Chapter 28 “Control
Statements”).

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the STL_Book library under the “Pro-
gram Flow Control” program in function block
FB 116 or source file Chap_16.

16.1 Programming a Jump Function

A jump function consists of a jump operation
that defines the checked condition, and a jump
label that indicates the program location at
which program execution is to be continued if
the condition is met.

A jump label consists of up to 4 characters
which can include alphanumeric characters and
the underscore. A jump label must not start with
a numeric character. A jump label followed by
a colon indicates the statement (line) that is to
be processed after the executed jump statement.

Figure 16.1 gives an example.The condition for
the jump here is a comparison operation; it sup-
plies an RLO. This RLO is the jump condition
for the JC jump. If the comparison is fulfilled,

Figure 16.1 Example of Program Branching

16 Jump Functions

234

the RLO also equals “1” and the jump to jump
label GR50 is executed. Program execution is
then continued here. An unfulfilled comparison
supplies RLO = “0”, so that in this example the
jump function is not executed. The program is
continued at the next statement. A jump can be
made forward (in the direction of program pro-
cessing; in the direction of higher line numbers)
as well as backward. The jump can only take
place within a block; that is, the jump destina-
tion must be in the same block as the jump
statement. Subdivision into networks has no ef-
fect on the jump function.

The jump destination must have a unique ID,
that is, you can assign any given jump label on-
ly once in a block. The jump destination can be
jumped to from several locations. If you use the
Master Control Relay MCR, the jump destina-
tion must be in the same MCR zone or the same
MCR area as the jump statement.

STL stores the jump label designations in the
non-execution-relevant section of the block on
the data medium of the programming device.
Only the jump widths are stored in the work
memory of the CPU (in the compiled block).
For this reason, program modifications made to
blocks online at the CPU must also always be
updated on the programming device data medi-
um in order to retain the original designations.
If this update is not made or if blocks are trans-
ferred from the CPU to the programming de-
vice, the non-execution-relevant block sections
will be overwritten or deleted. The Editor then
generates its own jump label designations
(M001, M002 etc.) on screen or in the printout.

16.2 Unconditional Jump

The JU jump function is always executed, that
is, regardless of any conditions. JU interrupts
linear execution of the program and continues it
at the location indicated by the jump label.

The JU jump function does not affect the status
bits. If there are check statements, for example,
AI, OI, etc., both immediately prior to the jump
function and at the jump destination, these are
treated as a single logic operation.

16.3 Jump Functions with
RLO and BR

A program branch can be made dependent on
the signal states of the RLO and BR status bits
(Table 16.1). In addition, it is also possible to
store the RLO in the BR status bit at the same
time that it is checked.

Setting the status bits

The jump functions conditional on the RLO set
the STA and RLO status bits to “1” and OR and
/FC to “0” whether the condition is fulfilled or
not.

This results in the following consequences for
the use of these jump functions: The RLO is al-
ways set to “1”. If the statements contain oper-
ations conditional on the RLO immediately fol-
lowing these jump functions, they will be exe-
cuted if the jump does not take place. If there
are check statements, such as AI, OI etc., im-
mediately following these jump functions,
these checks are treated as first checks, that is,
a new logic operation starts.

The jump functions conditional on the binary
result set the STA status bit to “1” and the OR
and /FC status bits to “0” whether the condition
is fulfilled or not. The RLO and BR status re-
main unchanged. This has the following conse-
quences for use: These jump functions termi-
nate a logic operation; a new logic operation
starts following this jump function or at the
jump destination. The RLO is retained and can
be evaluated with a memory function following
the jump function.

Table 16.1 Jump Functions with RLO and BR

RLO BR Executed Jumps

“1” - JC Jump if RLO = “1”

“1” “1” JCB Jump if RLO = “1” and
save RLO

“0” - JCN Jump if RLO = “0”

“0” “0” JNB Jump if RLO = “0” and
save RLO

- “1” JBI Jump if BR = “1”

- “0” JNBI Jump if BR = “0”

16.4 Jump Functions with CC0 and CC1

235

Jump if RLO = “1”

The jump function JC is only executed if the
RLO is “1” when the function is processed. If it
is “0”, the jump is not executed and program
processing is continued with the next state-
ment.

Jump if RLO = “0”

The jump function JCN is only executed if the
RLO is “0” when the function is processed. If it
is “1”, the jump is not executed and program
processing is continued with the next state-
ment.

Jump if RLO = “1” and save the RLO

The jump function JCB is only executed if the
RLO is “1” when the function is processed. Si-
multaneously, JCB sets the binary result to “1”.
If the RLO is “0”, the jump is not executed and
program processing is continued with the next
statement. JCB sets the binary result in this case
to “0” (the RLO is transferred in each case to
the binary result).

Jump if RLO = “0” and save the RLO

The jump function JNB is only executed if the
RLO is “0” when this function is processed. Si-
multaneously, JNB sets the binary result to “0”.
If the RLO is “1”, the jump is not executed and
program processing is continued with the next
statement. JNB sets the binary result in this case
to “1” (the RLO is transferred in each case to
the binary result).

Jump if BR = “1”

The jump function JBI is only executed if the
binary result is “1” when this function is pro-
cessed. If the binary result is “0”, the jump is
not executed and program processing is contin-
ued with the next statement.

Jump if BR = “0”

The jump function JBIN is only executed if the
binary result is “0” when this function is pro-
cessed. If the binary result is “1”, the jump is
not executed and program processing is contin-
ued with the next statement.

16.4 Jump Functions with
CC0 and CC1

A program branch can be made conditional on
the CC0 and CC1 status bits (Table 16.2). This
allows you to, for example, check to see if the
result of a calculation is positive, zero or nega-
tive. See Chapter 15 “Status Bits” for details of
when the CC0 and CC1 status bits are set.

Setting the status bits

The jump functions conditional on the CC0 and
CC1 status do not change any status bits. When
the jump is made, the RLO is “taken along” and
can be combined further (no change to /FC).

The binary checks are another method of check-
ing the status bits (see Chapter 15 “Status Bits”).

Jump if result is zero

The jump function JZ is only executed if CC0 =
“0” and CC1 = “0”. This is the case if

b accumulator 1 contains zero after an arith-
metic or math function,

b accumulator 2 contains the same as accumu-
lator 1 in a comparison function,

b accumulator 1 contains zero after a digital
logic operation and

b the value of the last shifted bit is “0” after a
shift function.

Table 16.2 Jump Functions with CC0 and CC1

CC0 CC1 Executed Jumps

0 0 JZ Jump if zero

JMZ Jump if zero or less than zero

JPZ Jump if zero or greater than
zero

1 0 JM Jump if less than zero

JMZ Jump if zero or less than zero

JN Jump if not zero

0 1 JP Jump if greater than zero

JPZ Jump if zero or greater than
zero

JN Jump if not zero

1 1 JUO Jump if invalid result

16 Jump Functions

236

In all other cases, JZ continues program pro-
cessing with the next statement.

Jump if result is not zero

The jump function JN is only executed if status
bits CC0 and CC1 have different signal states.
This is the case if

b accumulator 1 does not contain zero after an
arithmetic or math function,

b the contents of accumulator 2 are not the
same as the contents of accumulator 1 in a
comparison function,

b accumulator 1 does not contain zero after a
digital logic operation and

b the value of the last shifted bit is “1” after a
shift function.

In all other cases, JN continues program pro-
cessing with the next statement.

Jump if result is greater than zero

The jump function JP is only executed if CC0 =
“0” and CC1 = “1”. This is the case if

b the contents of accumulator 1 are within the
permissible positive number range follow-
ing an arithmetic or math function (you
check for a number range violation with JO
or JOS),

b the contents of accumulator 2 are greater
than the contents of accumulator 1 in a com-
parison function,

b accumulator 1 does not contain zero after a
digital logic operation and

b the value of the last shifted bit is “1” after a
shift function.

In all other cases, JP continues program pro-
cessing with the next statement.

Jump if result is greater than or equal to zero

The jump function JPZ is only executed if CC0
= “0”. This is the case

b if the contents of accumulator 1 are within
the permissible positive number range or are
equal to zero following an arithmetic or
math function (you check for a number
range violation with JO or JOS),

b if the contents of accumulator 2 are greater
than or equal to the contents of accumulator
1 in the case of a comparison function,

b after every digital logic operation and

b after every shift function.

In all other cases, JPZ continues program pro-
cessing with the next statement.

Jump if result is less than zero

The jump function JM is only executed if CC0
= “1” and CC1 = “0”. This is the case if

b the contents of accumulator 1 are within the
permissible negative number range follow-
ing an arithmetic or math function (you
check for a number range violation with JO
or JOS) and

b the contents of accumulator 2 are less than
the contents of accumulator 1 in a compari-
son operation.

In all other cases, JM continues program pro-
cessing with the next statement.

Jump if result is less than or equal to zero

The jump function JMZ is only executed if CC1
= “0”. This is the case if

b the contents of accumulator 1 are within the
permissible negative number range or are
equal to zero following an arithmetic or
math function (you check for a number
range violation with JO or JOS), and

b the contents of accumulator 2 are less than
or equal to the contents of accumulator 1 in
the case of a comparison operation.

In all other cases, JMZ continues program pro-
cessing with the next statement.

Jump if invalid result

The jump function JUO is only executed if CC0
= “1” and CC1 = “1”. This is the case if

b a division by zero is made in an arithmetic
function and

b an invalid REAL number is specified as the
input value or is produced as the result.

In all other cases, JUO continues program pro-
cessing with the next statement.

16.5 Jump Functions with OV and OS

237

16.5 Jump Functions with
OV and OS

A program branch can be executed dependent
on the OV and OS status bits. This is a check to
see if the result of a calculation is still within
the permissible number range. See Chapter 15
“Status Bits” for details of when the OV and OS
status bits are set.

Jump if overflow

The jump function JO is only executed if the
OV status bit has been set to “1”. This is the
case if the permissible number range has been
exceeded following execution of an operation.
The following functions can set the OV status
bit:

b Arithmetic functions,

b Math functions,

b Two’s complement,

b Comparison functions with REAL numbers
and

b Conversion functions INT/DINT to BCD
and REAL to DINT.

If OV = “0”, JO continues program processing
with the next statement.

In the case of a chain calculation with several
calculations performed one after the other, the
OV status bit must be evaluated after each cal-
culation function since OV is reset again fol-
lowing the next calculation operation whose re-
sult is within the permissible number range.
Check the OS status bit in order to evaluate a
possible number range overflow at the end of
the chain calculation.

Jump if stored overflow

The jump function JOS is only executed if the
OS status bit has been set to “1”. This is always
the case if a number range overflow sets the OV
status bit (see above). In contrast to OV, OS re-
mains set if a result is then in the permissible
number range.

The following functions reset OS:

b Block call and block end

b Jump if stored overflow JOS

If OS = “0”, JOS continues program processing
with the next statement.

16.6 Jump Distributor

The jump distributor JL allows specific (calcu-
lated) jumping to a program section in the block
conditional on a number of positions.

JL works in conjunction with a list of JU jump
functions. This list immediately follows JL and
can contain up to 255 entries. There is a jump
label at JL that points to the end of the list (to
the first statement after the list).

You program a jump distributor according to
the following general schematic:

L Number_of_positions;
JL End;
JU M0;
JU M1;
...
JU Mx;

End: ...

In the example, the variable Number_of_posi-
tions loads a number into accumulator 1. This is
followed by the jump distributor JL with the
jump label to the end of the list of JU state-
ments.

The number of the jump to be executed is in the
right-hand byte of accumulator 1. If accumula-
tor 1 contains 0, the first jump statement is ex-
ecuted, and if it contains 1, the second is exe-
cuted, and so on. If the number is greater than
the length of the list, JL branches to the end of
the list (to the statement following the last
jump).

JL is not subject to conditions and does not
change the status bits.

Only JU statements are permissible in the list
without gaps. You can assign the jump label
designations as you please within the general
rules.

16 Jump Functions

238

16.7 Loop Jump

The loop jump LOOP allows simplified pro-
gramming of program loops.

LOOP interprets the right-hand word of accu-
mulator 1 as a signless 16-bit number in the
range 0 to 65535.

When processed, LOOP first decrements the
contents of accumulator 1 by 1. If the value is
then not zero, the jump is executed to the jump
label specified.

If the value is equal to zero after decrementing,
the jump is not executed and the next statement
is processed.

The value in accumulator 1 thus corresponds to
the number of program loops to be passed. You
must store this number in a loop counter. You
can use any digital address as the loop counter.

You program a loop jump according to the fol-
lowing general schematic:

L Number;
Next: T Counter;

...

...

...
L Counter;
LOOP Next;
...

The variable Number contains the number of
loop passes. The variable Counter contains the
loop passes still to be executed.

At the first pass, Counter is preassigned with
the number of loop passes. At the end of the
program loop, the contents of Counter are load-
ed into the accumulator and decremented by the
LOOP statement. If the accumulator does not
contain zero following this, the jump to the
specified jump label – here: Next – is executed
and the variable Counter is updated.

The loop jump does not change the status bits.

17 Master Control Relay

239

17 Master Control Relay

With contact controls, a Master Control Relay
activates or de-activates a section of the control
that can consist of one or more rungs. A deacti-
vated rung

b switches all non-retentive contactors off and

b retains the state of retentive contactors.

You can only change the state of the contactors
again when the Master Control Relay (MCR) is
active.

This chapter describes the statements required
for implementing the Master Control Relay for
the STL programming language. You can use
these statements to emulate the properties of a
Master Control Relay in the statement list.
Master Control Relay examples can be found in
the download files (download address: see pag-
es 8-9) in the STL_Book library under the “Pro-
gram Flow Control” program in function block
FB 117 or source file Chap_17.

Please note that switching off with the “soft-
ware” Master Control Relay is no substitute for
an EMERGENCY OFF or safety facility! Treat
Master Control Relay switching in exactly the
same way as switching with a memory function!

STL provides the following statements for im-
plementing the Master Control Relay (MCR):

b MCRA Activate MCR area

b MCR(Open MCR zone

b)MCR Close MCR zone

b MCRD Deactivate MCR area

The statements MCRA and MCRD identify an
area in your program in which MCR dependen-
cy is to take effect. Within this area, you use the
statements MCR(and)MCR to define one or
more zones in which MCR dependency can be
switched on and off. You can also nest the MCR
zones. The result of logic operation (RLO) im-
mediately prior to an MCR zone switches MCR
dependency on or off within this zone.

17.1 MCR Dependency

The MCR affects all operations that write a val-
ue back to memory. These MCR-dependent op-
erations respond as follows when MCR depen-
dency is switched on, regardless of any previ-
ous binary or digital logic operation:

b Assignment (=):
the address is reset to “0”

b Set (S) or reset (R):
the address remains unchanged

b Transfer (T):
Zero is transferred.

Some STL functions use transfer statements
(invisible to the user) to write a value to an ad-
dress register, for example. Since a transfer
statement writes the value zero if MCR depen-
dency is switched on, the corresponding func-
tion can no longer be guaranteed.

You must exclude the following program sec-
tions from MCR dependency otherwise the
CPU will go to STOP or undefined runtime be-
havior can occur:

b Block calls with block parameters

b Accesses to block parameters that are pa-
rameter types (e.g. BLOCK_DB)

b Accesses to block parameters that are com-
ponents or elements of complex data types
or UDTs

If MCR dependency is switched off, the MCR-
dependent operations respond in the “normal”
way as described in the relevant chapters.

You switch on MCR dependency in a zone if
the RLO is “0” immediately prior to opening
the zone (analogous to switching off the Master
Control Relay). If you open an MCR zone with
RLO “1” (Master Control Relay switched on),
processing within this MCR zone takes place
without MCR dependency.

17 Master Control Relay

240

Example:

MCRA ; //Activate MCR
A Input0;
MCR(; //Open MCR zone
A Input1;
A Input2;
= Output0;
)MCR ; //Close MCR zone
MCRD ; //Deactivate MCR

In the example, Input0 = “0” also sets the ad-
dress Output0 to “0”. If Input0 has signal state
“1”, you control the address Output1 with
Input1 and Input2.

17.2 MCR Area

To be able to use the characteristics of the Mas-
ter Control Relay, define an MCR area with the
statements MCRA and MCRD. MCR depen-
dency is active within an MCR area (but not yet
switched on).

MCRA; //Activate MCR
... //MCR area

MCRD; //Deactivate MCR
MCRA defines the start of an MCR area and
MCRD its end. If you call a block within an
MCR area, MCR dependency is de-activated in
the called block (Figure 17.1). An MCR area
only starts again with the MCRA statement.
When a block is exited, MCR dependency is set
as it was before the block was called, regardless
of the MCR dependency with which the block
was exited.

17.3 MCR Zone

You define an MCR zone with the statements
MCR(and)MCR. Within this zone, you can
switch MCR dependency on with RLO = “0”
and off with RLO = “1”.

... //Switch on MCR with "0"
A Input3;
MCR(; //Start of dependency
...
... //MCR zone
...
)MCR ; //End of dependency

Figure 17.1 MCR Area in the Case of Block Change

17.4 Setting and Resetting I/O Bits

241

The statements MCR(and)MCR end a bit logic
combination.

You can open another MCR zone within an
MCR zone. The nesting depth for MCR zones
has the value 8; that is, you can open up to eight
zones before having to close one.

You control the MCR dependency of a
switched on MCR zone with the RLO when
opening the zone. However, if MCR dependen-
cy is switched on in a higher-level zone, you
cannot switch MCR dependency off in a lower-
level zone. The Master Control Relay of the
first MCR zone controls the MCR dependency
in all switched on zones (Figure 17.2).

A block call within an MCR zone does not
change the nesting depth of an MCR zone. The
program in the called block is still in the MCR
zone that was open when the block was called
(and is controlled form here). However, you
must re-activate MCR dependency in a called
block by opening the MCR area.

In Figure 17.3 the addresses Input5 and Input6
control the MCR dependencies. With Input5

you can switch MCR dependency on in both
zones (with “0”), regardless of the signal state
of Input6. If the MCR dependency of Zone 1 is
switched of with Input5 = “1”, you can control
the MCR dependency of zone 2 with Input6
(Table 17.1).

17.4 Setting and Resetting I/O Bits

Despite MCR dependency being switched on,
you can set or reset the bits of an I/O area with
the system functions. A requirement for this is
that the bits to be controlled are in the process-
image output or a process-image output has
been defined for the I/O area to be controlled.

The system function SFC 79 SET is available
for setting the I/O bits, and SFC 80 RSET for
resetting (Table 17.2). You call these system
functions in an MCR zone. The system func-
tions are only effective if MCR dependency is
switched on; if MCR dependency is switched
off, the calls of these SFCs remain without ef-
fect.

Setting and resetting the I/O bits also simulta-
neously updates the process-image output. The
I/O are affected byte-by-byte. The bits not se-
lected with the SFCs (in the first and in the last
byte) retain the signal states as they are current-
ly available in the process-image.

Example:

CALL SFC 79 (N := 8,

RET_VAL := MW 10,

SA := P#12.0);

CALL SFC 80 (N := 16,

RET_VAL := MW 12,

SA := P#13.5);
Figure 17.2
MCR Dependency in the Case of Nested MCR Zones

Table 17.1 MCR Dependency in the Case of Nested
MCR Zones (Example)

Input5 Input6 Zone 1 Zone 2

“1” “1” No MCR dependency

“1” “0” No MCR
dependency

MCR
dependency
switched on

“0” “1” or “0” MCR dependency
switched on

17 Master Control Relay

242

In the example, calling SFC 79 SET sets the I/
O bits in accordance with outputs Q 12.0 to Q
12.7; calling SFC 80 RSET resets the I/O bits in
accordance with outputs Q 13.5 to Q 15.5.

The parameter N determines the number of bits
to be controlled and parameter SF determines
the first bit (Data type POINTER). The SFC us-
es RET_VAL to return any detected error.

Figure 17.3 MCR Zones at Block Change

Table 17.2 Parameters of the SFCs for Controlling the I/O Bits

SFC Parameter Declaration Data Type Assignment, Description

79 N INPUT INT Number of bits to be set

RET_VAL RETURN INT Error information

SA OUTPUT POINTER Pointer to the first bit to be set

80 N INPUT INT Number of bits to be reset

RET_VAL RETURN INT Error information

SA OUTPUT POINTER Pointer to the first bit to be reset

18 Block Functions

243

18 Block Functions

In this chapter, you will learn how to call and
terminate code blocks and how to work with
addresses from data blocks in the STL pro-
gramming language. The next chapter then
deals with using block parameters. This chapter
is the continuation of Chapter 3.4 “Program-
ming Code Blocks with STL” and Chapter 3.6
“Programming Data Blocks”.

Block calls in the SCL programming language
are described in Chapter 29 “SCL Blocks”.

Examples of the block functions can be found
in the download files (download address: see
pages 8-9) in the STL_Book library under the
“Program Flow Control” program in function
block FB 118 or source file Chap_18.

18.1 Block Functions for Code Blocks

Block functions for code blocks include in-
structions for calling and terminating blocks
(Table 18.1). Code blocks are called and pro-
cessed with CALL. You can pass data for pro-
cessing to the called block and take over data
from the called block. This data transfer is car-
ried out via block parameters. CALL transfers
the block parameter to the called block and also
opens the instance data block in the case of
function blocks. When code blocks have no
block parameters, they can also be called with
UC or CC. A block is terminated with a block
end statement.

Table 18.1 Block Functions for Code Blocks

Calling a Function Block

with data block and with block
parameter

as local instance and with block
parameter

without block parameter, uncondi-
tionally and conditionally

CALL FB 10, DB 10 (
 In1 := Number1,
 In2 := Number2,
 Out := Number3);

CALL name (
 In1 := Number1,
 In2 := Number2,
 Out := Number3);

UC FB 11;
CC FB 11;

Calling a function

with function value and with block
parameter

without function value and with
block parameter

without block parameter, uncondi-
tionally and conditionally

CALL FC 10 (
 In1 := Number1,
 In2 := Number2,
 RET_VAL := Number3);

CALL FC 10 (
 In1 := Number1,
 In2 := Number2,
 Out := Number3);

UC FC 11;
CC FC 11;

Block end statements

Conditional block end
BEC

Unconditional block end
BEU

Block end
BE

18 Block Functions

244

18.1.1 Block Calls: General

If a code block is to be processed, it must be
“called”. Figure 18.1 gives an example of call-
ing function FC 10 in organization block OB 1.

A block call consists of the call statement (here:
CALL FC 10) and the parameter list. If the
called block has no block parameters, there is
no need for the parameter list. After the call
statement has been executed, the CPU contin-
ues program processing in the called block
(here: FC 10). The block is processed until a
block end statement is encountered. Then the
CPU returns to the calling block (here: OB 1)
and continues processing this block after the
call statement. If an organization block is termi-
nated, the CPU continues in the operating sys-
tem.

The information the CPU requires to make its
return to the calling block is stored in the block
stack (B stack). With each block call, a new
stack element is created that includes the return
address, the contents of the data register and the
address of the local data stack of the calling
block. If the CPU goes to the Stop state as a re-
sult of an error, you can use the programming
device to see from the contents of the B stack
which blocks were processed up to the trigger-
ing error.

The block parameters are the data interface to
the called block. You are advised to avoid data

transfer via internal registers (for example, ac-
cumulators, address registers, RLO) since the
contents of these registers can be changed at a
block change (as a result of “concealed” state-
ments from the Editor).

18.1.2 CALL Call Statement

You call FBs, FCs, SFCs and SFCs with CALL.
CALL is an unconditional call, that is, the spec-
ified block is always called and processed inde-
pendently of any conditions. (You cannot call
organization blocks; they are called by the op-
erating system depending on events.)

Note that the CALL statement can change the
data block registers DB and DI, the address reg-
isters AR1 and AR2, the status bits including
RLO, and the contents of the accumulators.

Calling function blocks

You call a function block FB by specifying, af-
ter CALL, the function block and, separated
with a comma, the instance data block associat-
ed with the call. You can address both blocks ei-
ther absolutely or symbolically. The assign-
ment of the absolute address to the symbol ad-
dress is made in the symbol table, with an in-
stance data block having the associated
function block as data type.

Figure 18.1 Block Call Example

18.1 Block Functions for Code Blocks

245

The CALL operation is followed by the list
with the block parameters. In source-oriented
input, the list of the block parameters is placed
between round brackets; the block parameters
are each separated by a comma.

With function blocks, you need not initialize all
block parameters when the block is called. The
uninitialized block parameters retain their cur-
rent value. If you do not specify any parame-
ters, the brackets are also dispensed with in
source-oriented input. However, block parame-
ters saved as pointers should at least be initial-
ized when called for the first time so that mean-
ingful values are entered (see Chapter 19.3 “Ac-
tual Parameters”).

If you have generated function blocks with the
block attribute “multi-instance-capable”, you
can also call these as a local instance within
other “multi-instance-capable” function blocks.
Here, the called function block uses the in-
stance data block of the calling function block
to store its local data. You declare the local in-
stance in the static local data of the calling func-
tion block and you can then call the function
block in the program (without specifying an in-
stance data block). The local instance is treated
like a complex data type within the “higher-lev-
el” function block. You can find more informa-
tion in Chapter 18.1.6 “Static Local Data”.

Calling functions

You call a function FC by specifying the func-
tion, after CALL, either with absolute address-
ing or with symbolic addressing. This is fol-
lowed by the parameter list, in brackets in the
case of source-oriented input. You must initial-
ize all existing parameters; the parameter se-
quence is defined by the declaration. Calling
functions with function value takes exactly the
same form as calling functions without function
value. Only the first output parameter - corre-
sponding to the function value - has the name
RET_VAL.

Calling system blocks

The operating system of the CPU contains sys-
tem functions SFCs and system function blocks
SFBs, that you can use. The number and type of

system blocks is CPU-specific. All system
blocks are called with CALL.

You call a system function block in the same
way as a function block you have written your-
self; you set up the associated instance data
block in the user memory with the data type of
the SFB. You call a system function in the same
way as a function you have written yourself.

System blocks are only available in the operat-
ing system of the CPU. When calling system
blocks during offline programming, the Editor
requires a description of the call interface in or-
der to be able to initialize the parameters. The
interface description is located in the Standard
Library under System Function Blocks. From
here, the Editor copies the relevant interface de-
scription into the offline container “Blocks”
when you call a system block. The copied inter-
face description then appears as a “normal”
block object.

18.1.3 UC and CC Call Statements

You can call function blocks and functions with
UC and CC. It is a requirement that the called
function has no block parameters and the called
function block has no instance data block – and
therefore also no block parameters and no static
local data. However, the Editor does not check
this.

You can use the UC and CC operations if a
block is too long or not clear enough for you, by
simply “breaking down” the block into sections
and then calling the sections in sequence. The
UC and CC call operations do not distinguish
between functions FCs and function blocks
FBs. Both block types are handled in the same
way.

The UC call statement is an unconditional
statement, that is, UC always calls the block re-
gardless of conditions.

The CC call statement is a conditional state-
ment, that is, CC only calls the block if the re-
sult of logic operation (RLO) is “1”. If the RLO
is “0”, CC does not call the block and sets the
RLO to “1”. The statement following CC is
then processed.

Effect on the indicator bits (condition code
bits): The OS status bit is reset at block change;
the CC0, CC1 and OV status bits are not affect-

18 Block Functions

246

ed, the /FC status bit is reset; that is, a new logic
operation begins with the first check statement
in the new block or following a block call.

Binary nesting stack at a block change: You can
also call a code block within a binary nesting
expression. The current stack depth of the bina-
ry nesting stack does not change at a block
change. The possible nesting stack depth in a
block that can be called within a binary nest is
therefore the difference between the maximum
possible nesting depth and the current nesting
depth at the block call.

Master Control Relay at a block change: MCR
dependency is deactivated at a block call. The
MCR is switched off in the called block, re-
gardless of whether the MCR was switched on
or off prior to the block call. When a block is
exited, MCR dependency is set as it was prior
to the block being called.

Accumulators and address registers at block
change: The contents of accumulators and of
the address registers are not changed at a block
change with UC or CC.

Data blocks at a block change: Calling a block
saves the data block register in the B stack; the
block end statement restores its contents when
the called block is exited. The global and the in-
stance data block current prior to the block call
are also opened following the block call. If no
data block was opened prior to the block call
(for example, no instance data block in OB 1),
there will also be no data block open following
the block call, regardless of the data blocks
open in the called block.

Additional possibilities:

b Indirect addressing of FB and FC calls with
UC and CC

b Calling via block parameters with UC

b Calling via block parameters with CC also
in function blocks

18.1.4 Block End Functions

The BEC statement terminates program pro-
cessing in a block conditional on the RLO, and
the BEU and BE statements end a block uncon-
ditionally.

Conditional block end BEC

Execution of BEC depends on the RLO. If the
RLO is “1” when BEC is processed, the state-
ment is executed and the block currently being
processed is terminated. A return jump is then
made to the previously processed block con-
taining the block call.

If the RLO is “0” when BEC is processed, the
statement is not executed. The CPU sets the
RLO to “1” and processes the statement follow-
ing BEC. A subsequently programmed check
statement is always a first check.

Unconditional block end BEU

When BEU is processed, the block currently
being processed is exited. A return jump is then
made to the previously processed block con-
taining the block call.

In contrast to the BE statement, you can pro-
gram BEU several times within one block. The
program section following BEU is only pro-
cessed if it is jumped to with a jump function.

Block end BE

When BE is processed, the block currently be-
ing processed is exited. A return jump is then
made to the previously processed block con-
taining the block call.

BE is always the last statement in a block.

Programming BE is a matter of choice. With in-
cremental input, you terminate block program-
ming by closing the block; with source-oriented
input, the keyword replaces the block end, for
example, END_FUNCTION_BLOCK instead
of the BE statement.

18.1.5 Temporary Local Data

You use the temporary local data for intermedi-
ate storage of results occurring during block
processing. Temporary local data are only
available during block processing; after the
block is terminated, its data are lost.

Temporary local data are addresses that are lo-
cated in the local data stack (L stack) in the
CPU system memory. The operating system of
the CPU provides the temporary local data for
every code block when that code block is
called. The values in the L stack are semi ran-

18.1 Block Functions for Code Blocks

247

dom when the block is called. In order to make
meaningful use of the local data, you must first
write them before reading. After a block is ter-
minated, the L stack is assigned to the next
called block.

The volume of temporary local data required by
a block is shown in the block header. In this
way, the operating system learns how many
bytes are available in the L stack when the
block is called. You can also see from the entry
in the block header how many local data bytes
the block requires (in the Editor when the block
is open with FILE PROPERTIES or in the
SIMATIC Manager when the block is selected
with EDIT OBJECT PROPERTIES, on “General
- Part 2” tab in each case).

Declaration of temporary local data

You declare the temporary local data in the dec-
laration section of the code block:

b with incremental programming under
“temp” or

b with source-oriented programming between
VAR_TEMP and END_VAR.

Figure 18.2 gives an example of declaring tem-
porary local data. The variable temp1 is located
in the temporary local data and is of data type
INT, the variable temp2 is of data type REAL.

The temporary local data are stored in the L
stack in the order of their declaration according
to data type. Chapter 26.2 “Data Storage of

Variables” contains more detailed information
on data storage in the L stack.

Symbolic addressing of temporary local data

You address the temporary local data with their
symbolic names. You assign the names in ac-
cordance with the rules for block-local sym-
bols.

All operations that are also valid for the memo-
ry bits are permissible for the temporary local
data. However, please note that a temporary lo-
cal data bit is not suitable as an edge memory
bit since it does not retain its signal state be-
yond processing of the block.

You can only access the temporary local data of
a block in the block itself. (Exception: The tem-
porary local data of the calling block can be ac-
cessed via block parameters.)

Size of the L stack

The size of the overall L stack is CPU-specific.
The quantity of temporary local bytes available
in a priority class, that is in the program of an
organization block, is also fixed. On the S7-300
the quantity is fixed; for example, 510 bytes per
priority class on the CPU 314. On the S7-400
you can adjust the quantity of local data bytes
to your requirements when parameterizing the
CPU. This quantity must be shared between the
blocks called in the relevant organization block

Incremental programming Source-oriented programming

Address Declaration Name Type Initial value

0.0 IN In INT 0 VAR_INPUT
 In : INT := 0;
END_VAR

OUT VAR_OUTPUT ... END_VAR

IN_OUT VAR_IN_OUT ... END_VAR

2.0 STAT Total INT 0 VAR
 Total : INT := 0;
END_VAR

0.0
2.0

TEMP
TEMP

temp1
temp2

INT
REAL

VAR_TEMP
 temp1 : INT;
 temp2 : REAL;
END_VAR

Figure 18.2 Example of Declaring Local Data in a Function Block

18 Block Functions

248

and the blocks called in turn from within these
blocks.

Please note in this regard that the Editor also us-
es temporary local data, for example when
transferring block parameters. You do not see
these temporary local data at the programming
interface.

Start information

The operating system of the CPU transfers start
information in the temporary local data when
an organization block is called. This start infor-
mation is 20 bytes long in each organization
block and has an almost identical structure in
each block. Chapters 20 “Main Program”, 21
“Interrupt Handling”, 22 “Restart Characteris-
tics” and 23 “Error Handling” describe the start
information assignments for the individual or-
ganization blocks.

These 20 bytes of start information must always
be available in every priority class used. If you
program evaluation of synchronous errors (pro-
gramming and access errors), you must provide
an additional 20 bytes at least for the start infor-
mation of these error organization blocks since
these error OBs are processed in the same pri-
ority class.

You declare the start information when pro-
gramming an organization block. This is man-
datory. The standard library Standard Library
contains templates for declaration in English
under Organization Blocks. If you do not re-
quire the start information, it is sufficient to de-
clare the first 20 bytes as, for example, a field
(as shown in Figure 18.3).

Absolute addressing of temporary local data

Normally, you access the temporary local data
via symbolic addressing, with absolute address-

ing being the exception. If you are familiar with
data storage in the L stack, you can work out for
yourself the addresses at which the static local
are located. You can also see the addresses in
the variable declaration table of the compiled
block.

The address identifier for the temporary local
data is L; a bit is addressed with L, a byte with
LB, a word with LW and a doubleword with
LD.

Example: For absolute addressing, you want to
keep 16 bytes of temporary local data whose in-
dividual values you then want to access both as
byte and as bit. Create this area as a field right
at the start of the temporary local data so that
the addressing starts at 0. In an organization
block, you would locate this field declaration
immediately following the declaration of the
start information, so that in this case, address-
ing begins at 20.

Note: Absolute addressing of temporary local
data is only possible in the basic languages
STL, LAD and FBD. With SCL, you can only
address temporary local data symbolically.

Chapter 26 “Direct Variable Access” describes
how you learn the address of a variable in the
temporary local data at runtime.

Data type ANY

A variable in the temporary local data can be
declared – as an exception – with data type
ANY.

With STL, you can thus generate an ANY
pointer that can be changed at runtime. See
Chapter 26.3.3 ““Variable” ANY Pointer” for
more details.

Incremental programming Source-oriented programming

Address Declaration Name Type

0.0 TEMP SINFO ARRAY [1..20] VAR_TEMP

*1.0 TEMP BYTE SINFO : ARRAY [1..20] OF BYTE;

20.0 TEMP LByte ARRAY [1..16] LByte : ARRAY [1..16] OF BYTE;

*1.0 TEMP BYTE END_VAR

Figure 18.3 Example of Declaration of Temporary Local Data in an Organization Block

18.1 Block Functions for Code Blocks

249

With SCL, you can assign the address of anoth-
er (complex) variable to a temporary ANY vari-
able at runtime. For more details, see Chapter
29.2.4 “Temporary Local Data”.

18.1.6 Static Local Data

Static local data are addresses that a function
block stores in its instance data block.

The static local data are the “memory” of a
function block. They retain their value until this
is changed by the program, just like data ad-
dresses in global data blocks.

The volume of static local data is limited by the
data type of the variables and by the CPU-spe-
cific length of a data block.

Declaration of static local data

You declare the static local data in the declara-
tion section of the function block:

b with incremental programming under “stat”
or

b with source-oriented programming between
VAR and END_VAR.

Figure 18.2 in Chapter 18.1.5 “Temporary Lo-
cal Data” gives an example of variable declara-
tion in a function block. The block parameters
are declared first, followed by the static local
data and finally the temporary local data.

The static local are stored in the instance data
block after the block parameters in order of
declaration and according to data type. Chapter
26.2 “Data Storage of Variables” contains more
detailed information on data storage in data
blocks.

Symbolic addressing of static local data

You access the static local data with their sym-
bolic names. You assign the names in accor-
dance with the rules for block-local symbols.

You can access static local data with all opera-
tions that can also be used in conjunction with
data addresses in global data blocks.

Example: The function block “Totalizer” adds
an input value to a value stored in the static lo-
cal data and then stores the total in the static lo-
cal again. At the next call, the input value is

added to this total again, and so on (Figure 18.4
top).

Total is a variable in the data block “Totalizer-
Data”, the instance data block of the function
block “Totalizer” (you can define the names of
all blocks yourself in the symbol table within
the permissible framework). The instance data
block has the data structure of the function
block; in the example, it contains two INT vari-
ables with the names In and Total.

Accessing static local data from outside
the function block

The static local data are usually only processed
in the function block itself. However, they are
stored in a data block, you can access the static
local data at any time in the same way as you
access variables in a global data block with

“DataBlockName” AddressName.

In our little example, the data block is called
“TotalizerData” and the data address Total. An
access could take the following form:

L "TotalizerData".Total;
T MW 20;
L 0;
T "TotalizerData".Total;

Local instances

When you call a function block, you normally
specify the instance data block provided for the
call. The function block then stores its block pa-
rameters and its static local data in the instance
data block.

From STEP 7 V2, you can generate “multi in-
stances”, that is, you can call a function block
in another function block. The static local data
(and the block parameters) of the called func-
tion block are then a subset of the static local
data of the calling block. A requirement for this
is that both the calling and the called function
block have block version 2, that is, they have
“multi-instance capability”. In this way, you
can “nest” up to eight function block calls.

Example (Figure 18.4 bottom): In the static lo-
cal data of the function block “Evaluation”, you
declare a variable Memory that corresponds to
the function block “Totalizer” and has the same
structure. Now you can call the function block
“Totalizer” via the variable Memory, without,

18 Block Functions

250

however, specifying a data block because the
data for Memory are located ‘block-local’ in the
static local data (Memory is the local instance
of the FB “Totalizer”).

You access the static local data of Memory in
the program of the function block “Evaluation”
in the same way as you access structure compo-
nents by specifying the structure name (Memo-
ry) and the component name (Total).

The instance data block “EvaluationData”
therefore contains the variables Memory.In and
Memory.Total, that you can also access as glob-
al variables, for example as “Evaluation-
Data”.Memory.Total.

This example of the use of a local instance in
function blocks FB 6, 7 and 8 in the “Program
Flow Control” program can be found in the
download files (download address: see pages 8-

9). The example in Chapter 19.5.3 “Feed Exam-
ple” contains further applications of local in-
stances.

Absolute addressing of static local data

Normally you access static local data using
symbolic addresses with absolute addressing
being the exception. Within a function block,
the instance data block is opened via the DI reg-
ister. Addresses in this data block, static local
data as well as block parameters, therefore have
the address identifier DI. You address a bit with
DIX, a byte with DIB, a word with DIW and a
doubleword with DID.

If you are familiar with storing data in a data
block, you can work out yourself the addresses
at which the static local data are stored. You can
also see the addresses in the variable declara-

Figure 18.4 Example of Static Local Data and Local Instances

18.2 Block Functions for Data Blocks

251

tion table of the compiled block. But a word of
caution! These addresses are relative to the
start of the instance. They are only valid if you
call the function block with a data block. If you
call the function block as a local instance, the
local data of the local instance are located in the
middle of the instance data block of the calling
function block. You can see the absolute ad-
dresses in, for example, the compiled instance
data block which contains all local instances.
Select VIEW DATA VIEW, if you want to read
the addresses of individual local data addresses.

If we consider our example, we could access
the variable Total in the function block “Total-
izer” with DIW 2 if the FB “Totalizer” is called
with a data block (cf. the address assignment in
the DB “TotalizerData”), and with DIW 6, if the
FB “Totalizer” is called as a local instance in
the FB “Evaluate” (cf. the address assignment
in the DB “EvaluateData”).

However, if we program a function block with-
out knowing whether it is called with a data
block or as a local instance, that is, one that is
to be “multi-instance-capable”, how can we
then assign absolute addresses to the static local
data? Put briefly, we add to the address of the
variable the offset of the local instance from ad-
dress register AR2. See Chapter 25 “Indirect
Addressing” and Chapter 26 “Direct Variable
Access” for more detailed information.

Note: Absolute addressing of static local data is
only possible in the basic languages STL, LAD
and FBD. With SCL, you can only address stat-
ic local data symbolically.

18.2 Block Functions for Data Blocks

You store your program data in the data blocks.
In principle, you can also use the bit memory
area for storing data; however, with the data
blocks, you have significantly more possibili-
ties with regard to data volume, data structuring
and data types. This chapter shows you

b how to work with data addresses,

b how to call data blocks and

b how to create, delete and test data blocks at
runtime.

You can use data blocks in two versions: as
global data blocks, that are not assigned to any

code block, and as instance data blocks, that are
assigned to a function block. The data in the
global data blocks are, in a manner of speaking,
“free” data that every code block can make use
of. You yourself determine their volume and
structure direct through programming the glob-
al data block. An instance data block contains
only the data with which the associated func-
tion block works; this function block then also
determines the structure and storage location of
the data in ‘its’ instance data block.

The number and length of data blocks are CPU-
specific. The numbering of the data block be-
gins at 1; there is no data block DB 0. You can
use each data block either as a global data block
or as an instance data block.

You must first create (“set up”) the data blocks
you use in your program, either by program-
ming, such as code blocks, or at runtime using
the system function SFC 22 CREAT_DB.

Data blocks must be stored in work memory so
that they can be read and written to from the us-
er program. You can also leave data blocks in
load memory by using the block attribute “Un-
linked” (keyword UNLINKED in source-ori-
ented input).

Such data blocks do not occupy space in work
memory, but do have an increased access time.
This procedure is suitable for data blocks with
parameterization data or recipe data that are re-
quired relatively rarely for controlling the plant
or the process. The SFCs 20 BLKMOV and
SFC 83 READ_DBL read data from the load
memory, SFC 84 WRIT_DBL writes data to the
load memory.

If you set the attribute The data block is write-
protected in the programmable controller in the
block properties (corresponds to the keyword
READ_ONLY in source-oriented input) in the
work memory, you can then only read from this
DB.

18.2.1 Two Data Block Registers

The CPU provides two data block registers for
processing data addresses. These registers con-
tain the numbers of the current data blocks;
these are the data blocks with whose addresses
processing is currently taking place. Before ac-
cessing a data block address, you must open the
data block containing the address. If you use

18 Block Functions

252

fully-addressed access to data addresses (with
specification of the data block, see below), you
need not be concerned with opening the data
blocks and with the assignments of the data
block register. The Editor generates the neces-
sary instructions from your specifications.

The Editor uses the first data block register
preferably for accessing global data blocks and
the second data block register for accessing in-
stance data blocks. For this reason, these regis-
ters are given the names “Global data block
register” (DB register) and “Instance Data
Block Register” (DI register). The handling of
the registers by the CPU is absolutely identical.
Each data block can be opened via one of the
two registers (or also via both simultaneously).

When you load a data word, you must specify
which of the two possible open data blocks con-
tains the data word. If the data block has been
opened via the DB register, the data word is
called DBW; if the data word is in the data
block opened via the DI register, it is called
DIW. The other data addresses are named ac-
cordingly (Table 18.2).

18.2.2 Accessing Data Addresses

You can use the following methods for access-
ing data addresses:

b Symbolic addressing with full addressing,

b Absolute addressing with full addressing
and

b Absolute addressing with part addressing.

See Chapter 25 “Indirect Addressing” for fur-
ther addressing methods.

Symbolic access to the data addresses in global
data blocks requires the minimum system

knowledge. For absolute access or for using
both data block registers, you must observe the
notes described below.

Symbolic addressing of data addresses

I recommend you use symbolic addressing of
data addresses as far as possible. Symbolic ad-
dressing

b makes it easier to read and understand the
program (if meaningful terms are used as
symbols),

b reduces write errors in programming (the
Editor compares the terms used in the sym-
bol table and in the program; “number
switching errors” such as DBB 156 and
DBB 165 that can occur when using abso-
lute addresses, cannot occur here) and

b does not require programming knowledge at
the machine code level (which data block
has the CPU opened currently?).

Symbolic addressing uses fully-addressed ac-
cess (data block together with data address), so
that the data address always has a unique ad-
dress.

You determine the symbolic address of a data
address in two steps:

1) Assignment of the data block in the symbol
table
Data blocks are global data that have unique
addresses within a program. In the symbol
table, you assign a symbol (e.g. Motor1) to
the absolute address of the data block (e.g.
DB 51).

2) Assignment of the data addresses in the data
block
You define the names of the data addresses
(and the data type) during programming of
the data block. The name applies only in the
associated block (it is “block-local”). You
can also use the same name in another block
for another variable.

Fully-addressed access to data addresses

In the case of fully-addressed access, you spec-
ify the data block together with the data ad-
dress. This method of addressing can be sym-
bolic or absolute:

Table 18.2 Data Addresses

Data address located in a data block opened
via the

DB register DI register

Data bit DBX y.x DIX y.x

Data byte DBB y DIB y

Data word DBW y DIW y

Data doubleword DBD y DID y

x = Bit address, y = Byte address

18.2 Block Functions for Data Blocks

253

L MOTOR1.ACTVAL;
L DB 51.DBW 20;

MOTOR1 is the symbolic address that you
have assigned to a data block in the symbol ta-
ble. ACTVAL is the data address you defined
when programming the data block. The sym-
bolic name MOTOR1.ACTVAL is just as
unique a specification of the data address as the
specification DB 51.DBW 20.

Fully-addressed data access is only possible in
conjunction with the global data block register
(DB register). With fully-addressed data ad-
dresses, the Editor executes two statements:
First, the data block is opened via the DB regis-
ter and this is then followed by access to the da-
ta addresses.

You can use fully-addressed access with all op-
erations permissible for the data type of the ad-
dressed data address. These are the bit logic op-
erations, the memory functions for binary ad-
dresses and the load and transfer functions for
digital addresses. You can also specify fully-ad-
dressed data addresses at the block parameters,
for example (strongly recommended, see Chap-
ter 19 “Block Parameters”).

Absolute addressing of data addresses

For absolute addressing of data addresses, you
must know the addresses at which the Editor
places the data addresses when setting up. You
can find out the addresses by outputting them
after programming and compiling the data

Table 18.3 Operations with Data Blocks

Statement Meaning

A - Check for signal state “1” and combine according to logic AND of a
O - Check for signal state “1” and combine according to logic OR of a
X - Check for signal state “1” and combine according to logic exclusive OR of a

AN - Check for signal state “0” and combine according to logic AND of a
ON - Check for signal state “0” and combine according to logic OR of a
XN - Check for signal state “0” and combine according to logic exclusive OR of a

= - Assignment to a
S - Set a
R - Reset a

FP - Edge evaluation for positive edge with a
FN - Edge evaluation for negative edge with a

DBX y.x Data bit via the DB register
DIX y.x Data bit via the DI register
DBz.DBX y.x Fully-addressed data bit

L - Load a
T - Transfer a

DBB y Data byte via the DB register
DBW y Data word via the DB register
DBD y Data double word via the DB register

DIB y Data byte via the DI register
DIW y Data word via the DI register
DID y Data doubleword via the DI register

DBz.DBB y Fully-addressed data byte
DBz.DBW y Fully-addressed data word
DBz.DBD y Fully-addressed data doubleword

x = Bit address, y = Byte address, z = Number of the data block

18 Block Functions

254

block. You will then see from the address col-
umn the absolute address at which the relevant
variable begins.

This procedure is suitable for all data blocks,
both those you use as global data blocks as well
as those you use as instance data blocks. In this
way, you can also see where the Editor stores
the block parameters and the static local data in
the case of function blocks.

If you want to calculate the address, Chapter
26.2 “Data Storage of Variables” provides valu-
able information.

Data addresses are addressed bytewise like the
bit memory, for example; they are also used in
conjunction with the same operations (Table
18.3) and are executed in exactly the same way.

If you intend to assign exclusively absolute ad-
dresses to the addresses of a data block, reserve
the required quantity of bytes via a field decla-
ration.

18.2.3 Open Data Block

OPN DB x Open a data block via the DB
register with absolute address

OPN DI x Open a data block via the DI
register with absolute address

OPN "name" Open a data block via the DB
register with symbolic address

OPN #name Open a data block via the DB
register with a block parameter

Data blocks are opened regardless of any con-
ditions. Opening does not affect the RLO and
the contents of the accumulators; the nesting
depth of the block calls does not change.

The opened data block must be in work memory.

Example: The value of data word DBW 10
from data block DB 12 is to be transferred to
data word DBW 12 of data block DB 13 (Fig-
ure 18.5 left). The values in the data words
DBW 14 from data blocks DB 12 and DB 13
should be added; the result should be saved in
data word DBW 14 of data block DB 14.

You can program this example in two ways:
with part addressing and with full addressing
(Figure 18.5 on the right).

When a data block is opened it remains “valid”
until another data block is opened. Under cer-
tain circumstances – not visible to you– this can
be done by the Editor (see “Special Points in
Data Addressing” below). For example, a block
call with CALL in conjunction with parameter
transfer can change the contents of the data
block registers.

With a block change using UC or CC, the con-
tents of the data block registers are retained. On
returning to the calling block, the block end
statement restores the old contents of the regis-
ters.

Figure 18.5 Opening data blocks (example)

Programming with
partial addressing

Programming with com-
plete addressing

OPN DB 12;
L DBW 10;

L DB 12.DBW 10;

OPN DB 13;
T DBW 12;

T DB 13.DBW 12;

OPN DB 12;
L DBW 14;

L DB 12.DBW 14;

OPN DB 13;
L DBW 14;

L DB 13.DBW 14;

+I ; +I ;

OPN DB 14;
T DBW 14;

T DB 14.DBW 14;

18.2 Block Functions for Data Blocks

255

18.2.4 Exchanging the Data Block Registers

CDB Exchange data block registers

The statement CDB exchanges the contents of
the data block registers. It is executed regard-
less of conditions and does not affect either the
status bits or the other registers.

Example: With the statement CDB, you can
take a “detour” via the DB register to open, via
the DI register, a data block transferred as a
block parameter (not possible direct).

CDB ;
OPN #Data2;
CDB ;
With CDB, you transfer the contents of the DB
register temporarily to the DI register. Then you
open, via the block parameter #Data2, the data
block transferred as an actual parameter; that is,
you write its number into the DB register. After
renewed exchange, the old value is again in the
DB register and the DI register contains the
number of the parameterized data block.

18.2.5 Data Block Length and Number

L DBLG Load the length of the data block
opened via the DB register

L DBNO Load the number of the data block
opened via the DB register

L DILG Load the length of the data block
opened via the DI register

L DINO Load the number of the data block
opened via the DI register

The statement L DBLG loads the length of the
data block that was opened via the DB register
into accumulator 1. The length is the same as
the quantity of data bytes. The statement L
DILG is the same for the DI register.

The statement L DBNO loads the number of the
data block that was opened via the DB register
into accumulator 1. L DINO shows you the
number of the current data block that was
opened via the DI register.

These statements transfer the previous contents
of accumulator 1 into accumulator 2 in accor-
dance with a “normal” load function. If no data
block has been opened via the relevant register,
zero is loaded both as the length and as the
number.

It is not possible to write a number back to a da-
ta block register direct; you can only influence
the data block registers via OPN DB or OPN DI
and CDB (exchange data block registers).

18.2.6 Special Points in Data Addressing

Changing the assignments in the DB register

With the following functions, the Editor gener-
ates additional statements that can affect the
contents of one of the two data block registers:

Full addressing of data addresses

Each time data addresses are addressed fully,
the Program Editor first opens the data block
with the statement OPN DB, and then accesses
the data addresses. The DB register is overwrit-
ten each time here. This applies also when ini-
tializing block parameters with fully-addressed
data addresses.

Access to block parameters

Access to the following block parameters
changes the contents of the DB register: With
functions, all block parameters of complex data
type and with function blocks, in/out parame-
ters of complex data type.

Block calls CALL FB and CALL SFB

Prior to the actual block call, CALL FB and
CALL SFB store the number of the current in-
stance data block in the DB register (by ex-
changing the data block registers) and open the
instance data block for the called function
block. In this way, the associated instance data
block is always open in a called function block.
Following the actual block call, CALL FB and
CALL SFB exchange the data block registers
again, so that the current instance data block is
once again available in the calling function
block. In this way, CALL FB and CALL SFB
change the contents of the DB register.

DI register in function blocks

In function blocks the DI register is permanent-
ly assigned the number of the current instance
data block. All accesses to block parameters or
static local data are made via the DI register

18 Block Functions

256

and, incidentally, also via the address register
AR2 in the case of “multi-instance-capable”
function blocks. Please note this permanent as-
signment if you change the contents of the DI
register with CDB or OPN DI.

If, for example, you want to use both data block
registers simultaneously for data exchange, you
must first save the register contents and then re-
store them. The example shown in Figure 18.6
describes a relevant method.

Making changes to data block assignments
at a later stage

On the “Blocks” tab in the properties window
of the offline object container Blocks you can
specify whether the absolute address or the
symbol is to take precedence when a change is
made to the data block assignment for the al-
ready saved code blocks when they are dis-
played and saved again.

The default is “Absolute value has priority”
(the same characteristic as in the previous
STEP 7 versions). This default means that
when a change is made in the declaration, the
absolute address is retained in the program and

the symbol changes accordingly. With the set-
ting “Symbol has priority”, the absolute ad-
dress changes and the symbol is retained.

Example: In the data block DB 1, data word
DBW 10 is assigned the symbol Actual_value.
In the program, you load this data word with,
for example:

L "Data".Actual_value DB1.DBW 10

if “Data” is the symbol for data block DB 1. If
you now add an additional data word with the
symbol MaxCurrent immediately in front of da-
ta word DBW 10, the program will then contain
the following when the code block is next
opened (and saved):

if “Absolute value has priority”:

L "Data".MaxCurrent DB1.DBW 10

if “Symbolic has priority”:

L "Data".Actual_value DB1.DBW 12

For accessing data addresses in global data
blocks, the same thing applies as for accessing
global addresses (e.g. inputs) for which a sym-
bol is assigned in the symbol table. Chapter
2.5.6 “Address Priority” contains detailed in-
formation on this topic.

VAR_TEMP
 ZW_DB : WORD; //Intermediate buffer for global data block
 ZW_DI : WORD; //Intermediate buffer for instance data block
END_VAR
//Save data block registers
 L DBNO; //Buffer global data block number
 T ZW_DB;
 L DINO; //Buffer instance data block number
 T ZW_DI;
//Working with part-addressed data addresses
//when using both data block registers
 OPN DB 12; //Open data block DB 12 via the DB register
 OPN DI 13; //Open data block DB 13 via the DI register
 L DBW 16; //##########
 T DIW 28; //# Be careful with symbolic addressing in this
 L DID 30; //# program section, e.g. when using block
 L DBD 30; //# parameters, block-local variables and
 +R ; //# fully-addressed data addresses
 T DID 26; //##########
//Restore data block registers
 OPN DB[ZW_DB]; //Open original global data block
 OPN DI[ZW_DI]; //Open original instance data block

Figure 18.6 Example of the Direct Use of Both Data Block Registers

18.3 System Functions for Data Blocks

257

18.3 System Functions for Data
Blocks

There are three system functions for handling
data blocks. Their parameters are described in
Table 18.4.

b SFC 22 CREAT_DB
Create data block in the work memory

b SFC 85 CREA_DB
Create data block in the work memory

b SFC 82 CREA_DBL
Create data block in the load memory

b SFC 23 DEL_DB
Delete data block

b SFC 24 TEST_DB
Test data block

18.3.1 Creating a Data Block in the
Work Memory

System functions SFC 22 CREAT_DB and
SFC 85 CREA_DB create a data block in the
work memory. As the data block number, the
system function takes the lowest free number in
the number band given by the input parameters
LOW_LIMIT and UP_LIMIT. The numbers
specified at these parameters are included in the
number band. If both values are the same, the
data block is generated with this number. You
cannot assign the number of a data block al-
ready present in the user program to another
block, not even if the data block is only present
in the load memory.

The output parameter DB_NUMBER supplies
the number of the actually created data block.
With the input parameter COUNT, you specify
the length of the data block to be created. The
length corresponds to the number of data bytes
and must be an even number.

Creating the data block is not the same as call-
ing it. The current data block is still valid. A da-
ta block created with the system function con-
tains random data. For meaningful use, data
must first be written to a data block created in
this way before the data can be read.

The data blocks created with the SFCs 22
CREAT_DB and 85 CREA_DB are only pres-
ent in the work memory. If a CPU differentiates
between retentive and non-retentive work

memory, the SFC 22 CREAT_DB generates a
retentive data block and the SFC 85 CREA_
DB a data block as specified by the parameter
ATTRIB. “Retentive” data block means that its
contents are retained following a cold restart/
hot restart (see Chapter 22.2.4 “Retentivity”).

The system function SFC 85 CREA_DB
replaces the SFC 22 CREAT_DB.

A data block created with the SFC 22 CREAT_
DB and SFC 85 CREA_DB does not change
the checksum of the user program, not even if
it is written or deleted again. If a data block
created with an SFC is imported into the offline
data management, this influences the check-
sum.

In the event of an error, no data block is creat-
ed, the parameter DB_NUMBER is assigned
zero, and an error number is signaled via RET_
VAL.

18.3.2 Creating a Data Block in the
Load Memory

The system function SFC 82 CREA_DBL cre-
ates a data block in the load memory, and also
in the work memory if applicable. The system
function assigns the lowest free number of the
number band given by the input parameters
LOW_LIMIT and UP_LIMIT to the data block.
The numbers specified at these parameters are
included in the number band. If both values are
the same, the data block is generated with ex-
actly this number. You cannot reassign a num-
ber of a data block already present in the user
program, not even if the data block is only pres-
ent in the work memory.

The output parameter DB_NUMBER supplies
the number of the actually created data block.
With the input parameter COUNT, you specify
the length of the data block to be created. The
length corresponds to the number of data bytes
and must be an even number.

The created data block is preassigned the data
area specified at the input parameter SRCBLK.
Here you can specify a complete data block,
e.g. DB 160 or “Archive 1”, a variable from a
data block, or an absolute addressed data area
as the ANY pointer,

e.g. P#DB160.DBX16.0 BYTE 64

18 Block Functions

258

The source must be a data area in the work
memory.

If the source area is smaller than the target area,
the former is written completely into the latter.
The remaining bytes of the target area are filled
with zeros. If the source area is larger than the

target area, the latter is written completely; the
remaining bytes of the source area are ignored.

You can assign the generated data block the fol-
lowing properties using the input parameter
ATTRIB:

Table 18.4 SFCs for Handling Data Blocks

SFC Name Declaration Data Type Assignment, Description

22 LOW_LIMIT INPUT WORD Lowest number of the data block to be created

UP_LIMIT INPUT WORD Highest number of the data block to be created

COUNT INPUT WORD Length of the data block in bytes (even number)

RET_VAL RETURN INT Error information

DB_NUMBER OUTPUT WORD Number of the created data block

85 LOW_LIMIT INPUT WORD Lowest number of the data block to be created

UP_LIMIT INPUT WORD Highest number of the data block to be created

COUNT INPUT WORD Length of the data block in bytes (even number)

ATTRIB INPUT BYTE Block attributes:
B#16#00 Retain
B#16#04 Non_Retain

RET_VAL RETURN INT Error information

DB_NUMBER OUTPUT WORD Number of the created data block

82 REQ INPUT BOOL Trigger for creating with signal status “1”

LOW_LIMIT INPUT WORD Lowest number of the data block to be created

UP_LIMIT INPUT WORD Highest number of the data block to be created

COUNT INPUT WORD Length of the data block in bytes (even number)

ATTRIB INPUT BYTE Properties of created data block
Bit 0: UNLINKED

“1” = the DB is only in the load memory.
Bit 1: READ_ONLY

“1” = the DB is write-protected.
Bit 2: NON_RETAIN

“1” = the DB is non-retentive.
Bits 3 to 7: reserved

SRCBLK INPUT ANY Data area in work memory with which the created data
block is initialized

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL With TRUE, creation has not yet been completed

DB_NUM OUTPUT WORD Number of the created data block

23 DB_NUMBER INPUT WORD Number of the data block to be deleted

RET_VAL RETURN INT Error information

24 DB_NUMBER INPUT WORD Number of the data block to be tested

RET_VAL RETURN INT Error information

DB_LENGTH OUTPUT WORD Length of the data block (in bytes)

WRITE_PROT OUTPUT BOOL TRUE = write-protected

18.4 Null Operations

259

b Bit 0 = “1”
The data block has the property Unlinked.
Following transfer to the offline data man-
agement and loading back into the CPU, the
data block is again only present in the load
memory. If the bit has the signal status “0”,
the data block is created in both the load and
work memories.

b Bit 1 = “1”
The data block has the property DB is write-
protected in the AS. You can only read the
values of this data block.

b Bit 2 = “1”
The data block has the property Non_Re-
tain.

The remaining bits are not occupied at the mo-
ment. You can find further information on the
block properties in Chapter 3.2.3 “Block Prop-
erties”.

The system function SFC 82 CREA_DBL op-
erates asynchronously: you trigger the create
operation with signal status “1” at the input pa-
rameter REQ. You can only access the read and
written data areas again if the parameter BUSY
has the signal status “0” again.

Creating does not call the associated data block.
The current data block is still valid.

A data block is not generated in the event of an
error, the output parameters are undefined, and
and an error message is output by the function
value.

18.3.3 Deleting a Data Block

System function SFC 23 DEL_DB deletes the
data block in RAM (work and load memory)
whose number is specified at the input parame-
ter DB_NUMBER. The data block must not be
opened when this is done, otherwise the operat-
ing system of the CPU calls the organization
block OB 121. If this is not present, the CPU
changes to the STOP state.

If the load memory is a flash EPROM memory
card, the deleted data block present on it is
declared to be invalid, and is then practically no
longer existent for the user program. Following
a cold restart or an unbuffered power on/off, the

data block is loaded from the load memory into
the work memory and is then present again. If
the load memory is a RAM memory card or a
micro memory card, the data block is really
deleted.

If the deleted data block has been created by a
system function during runtime, the checksum
of the user program is not changed by the dele-
tion. The deletion of programmed (loaded) data
blocks changes the checksum.

In the event of an error, the data block is not de-
leted and an error number is signaled in the
function value.

18.3.4 Testing a Data Block

System function SFC 24 TEST_DB supplies
information on a data block whose number you
specify at the input parameter DB_NUMBER.
The output parameter DB_LENGTH indicates
the number of existing bytes, and the output pa-
rameter WRITE_PROT indicates whether the
data block is write-protected.

If the tested data block is only present in the
load memory, this is indicated as an error by
RET_VAL; the parameters DB_LENGTH and
WRITE_PROT are nevertheless correctly
assigned.

If the specified data block is not present in the
user memory of the CPU, RET_VAL =
W#16#80B1 is returned.

18.4 Null Operations

Null operations have no effect when processed
by the CPU. STL has NOP 0, NOP 1 and BLD
statements as null operations.

18.4.1 NOP Statements

You can use the statements NOP 0 (bit pattern
16x “0”) and NOP 1 (bit pattern 16x “1”) to en-
ter a statement that has no effect. Please note
that null operations occupy memory space
(2 bytes) and have an instruction execution
time.

Example: There must always be a statement at
a jump label. If you want to have a jump in your

18 Block Functions

260

program but do not want anything further to be
executed, use NOP 0.

A I 1.0
JC MXX1
...

MXX1: NOP 0
...

You can enter an empty line for clarity more ef-
fectively by simply entering an (empty) line

comment (this does not require user memory
space and involves no loss of execution time
since no code is entered).

18.4.2 Program Display Statements

The Editor uses the program display instruction
BLD nnn to incorporate decompiling informa-
tion into the program.

19 Block Parameters

261

19 Block Parameters

This chapter describes how to use block param-
eters. You will learn

b how to declare block parameters,

b how to work with block parameters,

b how to initialize block parameters and

b how to “pass on” block parameters.

Block parameters represent the transfer inter-
face between the calling and the called block.
All functions and function blocks can be pro-
vided with block parameters.

19.1 Block Parameters in General

19.1.1 Defining the Block Parameters

You enable parameterization of the processing
instruction (the block function) present in a
block by means of block parameters. Example:
You want to write a block as an adder that you

want to repeatedly use in your program with
different tags. You transfer the tags as block pa-
rameters – in our example, three input parame-
ters and one output parameter (Figure 19.1).
Since the adder does not have to save values in-
ternally, a function is suitable as the block type.

You define a block parameter as an input pa-
rameter if you only check or load its value in
the block program. If you only write a block pa-
rameter (assign, set, reset, transfer), you use an
output parameter. You must always use an in/
out parameter if a block parameter is to be both
checked and written. The Editor does not check
the use of the block parameters.

19.1.2 Processing the Block Parameters

In the adder program, the names of the block
parameters stand as place holders for the later
current variables. You use the block parameters

Figure 19.1 Example of Block Parameters

19 Block Parameters

262

in the same way as symbolically addressed
variables; in the program, they are called for-
mal parameters.

You can call the “Adder” function several times
in your program. With each call, you transfer
other values to the adder at the block parame-
ters (Figure 19.2). The values can be constants,
addresses or variables; they are called Actual
parameters.

At runtime, the CPU replaces the formal param-
eters with the actual parameters. The first call in
the example adds the contents of memory words
MW 30, MW 32 and MW 34 and stores the re-
sult in memory word MW 40. The same block
with the actual parameters of the second call
adds data words DBW 30, DBW 32 and DBW
34 of data block DB 10 and stores the result in
data word DBW 40 of data block DB 10.

19.1.3 Declaration of the Block Parameters

You define the block parameters in the declara-
tion section of the block when you program the
block. With incremental input, you complete a
list and with source-oriented input you define

the block parameters in specific sections (Figure
19.3). The keyword is VAR_INPUT for input
parameters, VAR_OUTPUT for output parame-
ters and VAR_IN_OUT for in/out parameters.

The pre-assignment is optional and only makes
sense with function blocks if the block parame-
ter is stored as a value. This applies to all block
parameters of elementary data type and to input
and output parameters of complex data type.
Specification of a parameter comment is op-
tional and always possible.

The Block parameter name can be up to
24 characters in length. It must consist only of
alphanumeric characters (without national
characters such as the German Umlaut) and the
underscore. A distinction is made between up-
per and lower case. The name must not be a
keyword.

No distinction is made between upper and low-
er case when entering a block parameter name.
At output, the editor uses the case established
when the block parameter name was declared.

For the Data type of a block parameter all ele-
mentary, complex and user-defined data types
are permissible. In addition, you can use the pa-
rameter types with block parameters.

STEP 7 stores the names of the block parame-
ters in the non-execution-relevant section of the

Figure 19.2 Block Call with Block Parameters

19.1 Block Parameters in General

263

blocks on the data medium of the programming
device. The work memory of the CPU (in the
compiled block) contains only the declaration
types and the data types. For this reason, pro-
gram changes made to blocks online at the CPU
must always be updated on the data medium of
the programming device, in order to retain the
original names.

If the update is not made, and blocks are trans-
ferred from the CPU to the programming de-
vice, the non-execution-relevant block sections
are overwritten or deleted. The Editor then gen-
erates replacement symbols for display or print-
out (INn with input parameters, OUTn with
output parameters and INOUTn with in/out pa-
rameters, with n beginning at 0).

19.1.4 Declaration of the Function Value

The function value in the case of functions is a
specially treated output parameter. It has the
name RET_VAL (or ret_val) and is defined as
the first output parameter.

All elementary data types are permissible as the
data type of the function value and, in addition,
the data types DATE_AND_TIME, STRING,
POINTER, ANY and user-defined data types
UDT are also permissible. The data types
ARRAY and STRUCT are not permissible.

The above-named example of the adder can al-
so be programmed with the total as the function
value.

Incremental programming

Address Declaration Name Type Initial value Comment

0.0 IN Manual BOOL TRUE Manual control

2.0 IN Setpoint INT 10000 Speed for Motor1

4.0 IN Characteristic ANY Pointer to data area

14.0 OUT Actual_value INT 0 Speed of Motor1

16.0 OUT Temperature REAL 0.000000e+00 Temperature of Motor1

20.0 OUT Message WORD W#16#0 Fault message

22.0 IN_OUT EM ARRAY[1..16] Edge memory bit

*0.1 IN_OUT BOOL

28.0 IN_OUT Interface DWORD DW#16#0 Interface to Motor2

Source-oriented programming

VAR_INPUT
Manual : BOOL := TRUE; //Manual control
Setpoint : INT := 10_000; //Speed for Motor1
Characteristic : ANY; //Pointer to data area

END_VAR

VAR_OUTPUT
Actual_value : INT := 0; //Speed of Motor1
Temperature : REAL := 0.0; //Temperature of Motor1
Message : WORD := 16#0000; //Fault message

END_VAR

VAR_IN_OUT
EM : ARRAY[1..8] OF BOOL; //Edge memory bit
Interface : DWORD := 16#0000_0000; //Interface to Motor1

END_VAR

Figure 19.3 Examples for the Declaration of Block Parameters

19 Block Parameters

264

Source-file-oriented programming

In source-file-oriented programming, you de-
clare the function value by specifying the data
type of the function value after the block type
and separated from this by a colon.

FUNCTION FC 12 : INT
VAR_INPUT
 Numb_1 : INT;
 Numb_2 : INT;
 Numb_3 : INT;
END_VAR
BEGIN
 L Numb_1;
 L Numb_2;
 +I ;
 L Numb_3;
 +I ;
 T RET_VAL;
END_FUNCTION

In the example, the function value is of data
type INT. With T RET_VAL, the function value
is assigned the total from Numb_1, Numb_2
and Numb_3.

Incremental programming

With incremental programming, the function
value with the name RET_VAL is present under
the declaration RETURN. Here you define the
data type of the function value and enter a com-
ment.

In the program, you treat the function value like
an output parameter. In the example, you assign
the total of Numb_1, Numb_2 and Numb_3 to
the function value with the operation T RET_
VAL.

19.1.5 Initializing Block Parameters

When calling a block, you initialize the block
parameters with actual parameters. These can
be constants, absolute addresses, fully-ad-
dressed data addresses or symbolically ad-
dressed variables. The actual parameter must be
of the same data type as the block parameter
(Chapter 19.3 “Actual Parameters”).

From STEP 7 V5.1, you must specify the block
parameters in the program source in exactly the

order in which you defined them in the declara-
tion of the block during programming.

You must initialize all block parameters of a
function at every call. In the case of function
blocks, initialization of individual or all block
parameters is optional.

19.2 Formal Parameters

In this chapter, you will learn how to access the
block parameters within a block. Table 19.1
shows that it is possible to access block param-
eters of elementary data types, components of a
field or a structure, and timer and counter func-
tions without restriction.

Access to complex data types and with param-
eter types POINTER and ANY is currently not
supported by STL. However, you can initialize
acquired blocks or system blocks that have such
parameters with the relevant variables. Chapter
26 “Direct Variable Access” shows you how
you can nevertheless use parameters with these
data types in blocks you have written yourself.

Block parameters of data type BOOL

Block parameters of data type BOOL can be in-
dividual binary variables or binary components
of fields and structures. You can check input pa-
rameters and in/out parameters with contacts or
with binary box inputs, and you can influence
output parameters and in/out parameters with
memory functions.

With functions FCs, you must assign a value to
a binary output parameter and to a function val-
ue in the block or you must set or reset it. You
must not, for example, exit the block first.

Table 19.2 shows the permissible operations.
When programming, you use the formal param-
eter in place of the block parameter xxxx.

After the CPU has used the actual parameter
specified as the block parameter, it processes
the statement as described in the Chapters 4
“Binary Logic Operations” and 5 “Memory
Functions”.

Block parameters of digital data type

Block parameters of digital data type occupy 8,
16 or 32 bits (all elementary data types except

19.2 Formal Parameters

265

Table 19.1 Access to Block Parameters (General)

Data Types Permissible with Access in the block possible with

IN I_O OUT

Elementary data types

BOOL x x x Binary checks, memory operations

BYTE, WORD, DWORD,
CHAR, INT, DINT, REAL,
S5TIME, TIME, TOD, DATE

x x x Load and transfer operations

Complex data types

DT, STRING x x x Not possible direct in STL

ARRAY, STRUCT, UDT

Individual binary components x x x Binary checks, memory operations

Individual digital components x x x Load and transfer operations

Complete variables x x x Not possible direct in STL

Parameter types

TIMER x - - All operations for timer functions

COUNTER x - - All operations for counter functions

BLOCK_FC, BLOCK_FB x - - Calling with UC and CC2)

BLOCK_DB x - - Opening with OPN DB

BLOCK_SDB x - - Not possible3)

POINTER, ANY x x x1) Not possible direct in STL

1) Only with functions 2) CC not with functions 3) Only meaningful with system blocks

Table 19.2 Accessing Block Parameters of Data Type BOOL

A - AND logic operation with check for signal state “1”

AN - AND logic operation with check for signal state “0”

O - OR logic operation with check for signal state “1”

ON - OR logic operation with check for signal state “0”

X - Exclusive OR logic operation with check for signal state “1”

XN - Exclusive OR logic operation with check for signal state “0”

- xxxx of an input or in/out parameter of data type BOOL

- xxxx of an input parameter of data type TIMER

- xxxx of an input parameter of data type COUNTER

S - Set

R - Reset

= - Assignment

- xxxx of an output or in/out parameter of data type BOOL

FP - Edge evaluation positive

FN - Edge evaluation negative

- xxxx of an in/out parameter of data type BOOL

19 Block Parameters

266

BOOL). They can be individual digital vari-
ables or digital components of fields and struc-
tures. You read input parameters and in/out pa-
rameters with the load function, and you write
output parameters and input parameters with
the transfer function.

With functions FCs you must transfer a value to
a digital output parameter and to a function val-
ue. You must not, for example, exit the block
first.

L xxxx Load an input or in/out parameter

T xxxx Transfer to an output or in/out
parameter

When programming, you use the formal param-
eter in place of the block parameter xxxx.

After the CPU has used the actual parameter, it
processes the statements as described in the
Chapter 6 “Move Functions”.

Block parameters of data type DT and
STRING

Direct access to block parameters of data type
DT and STRING is not currently possible. In
function blocks, you can “pass on” parameters
of data types DT and STRING to parameters of
called blocks.

Chapter 26 “Direct Variable Access” shows
you how to program access to parameters of a
higher data type yourself.

Block parameters of data type ARRAY and
STRUCT

Direct access to block parameters of data type
ARRAY and STRUCT is possible on a compo-
nent-wise basis, that is, you can access individ-
ual binary or digital components with the rele-
vant operations (binary logic operations, mem-
ory functions, load and transfer functions).

Access to the complete variable (entire field or
entire structure) is not currently possible and
neither is access to individual components of
combined or user-defined data type. In function
blocks, you can ‘pass on’ parameters of data
type ARRAY and STRUCT to parameters of
called blocks”.

Chapter 26 “Direct Variable Access” shows
you how to program access to parameters of a
higher data type yourself.

Block parameters of user-defined data type

You handle block parameters of user-defined
data type in the same way as block parameters
of data type STRUCT.

Direct access to block parameters of data type
UDT is possible on a component-wise basis,
that is, you can access individual binary or dig-
ital components with the relevant operations
(binary logic operations, memory functions,
load and transfer functions).

Access to the complete variable is not currently
possible and neither is access to individual
components of combined or user-defined data
type. In function blocks, you can “pass on” pa-
rameters of data type UDT to parameters of
called blocks.

Chapter 26 “Direct Variable Access” shows you
how to program access to parameters of a high-
er data type yourself.

Block parameters of data type TIMER

In addition to the check statements listed in Ta-
ble 19.2, you can program a block parameter of
data type TIMER with the following state-
ments:

SP - Start as pulse

SD - Start as ON delay

SE - Start as extended pulse

SS - Start as retentive ON delay

SF - Start as OFF delay

R - Reset

FR - Enable

- xxxx input parameter of data type
TIMER

When programming, you use the formal param-
eter in place of the block parameter xxxx.

After using the formal parameter, the CPU pro-
cesses this STL statement in exactly the same
way as described in Chapter 7 “Timer Func-
tions”. When a timer is started, the time value
can also be a block parameter of data type
S5TIME.

Block parameters of data type COUNTER

In addition to the check statements listed in Ta-
ble 19.2, you can program a block parameter of

19.3 Actual Parameters

267

data type COUNTER with the following state-
ments:

S - Set counter
CU - Count up
CD - Count down
R - Reset
FR - Enable

- xxxx of an input parameter of data type
COUNTER

When programming, you use the formal param-
eter in place of the block parameter xxxx.

After using the formal parameter, the CPU pro-
cesses this STL statement exactly as described
in Chapter 8 “Counter Functions”. When set-
ting a counter, the count value can also be a
block parameter of, for example, data type
WORD.

Block parameters of data type BLOCK_xx

OPN - Open a data block (parameter type
BLOCK_DB)

UC - Call a function (parameter type
BLOCK_FC)

UC - Call a function block (parameter
type BLOCK_FB)

CC - Conditional call of a function
(parameter type BLOCK_FC)

CC - Conditional call of a function block
(parameter type BLOCK_FB)
(see text)

- xxxx via an input parameter

When programming, you use the formal param-
eter in place of the block parameter xxxx.

When opening a data block via a block param-
eter, the CPU always uses the global data block
register (DB register).

The functions and function blocks transferred
with block parameters must themselves not
contain block parameters. A conditional block
call via a block parameter is only possible if it
is the block parameter of a function block.

As the instance data block in a function block
call, you can also use a data block that you have
transferred as a block parameter. Since the Edi-
tor has no means of checking the data type of
the data block used at runtime, you must your-

self ensure that the transferred data block is also
suitable as an instance data block for the called
function block.

Example: You can specify a block parameter of
type BLOCK_DB with the name #Data as the
instance data block in a function block call:

CALL FB 10, #Data

Block parameters of data type POINTER
and ANY

Direct access to block parameters of data type
POINTER and ANY is not possible.

Chapter 26 “Direct Variable Access” shows
you how to program access to parameters of da-
ta types POINTER and ANY yourself.

19.3 Actual Parameters

When you call a block, you initialize its block
parameters with constants, addresses or vari-
ables with which it is to operate. These are the
actual parameters. If you call the block often in
your program, you usually use different actual
parameters each time it is called.

The actual parameter must agree in data type
with the block parameter: You can only apply a
binary actual parameter (for example, a memo-
ry bit) to a block parameter of data type BOOL;
you can only initialize a block parameter of da-
ta type ARRAY with an identically dimen-
sioned field variable. Table 19.3 gives an over-
view of which addresses you can use as actual
parameters with which data type.

When calling functions, you must initialize all
block parameters with actual parameters.

When calling function blocks, it is not neces-
sary to initialize the block parameters. STEP 7
stores all block parameters of elementary data
type, input and output parameters of complex
data type and input parameters of data types
TIMER, COUNTER and BLOCK_xx as a val-
ue or as a number. In/out parameters of com-
plex data types and block parameters of data
types POINTER and ANY are stored as point-
ers to the actual parameters. So that a meaning-
ful value is entered here, you should initialize at

19 Block Parameters

268

least the last named block parameters – at least,
at the first call.

You can also access the block parameters of the
function block direct. Since they are located in
a data block, you can handle the block parame-
ters like data addresses.

Example: A function block with the instance
data block “Lift_stat_1” controls a binary out-
put parameter with the name Up. Following
processing in the function block (after its call),
you can check the parameter as follows, with-
out having initialized the output parameter:

U "Lift_stat_1".Up;

You program this check instead of initializing
the parameter.

Initializing block parameters of
elementary data types

The actual parameters listed in Table 19.4 are
permissible as actual parameters of elementary
data types.

You can assign either absolute or symbolic ad-
dresses to input, output and memory bit ad-
dresses. Input addresses should be placed only
at input parameters and output addresses at out-
put parameters (however, this is not mandato-
ry). Memory bit addresses are suitable for all
declaration types. You must apply peripheral
inputs only to input parameters and peripheral
outputs only to output parameters.

When you use part-addressed data addresses,
you must ensure that when you access the block

parameter (in the called block), the currently
open data block is also the “correct” one. Since
the Editor may in certain circumstances change
the data block when the block is called, part ad-
dressing is not recommended for data address-
es. Use only fully-addressed data addresses for
this reason.

Temporary local data are usually symbolically
addressed. They are located in the L stack of the
calling block (and are declared in the calling
block).

If the calling block is a function block, you can
also use its static local data as actual parameters
(see “Passing On Block Parameters” below).
Static data are usually symbolically addressed.
If you use absolute addressing via the DI regis-
ter (DI addresses), you must ensure that when
accessing the block parameter (in the called
block) the data block currently opened via the
DI register is also the “correct” one. Please note
in this regard that when using the called block
as a local instance, the absolute address of the
block-local variable depends on the declaration
of the local instance in the called block.

With a block parameter of data type BOOL,
you can apply the constant TRUE (signal state
“1”) or FALSE (signal state “0”), and with
block parameters of digital data type, you can
apply all constants corresponding to the data
type. Initialization with constants is only mean-
ingful with input parameters.

You can also initialize a block parameter of el-
ementary data type with components of fields

Table 19.3 Initialization with Actual Parameters

Data Type of the Block Parameter Permissible Actual Parameters

Elementary data type b Simple addresses, fully-addressed data addresses, constants

b Components of fields or structures of elementary data type

b Block parameter of the calling block

b Components of block parameters of the calling block of elementa-
ry data type

Complex data type b Variables or block parameters of the calling block

TIMER, COUNTER and BLOCK_xx b Timers, counters and blocks

POINTER b Simple addresses, fully-addressed data addresses
b Range pointer or DB pointer

ANY b Variables of any data type
b ANY pointer

19.3 Actual Parameters

269

and structures, provided such a component is of
the same data type as the block parameter.

Initializing block parameters of
complex data types

Every block parameter can be of the complex
data type or of the user-defined data type. Vari-
ables of the same data type are permissible as
actual addresses.

For initializing block parameters of data type
DT or STRING, individual variables or compo-
nents of fields or structures of the same data
type are permissible. Initialization with con-
stants is not possible in STL.

If you initialize a function block with a
STRING variable, this variable must have the
same maximum length as the STRING block
parameter.

When creating the STRING variable in the tem-
porary local data, pre-assignment is not possi-
ble, so that the STRING variable contains “ran-
dom” values so to speak. If you use such a vari-
able as an actual parameter for an IEC function,
you must pre-assign “valid” values to this vari-
able via the program (before writing to a
STRING variable, the IEC function checks that
the value to be written also “fits” this variable).

For initializing block parameters of data type
ARRAY or STRUCT, variables with exactly
the same structure as the block parameters are
permissible.

Parameter assignment with complex data types
is described in Chapter 26.4 “Brief Description
of the Message Frame Example” in the examples
“Composing the Message Frame” and “Read
Time of Day”.

Initializing block parameters of
user-defined data type

With complex or extensive data structures, the
use of user-defined data types (UDTs) is recom-
mended. First, you define the UDT and then
you use it, for example, to apply the variable in
the data block or to declare the block parameter.
Following this, you can use the variable when
initializing the block parameter. It is also the
case here, that the actual parameter (the vari-
able) must be of the same data type (the same
UDT) as the block parameter.

A complete data block with the same UDT type
as the block parameter is not permissible as the
actual parameter.

Parameter assignment with user-defined data
types is shown in Chapter 26.4 “Brief Descrip-
tion of the Message Frame Example” in the ex-
ample “Message Frame Data”.

Table 19.4 Actual Parameters of Elementary Data Types

Addresses Permissible with Binary address
or symbolic name

Digital address
or symbolic nameIN I_O OUT

Inputs (process image) x x x I y.x IB y, IW y, ID y

Outputs (process image) x x x Q y.x QB y, QW y, QD y

Memory bits x x x M y.x MB y, MW y, MD y

Peripheral inputs x - - - PIB y, PIW y, PID y

Peripheral outputs - - x - PQB y, PQW y, PQD y

Global data
Part addressing
Full addressing

x
x

x
x

x
x

DBX y.x
DB z.DBX y.x

DBB y, DBW y, DBD y
DB z.DBB y, etc.

Temporary local data x x x L y.x LB y, LW y, LD y

Static local data x x x DIX y.x DIB y, DIW y, DID y

Constants x - - TRUE, FALSE all digital constants

Components of ARRAY,
STRUCT or UDT

x x x Complete
component name

Complete
component name

x = bit number, y = byte address, z = data block number

19 Block Parameters

270

Initializing block parameters of type
TIMER, COUNTER and BLOCK_xx

You initialize a block parameter of type TIMER
with a timer function, and a block parameter of
type COUNTER with a counter function. To
block parameters of parameter types BLOCK_
FC and BLOCK_FB, you can apply only
blocks without their own parameters. These
blocks are then called in the case of access with
UC (and also CC in the case of function
blocks). You initialize BLOCK_DBs with a da-
ta block that is opened in the called block via
the DB register.

Block parameters of types TIMER, COUNTER
and BLOCK_xx must only be input parame-
ters.

Initializing block parameters of type
POINTER

Pointers (constants) are permissible for block
parameters of parameter type POINTER. These
pointers are either range pointers (32-bit point-
ers) or DB pointers (48-bit pointers). The ad-
dresses are of elementary data type and can also
be fully-addressed data addresses.

Output parameters of type POINTER are not
permissible with function blocks.

Initializing block parameters of type ANY

Variables of all data types are permissible for
block parameters of parameter type ANY. The
programming within the called block deter-
mines which variables (addresses or data types)
must be applied to the block parameters, or
which variables are feasible. You can also spec-

ify a constant in the format of the ANY pointer
“P#[Data_block.]Address Data_type Number”
and so define an absolute-addressed area.

An exception is the initialization of an ANY
parameter with a temporary local data item of
data type ANY. In this case, rather than gener-
ating a pointer to the variable, the Editor
assumes that a pointer of data type ANY
already exists in the temporary local data. This
gives you the ability to apply to an ANY param-
eter an ANY pointer that you can change at run-
time. The “variable ANY pointer” can be par-
ticularly useful in conjunction with the system
function SFC 20 BLKMOV (see the “Buffer
Entry” example in 26.4 “Brief Description of the
Message Frame Example”).

Output parameters of type ANY are not permis-
sible with function blocks.

19.4 “Passing On” Block Parameters

“Passing on” block parameters is a special form
of access and of initializing block parameters.
The block parameters of the calling block are
“passed on” to the parameters of the called
block. Here, the formal parameter of the calling
block then becomes the actual parameter of the
called block.

In general, it is also the case here that the actual
parameter must be of the same type as the for-
mal parameter (that is, the relevant block pa-
rameters must agree in their data types). In ad-
dition, you can apply an input parameter of the
calling blocks only at an input parameter of the

Table 19.5 Permitted combinations for passing on block parameters

Calling Called FC calls FC FB calls FC FC calls FB FB calls FB

Declaration type E Z P E Z P E Z P E Z P

Input Input x - - x x - x - x x x x

Output Output x - - x x - x - - x x -

In/out Input x - - x - - x - - x - -

In/out Output x - - x - - x - - x - -

In/out In/out x - - x - - x - - x - -

E = Elementary data types
Z = Complex data types, UDT
P = Parameter types TIMER, COUNTER, and BLOCK_xx

19.5 Examples

271

called block, and similarly, an output parameter
at an output parameter. You can apply an in/out
parameter of the calling block to all declaration
types of the called block.

There are restrictions with regard to data types
caused by the variations in block parameter
storage between functions and function blocks.
Block parameters of elementary data type can
be passed on without restriction in accordance
with the information in the previous paragraph.
Complex data types at inputs and output param-
eters can only be passed on if the calling block
is a function block. Block parameters of param-
eter types TIMER, COUNTER and BLOCK_
xx can only be passed on from one input param-
eter to another if the calling block is a function
block. These statements are represented in Ta-
ble 19.5.

You can "pass on" the parameter types TIMER,
COUNTER, and BLOCK_DB in functions us-
ing indirect addressing. The relevant parameter
first receives the data type WORD or INT; you
supply it with a constant or tag that has as its
content the numerical value of the timer, coun-
ter, or block to be passed on. You can "pass on"
this parameter to other blocks, because it is an
elementary data type. In the "last" block, you
transfer the content of the parameter to a tem-
porary local data word using a load function
and edit the time function, the counter, or the
block memory-indirectly.

19.5 Examples

19.5.1 Conveyor Belt Example

The example shows the transfer of signal states
via block parameters. For this purpose, we use
the function of a conveyor belt control ex-
plained in Chapter 5 “Memory Functions”. The
conveyor belt control is to be located in a func-
tion block and all inputs and outputs are to be
routed via block parameters, so that the func-
tion block can be used repeatedly (for several
conveyor belts). Figure 19.4 shows the input
and output parameters for the function block as
well as the static local data used.

Distributing the parameters is quite simple in
this case: All binary addresses that were inputs

have become input parameters, all outputs have
become output parameters and all memory bits
have become static local data. You will also
have noticed that the names have also been
slightly changed because only alphanumeric
characters and the underscore are permissible
for block-local variables.

The function block “Conveyor_belt” is to con-
trol two conveyor belts. For this purpose, it will
be called twice; the first time with the inputs
and outputs of conveyor belt 1 and the second
time with those of conveyor belt 2. For each
call, the function block requires an instance da-
ta block where it stores the data for the convey-
or belt in each case. The data block for convey-
or belt 1 is to be called “Belt_data1” and the da-
ta block for conveyor belt 2 is to be called
“Belt_data2”.

The executed programming example can be
found in the download files (download address:
see pages 8-9) in the STL_Book library under
the “Conveyor Example” program. The source
program contains the programming of the func-
tion block with the input parameters, the output
parameters and the static local data. This is fol-
lowed by the programming of the instance data
blocks; here, it is sufficient to specify the func-
tion block as the declaration section. You can
use any data blocks as the instance block, for
example, DB 21 for “Belt_data1” and DB 22
for “Belt_data2”. In the symbol table, these da-
ta blocks have the data type of the function
block.

Figure 19.4
Function Block for the Conveyor Belt Example

19 Block Parameters

272

At the end of the source program, you see an-
other two complete calls of the function block,
such as they might be found in OB1, for exam-
ple. The inputs and output from the symbol ta-
ble are used as the actual parameters.

In those cases where these global symbols con-
tain special characters, you must place these
symbols between quotation marks in the pro-
gram.

19.5.2 Parts Counter Example

The example demonstrates the handling of
block parameters of elementary data types. The
“Parts Counter” example from Chapter 8
“Counter Functions” is the basis of the func-
tion. The same function is implemented here as
a function block, with all global variables de-
clared either as block parameters or as static lo-
cal data (Figure 19.5).

Timer and counter functions are transferred via
block parameters of parameter types TIMER
and COUNTER. These block parameters must
be input parameters. The initial values of the
counter (Quantity) and the timer function
(Dura1 and Dura2) can also be transferred as
block parameters; the data type of the block pa-
rameters corresponds here to the actual param-
eters.

The edge memory bits are stored in the static lo-
cal data and the pulse memory bits are stored in
the temporary local data.

The executed programming example can be
found in the download files (download address:
see pages 8-9) in the STL_Book library under
the “Conveyor Example” program. The source
program contains the function block “Parts_
counter”, the associated instance data block
“CountDat” and the call of the function block
with instance data block.

19.5.3 Feed Example

The same functions as described in the two pre-
vious examples can also be called as local in-
stances. In our example, this means that we pro-
gram a function block “Feed” that is to control
four conveyor belts and count the conveyed
parts. In this function block, the FB “Conveyor
Belt” is called four times and the FB “Parts_
counter” is called once. The call does not take
place in each case with its own instance data
block, but the called FBs are to store their data
in the instance data block of the function block
“Feed”.

Figure 19.6 shows how the individual conveyor
belt controls are connected together (the FB
“Parts_counter” is not represented here). The
start signal is connected to the Start input of the
controller of belt 1, the ready_rem output is
connected to the Start input of belt 2, etc. Final-
ly, the ready_rem output of belt 4 is connected
to the Remove output of “Feed”. The same sig-
nal sequence leads in the reverse direction from
Removed via Continue and Readyload to Load.

Belt_mot_on, Light_barrier and /Mfault (motor
fault) are individual signals of the conveyor
belts; Reset, Man_start and Stop control all
conveyor belts via Basic_st, Man_on and Stop.

The following program for the function block
“Feed” is designed in the same way. The input
and output parameters of the function block can
be seen from the figure. In addition, the digital
values for the parts counter Quantity, Dura1
and Dura2 are designed as input parameters
here. We declare the data of the individual con-
veyor belt controls and the data of the parts
counter in the static local data in exactly the
same way as for a user-defined data type, i.e.

Figure 19.5
Function Block for the Parts Counter Example

19.5 Examples

273

with name and data type. The variable Belt1 is
to receive the data structure of the function
block “Conveyor_belt”, also the variable Belt2,
etc.; the variable Check receives the data struc-
ture of the function block “Parts_counter”.

The program in the function block starts with
the initialization of the signals common to all
conveyor belts. Here, we make use of the fact
that the block parameters of the function blocks
called as local instances are static local data in
the current block and can be handled as such.
The block parameter Man_start of the current
function block controls the input parameter
Man_on of all four conveyor belt controls with
a simple assignment. We proceed in the same
way with the signals Stop and Reset. And now
the conveyor belt controls are initialized with
the common signals. (You can, of course, also
initialize these input parameters when the func-
tion block is called.)

The subsequent calls of the function blocks for
conveyor belt control contain only the block pa-
rameters for the individual signals for each con-
veyor belt and the connection to the block pa-
rameters of “Feed”. The individual signals are

the light barriers, the commands for the belt
motor and the motor faults. (We make use here
of the fact that when a function block is called,
not all block parameters have to be initialized.)

We program the connections between the indi-
vidual belt controllers using assignments.

The FB “Parts_counter” is called as a local in-
stance even if it has no closer connection with
the signals of the conveyor belt controls. The
instance data block of “Feed” takes the FB data.

The input parameters Quantity, Dura1 and
Dura2 of “Feed” need to be set only once. This
can be done with the default (as in the example)
or in the restart program in OB 100 (through di-
rect assignment, for example, if these three pa-
rameters are treated as global data).

The source program in the STL_Book library
under the program "Example of conveyor tech-
nology" contains the "Feed" function block and
the related "FeedData" instance data block. At
the end, the "Feed" function block call with in-
stance data block is shown for the main pro-
gram.

Figure 19.6 Feed Programming Example

19 Block Parameters

274

FUNCTION_BLOCK "Feed"
TITLE = Control of several conveyor belts
//Example for local instances (declaration, calls)

NAME : Feed
AUTHOR : Berger
FAMILY : STL_Book
VERSION : 01.00

VAR_INPUT
 Start : BOOL := FALSE; //Start conveyor belts
 Removed : BOOL := FALSE; //Goods removed from conveyor
 Start up : BOOL := FALSE; //Start conveyor belts manually
 Hold : BOOL := FALSE; //Stop conveyor belts
 Reset : BOOL := FALSE; //Set control to initial state
 Counter : COUNTER; //Counter for piece goods
 Quantity : WORD := W#16#0200; //Quantity of goods
 Time : TIMER; //Time function for monitoring
 Duration1 : S5TIME := S5T#5s; //Monitoring time for goods
 Duration2 : S5TIME := S5T#10s; //Monitoring time for gap
END_VAR

VAR_OUTPUT
 Load : BOOL := FALSE; //Place new goods on belt
 Remove : BOOL := FALSE; //Remove goods from belt
END_VAR

VAR
 Belt1 : "Conveyor belt"; //Control for belt 1
 Belt2 : "Conveyor belt"; //Control for belt 2
 Belt3 : "Conveyor belt"; //Control for belt 3
 Belt4 : "Conveyor belt"; //Control for belt 4
 Check : "Parts counter"; //Control for counting and monitoring
END_VAR

BEGIN

NETWORK
TITLE = Supplying shared signals

 A Startup;
 = Belt1.Manual_on;
 = Belt2.Manual_on;
 = Belt3.Manual_on;
 = Belt4.Manual_on;

 A Stop;
 = Belt1.Stop;
 = Belt2.Stop;
 = Belt3.Stop;
 = Belt4.Stop;

 A Reset;
 = Belt1.Initial_state;
 = Belt2.Initial_state;
 = Belt3.Initial_state;
 = Belt4.Initial_state;

(continued on next page)

19.5 Examples

275

NETWORK
TITLE = Call conveyor belt controls

 CALL Belt1 (
Start := Start,
Belt end := Light barrier1,
Motor fault := "/Motor fault1",
Ready to accept := Load,
Belt motor_on := Belt motor1_on);

 A Belt2.ready to accept;
 = Belt1.Continue;
 U Belt1.ready for pickup;
 = Belt2.Start;

 CALL Belt2 (
Belt end := Light barrier2,
Motor fault := "/Motor fault2",
Belt motor_on := Belt motor2_on);

 A Belt3.ready to accept;
 = Belt2.Continue;
 A Belt2.ready for pickup;
 = Belt3.Start;

 CALL Belt3 (
Belt end := Light barrier3,
Motor fault := "/Motor fault3",
Belt motor_on := Belt motor3_on);

 A Belt4.ready to accept;
 = Belt3.Continue;
 A Belt3.ready for pickup;
 = Belt4.Start;

 CALL Belt4 (
Continue := Removed,
Belt end := Light barrier4,
Ready for pickup := Remove
Motor fault := "/Motor fault4",
Belt motor_on := Belt motor4_on);

NETWORK
TITLE = Call for counting and monitoring

 CALL check (
Set := Set,
Acknowledge := Acknowledge,
Light barrier := Light barrier1,
Counter := #Counter,
Quantity := #Quantity,
Time := #Time,
Duration1 := #Duration1,
Duration2 := #Duration2,
Finished := Finished,
Fault := "Fault");

NETWORK
TITLE = Block end
 BE

END_FUNCTION_BLOCK

Program Processing

276

Program Processing

This section of the book discusses the various
methods of program processing.

The main program executes cyclically. After
each program pass, the CPU returns to the be-
ginning of the program and executes it again.
This is the “standard” method of processing
PLC programs.

Numerous system functions support the utiliza-
tion of system services, such as controlling the
real-time clock or communication via bus sys-
tems. In contrast to the static settings made
when parameterizing the CPU, system func-
tions can be used dynamically at program run
time.

The main program can be temporarily suspend-
ed to allow interrupt servicing. The various
types of interrupts (time-of-day interrupts,
time-delay interrupts, watchdog interrupts, pro-
cess interrupts, DPV1 interrupts, multiproces-
sor interrupts, synchronous cycle interrupts) are
divided into priority classes whose processing
priority you may yourself, to a large degree, de-
termine. Interrupt servicing allows you to react
quickly to signals from the controlled process
or implement periodic control procedures inde-
pendently of the processing time of the main
program.

Before starting the main program, the CPU ini-
tiates a start-up program in which you can
make specifications regarding program pro-
cessing, define default values for variables, or
parameterize modules.

Error handling is also part of program pro-
cessing. STEP 7 distinguishes between syn-
chronous errors, which occur during processing
of a statement, and asynchronous errors, which
can be detected independently of program pro-
cessing. In both cases you can adapt the error
routine to suit your needs.

20 Main program
Program structure; scan cycle control;
response time; program functions; multi-
computing operation; data exchange with
system functions; start information

21 Interrupt handling
Time-of-day interrupts; time-delay inter-
rupts; watchdog interrupts; process inter-
rupts; DPV1 interrupts; multiprocessor
interrupts; synchronous cycle interrupts;
handling interrupt events

22 Start-up characteristics
Power-up, memory reset, retentivity; cold
restart, warm restart, hot restart; ascertain
module address; parameterize modules

23 Error handling
Synchronous errors (programming errors,
access errors); handling synchronous
error events; asynchronous errors; system
diagnostics

20 Main Program

277

20 Main Program

The main program is the cyclically scanned
user program; cyclic scanning is the “normal”
way in which programs execute in programma-
ble logic controllers. The large majority of con-
trol systems use only this form of program exe-
cution. If event-driven program scanning is
used, it is in most cases only in addition to the
main program.

The main program is invoked in organization
block OB 1. It executes at the lowest priority
level, and can be interrupted by all other types
of program processing. The user program is
executed in the RUN state which is set using the
mode selector on the front of the CPU. The
position is RUN in the case of a toggle switch
as mode selector, and RUN and RUN-P in the
case of a key-operated switch. In the RUN-P
position, the CPU can be programmed using a
connected programming device. In the RUN
position, you can remove the key so that no one
can change the operating mode without proper
authorization; when the mode selector is at
RUN, programs can only be read.

20.1 Program Organization

20.1.1 Program Structure

To analyze a complex automation task means to
divide that task into smaller tasks or functions
in accordance with the structure of the process
to be controlled. You then define the individual
tasks resulting from this dividing process by
determining the functions and stipulating the
interface signals to the process or to other tasks.
This breakdown into individual tasks can be
done in your program. In this way, the structure
of your program corresponds to the division of
the automation task.

A divided user program can be more easily con-
figured, and can be programmed in sections
(even by several people in the case of very large

user programs). And finally, but not lacking in
importance, dividing the program simplifies
both debugging and service and maintenance.

The structuring of the user program depends on
its size and its function. A distinction is made
between three different “methods”:

In a linear program, the entire main program
is in organization block OB 1. Each current
path is in a separate network. STEP 7 numbers
the networks in sequence. When editing and
debugging, you can reference every network
directly by its number.

A partitioned program is basically a linear
program which is divided into blocks. Reasons
for dividing the program might be because it is
too long for organization block OB 1 or because
you want to make it more readable. The blocks
are then called in sequence. You can also divide
the program in another block the same way you
would the program in organization block OB 1.
This method allows you to call associated pro-
cess-related functions for processing from
within one and the same block. The advantage
of this program structure is that, even though
the program is linear, you can still debug and
run it in sections (simply by omitting or adding
block calls).

A structured program is used when the con-
ceptual formulation is particularly extensive,
when you want to reuse program functions, or
when complex problems must be solved. Struc-
turing means dividing the program into sections
(blocks) which embody self-contained func-
tions or serve a specific functional purpose and
which exchange the fewest possible number of
signals with other blocks. Assigning each pro-
gram section a specific (process-related) func-
tion will produce easily readable blocks with
simple interfaces to other blocks when pro-
grammed.

The STL and SCL programming languages
support structured programming through func-

20 Main Program

278

tions with which you can create “blocks” (self-
contained program sections). Chapter 3.2
“Blocks”, discusses the different kinds of
blocks and their uses. You will find a detailed
description of the functions for calling and end-
ing blocks in Chapter 18 “Block Functions”.
The blocks receive the signals and data to be
processed via the call interface (the block
parameters), and forward the results over this
same interface. The options for passing param-
eters are described in detail in Chapter 19
“Block Parameters”. Chapter 29 “SCL Blocks”
contains a description of block handling with
SCL.

20.1.2 Program Organization

Program organization determines whether and
in what order the CPU will process the blocks
which you have generated. To organize your
program, you program block calls in the desired
sequence in the supraordinate blocks. You
should chose the order in which the blocks are
called so that it mirrors the process-related or
function-related division of the controlled
plant.

Nesting depth

The maximum depth applies for a priority class
(for the program in an organization block), and
is CPU-dependent. On the CPU 314, for exam-
ple, the nesting depth is eight, that is, beginning
with one organization block (nesting depth 1),
you can add seven more blocks in the “horizon-
tal” direction (this is called “nesting”). If more
blocks are called, the CPU goes to STOP with a
“Block overflow” error. Do not forget to
include system function block (SFB) calls and
system function (SFC) calls when calculating
the nesting depth.

A data block call, which is actually only the
opening or selecting of a data area, has no effect
on the nesting depth of blocks, nor is the nest-
ing depth affected by calling several blocks in
succession (linear block calls).

Practice-related program organization

In organization block OB 1, you should call the
blocks in the main program in such a way as to
roughly organize your program. A program can

be organized on either a process-related or
function-related basis.

The following points of discussion can give
only a rough, very general view with the inten-
tion of giving the beginner some ideas on pro-
gram structuring and on translating his control
task into reality. Advanced programmers nor-
mally have sufficient experience to organize a
program to suit the special control task at hand.

A process-related program structure closely
follows the structure of the plant to be con-
trolled. The individual program sections corre-
spond to the individual parts of the plant or of
the process to be controlled. Subordinate to this
rough structure are the scanning of the limit
switches and operator panels and the control of
the actuators and display devices (in different
parts of the plant). Bit memory or global data
are used for signal interchange between differ-
ent parts of the plant.

A function-related program structure is
based on the control function to be executed.
Initially, this method of program structuring
does not take the controlled plant into account
at all. The plant structure first becomes appar-
ent in the subordinate blocks when the control
function defined by the rough structure is
divided further.

In practice, a hybrid of these two concepts is
normally used. Figure 20.1 shows an example:
A functional structure is mirrored in the operat-
ing mode program and in the data processing
program which goes above and beyond the
plant itself. Program sections Feeding Con-
veyor 1, Feeding Conveyor 2, Process and Dis-
charging Conveyor are process-related.

The example also shows the use of different
types of blocks. The main program is in OB 1;
it is in this program that the blocks for the oper-
ating modes, the various pieces of plant equip-
ment, and for data processing are called. These
blocks are function blocks with an instance data
block as data store. Feeding Conveyor 1 and
Feeding Conveyor 2 are identically structured;
FB 20, with DB 20 as instance data block for
Feeding Conveyor 1 and with DB 21 as
instance data block for Feeding Conveyor 2, is
used for control

In the conveyor control program, function
FC 20 processes the interlocks; it scans inputs

20.2 Scan Cycle Control

279

or memory bits and controls FB 20's local data.
Function block FB 101 contains the control
program for a conveyor belt, and is called once
for each belt. The call is a local instance, so that
its local data are in instance data block DB 20.
The same applies for the data acquisition pro-
gram in FB 29.

The data processing program in FB 50, which
uses DB 50, processes the data acquired with
FB 29 (and other blocks), which are located in
global data block DB 60. Function FC 51 pre-
pares these data for transfer. The transfer is con-
trolled by FB 51 (with DB 51), in which system
blocks SFB 8, SFB 9 and SFB 62 are called.
Here, too, the SFBs save their instance data in
“supraordinate” data block DB 51.

20.2 Scan Cycle Control

20.2.1 Process Image Updating

The process image is part of the CPU's internal
system memory (Chapter 1.1.6 “CPU Memory
Areas”). It begins at I/O address 0 and ends at
an upper limit stipulated by the CPU. On appro-
priately equipped CPUs, you can define this
limit yourself.

Normally, all digital modules lie in the process
image address area, while all analog modules
have addresses outside this area. If the CPU has
free address allocation, you can use the config-
uration table to direct any module over the pro-
cess image or address it outside the process
image area.

The process image consists of the process-
image input table (inputs I) and the process-
image output table (outputs Q).

After CPU restart and prior to the first execu-
tion of OB 1, the operating system transfers the
signal states of the process-image output table
to the output modules and accepts the signal
states of the input modules into the process-
image input table. This is followed by execu-
tion of OB 1 where normally the inputs are
combined with each other and the outputs are
controlled. Following termination of OB 1, a
new cycle begins with the updating of the pro-
cess image (Figure 20.2).

If an error occurs during automatic updating of
the process image, e.g. because a module is no
longer accessible, organization block OB 85
“Program Execution Errors” is called. If OB 85
is not available, the CPU goes to STOP.

Subprocess images

With appropriately equipped CPUs, you can
divide the process image into up to 30 partial
process images. You make this division during
parameterization of the signal modules by
defining the partial process image via which the
module is to be addressed when you assign
addresses. You can separate the division
according to process-image input table and pro-
cess-image output table.

All modules that you do not assign to one of the
partial process images 1 to 30 are stored in par-

Figure 20.1 Example for Program Structuring

20 Main Program

280

tial process image 0, which is also called the OB1
process image (OB1-PI). This partial process
image 0 is updated automatically by the operat-
ing system of the CPU as part of cyclic execu-
tion. You can also switch off this automatic updat-
ing for the S7-400 using CPU properties.

With appropriately equipped CPUs, you can
also assign the partial process images to the
interrupt organization blocks so that they are
automatically updated when these OBs are
called.

The system functions SFC 26 UPDAT_PI and
SFC 27 UPDAT_PO are available for updating
the partial process images by the user program.
In the synchronous cycle interrupt organization
blocks, you use the system functions SFC 126
SYNC_PI and SFC 127 SYNC_PO (Chapter

21.8.2 “Isochronous Updating of Process
Image”).

SFC 26 UPDAT_PI
SFC 27 UPDAT_PO

The system function SFC 26 UPDAT_PI
updates a partial process image of the inputs,
the system function SFC 27 UPDAT_PO a par-
tial process image of the outputs. Table 20.1
shows the parameters of these SFCs. You can
also update partial process image 0 with these
SFCs.

You can carry out updating of individual partial
process images by calling these SFCs at any
time and at any location. For example, you can
define a partial process image for a priority
class (a program execution level) and you can
then cause this partial process image to be

Figure 20.2 Updating the Process Image

20.2 Scan Cycle Control

281

updated at the start and at the end of the relevant
organization block when this priority class is
processed.

Updating of a process image can be interrupted
by calling a higher priority class. If an error
occurs during updating of a process image, e.g.
because a module can no longer be accessed,
this error is reported via the function value of
the SFC.

20.2.2 Scan Cycle Monitoring Time

Program scanning in organization block OB 1
is monitored by the so-called “scan cycle mon-
itor” or “scan cycle watchdog”. The default
value for the scan cycle monitoring time is 150
ms. You can change this value in the range from
1 ms to 6 s by parameterizing the CPU accord-
ingly.

If the main program takes longer to scan than
the specified scan cycle monitoring time, the
CPU calls OB 80 (“Timeout”). If OB 80 has not
been programmed, the CPU goes to STOP.

The scan cycle monitoring time includes the
full scan time for OB 1. It also includes the scan
times for higher priority classes which interrupt
the main program (in the current cycle). Com-
munication processes carried out by the operat-
ing system, such as GD communication or PG
access to the CPU (block status!), also increase
the runtime of the main program. The increase
can be reduced in part by the way you parame-
terize the CPU (”Cyclic load from communica-
tion” on the “Cycle/Clock memory bits” tab).

Cycle statistics

If you have an online connection from a pro-
gramming device to an operating CPU, select
PLC MODULE INFORMATION to call up a

dialog box that contains several tabs. The
“Cycle Time” tab shows the current cycle time
as well as the shortest and longest cycle time.
The parameterized minimum cycle duration
and the scan cycle monitoring time are also dis-
played.

The cycle time for the last cycle and the mini-
mum and maximum cycle time since the PLC
was last started up can also be read in the tempo-
rary local data in the start information of OB 1.

SFC 43 RE_TRIGR
Restarting the scan cycle monitoring time

An SFC 43 RE_TRIGR system function call
restarts the scan cycle monitoring time; the
timer restarts with the new value set via CPU
parameterization. SFC 43 has no parameters.

Operating system run times

The scan cycle time also includes the operating
system run times. These are composed of the
following:

b System control of cyclic scanning (“no-load
cycle”), fixed value

b Updating of the process image; dependent
on the number of bytes to be updated

b Updating of the timers; dependent on the
number of timers to be updated

b Communications load

Communications functions for the CPU include
the transfer of user program blocks or data
exchange between CPU modules using system
functions. The time the CPU is to use for these
functions can be limited by parameterizing the
CPU.

All values at operating system runtime are
properties of the relevant CPU.

Table 20.1 Parameters for the SFCs for Process Image Updating

Parameter Name SFC Declaration Data Type Contents, Description

PART 26 27 INPUT BYTE Number of the partial process image (0 to
15)

RET_VAL 26 27 RETURN INT Error information

FLADDR 26 27 OUTPUT WORD On an access error: the address of the first
byte to cause the error

20 Main Program

282

20.2.3 Minimum Scan Cycle Time,
Background Scanning

With appropriately equipped CPUs, you may
specify a minimum scan cycle time. If the main
program (including interrupts) takes less time,
the CPU waits until the specified minimum
scan cycle time has elapsed before beginning
the next cycle by recalling OB 1.

The default value for the minimum scan cycle
time is 0 ms, that is to say, the function is dis-
abled. You can set a minimum scan cycle time
of from 1 ms to 6 s in “Cycle/Clock memory
bits” tab when you parameterize the CPU.

Background scanning OB 90

In the interval between the actual end of the
cycle and expiration of the minimum cycle
time, the CPU executes organization OB 90
“Background scanning” (Figure 20.3). OB 90 is
executed “in slices”. When the operating sys-
tem calls OB 1, execution of OB 90 is inter-
rupted; it is then resumed at the point of inter-
ruption when OB 1 has terminated. OB 90 can
be interrupted after each statement, any system

block called in OB 90, however, is first scanned
in its entirety.

The length of a “slice” depends on the current
scan cycle time of OB 1. The closer OB 1's scan
time is to the minimum scan cycle time, the less
time remains for executing OB 90. The pro-
gram scan time is not monitored in OB 90.

OB 90 is scanned only in RUN mode. It can be
interrupted by interrupt and error events, just
like OB 1. The start information in the tempo-
rary local data (Byte 1) also tells which events
cause OB 90 to execute from the beginning:

b B#16#91
After a CPU restart,

b B#16#92
After a block processed in OB 90 was
deleted or replaced,

b B#16#93
After (re)loading of OB 90 in RUN mode,

b B#16#95
After the program in OB 90 was scanned
and a new background cycle begins.

Figure 20.3 Minimum Cycle Duration and Background Scanning

20.2 Scan Cycle Control

283

20.2.4 Response Time

If the user program in OB 1 works with the sig-
nal states of the process images, this results in a
response time which is dependent on the pro-
gram execution time (scan cycle time). The
response time lies between one and two scan
cycles, as the following example explains.

When a limit switch is activated, for instance, it
changes its signal state from “0” to “1”. The
programmable controller detects this change
during the subsequent updating of the process
image, and sets the inputs allocated to the limit
switch to “1”. The program evaluates this
change by resetting an output, for example, in
order to switch off the corresponding motor.
The new signal state of the output that was reset
is transferred at the end of the program scan;
only then is the corresponding bit reset on the
digital output module.

In a best-case situation, the process image is
updated immediately following the change in
the limit switch's signal (Figure 20.4). It would
then take only one cycle for the relevant output
to respond. In the worst-case situation, updat-
ing of the process image was just completed
when the limit switch signal changed. It would
then be necessary to wait approximately one
cycle for the programmable controller to detect
the signal change and set the input. After yet
another cycle, the program can respond.

When so considered, the user program's execu-
tion time contains all procedures in one pro-

gram cycle (including, for instance, the servic-
ing of interrupts, the functions carried out by
the operating system, such as updating timers,
controlling the MPI interface and updating the
process images).

The response time to a change in an input signal
can thus be between one and two cycles. Added
to the response time are the delays for the input
modules, the switching times of contactors, and
so on.

In some instances, you can reduce the response
times by addressing the I/Os directly or calling
program sections on an event-driven basis.

Uniform response times or equal time intervals
in the process control can be achieved if a pro-
gram section is always processed with the same
time pattern, e.g. a watchdog interrupt program.
Program execution that is isochronous with
respect to the processing cycle of a PROFIBUS
DP master system also results in calculable
response times (Chapter 21.8 “Synchronous
Cycle Interrupts”).

20.2.5 Start Information

The CPU's operating system forwards start in-
formation to organization block OB 1, as it does
to every organization block, in the first 20 bytes
of temporary local data. You can generate the
declaration for the start information yourself or
you can use information from the Standard
Library under Organization Blocks.

Figure 20.4 Response Times of Programmable Controllers

20 Main Program

284

Table 20.2 shows this start information for the
OB1, the default symbolic designation, and the
data types. You can change the designation at
any time and choose names more acceptable to
you. Even if you don't use the start information,
you must reserve the first 20 bytes of temporary
local data for this purpose (for instance in the
form of a 20-byte array).

In SIMATIC S7, all event messages have a
fixed structure which is specified by the event
class. The start information for OB 1, for
instance, reports event B#16#11 as a standard
OB call. From the contents of the next byte you
can tell whether the main program is in the first
cycle after power-up and is therefore calling,
for instance, initialization routines in the cyclic
program.

The priority and OB number of the main pro-
gram are fixed. With three INT values, the start
information provides information on the cycle
time of the last scan cycle and on the minimum
and maximum cycle times since the last power-
up. The last value, in DATE_AND_TIME for-
mat, indicates when the priority control pro-
gram received the event for calling OB 1.

Note that direct reading of the start information
for an organization block is possible only in that
organization block because that information

consists of temporary local data. If you require
the start information in blocks which lie on
deeper levels, call system function SFC RD_
SINFO at the relevant location in the program.

SFC 6 RD_SINFO
Reading OB start information

System function SFC 6 RD_SINFO makes the
start information on the current organization
block (that is, the OB at the top of the call tree)
and on the start-up OB last executed available
to you even at a deeper call level (Table 20.3).

Output parameter TOP_SI contains the first 12
bytes of start information on the current OB,
output parameter START_UP_SI the first 12
bytes of start information on the last start-up
OB executed. There is no time stamp in either
case.

SFC 6 RD_SINFO can not only be called at any
location in the main program but in every prior-
ity class, even in an error organization block or
in the start-up routine. If the SFC is called in an
interrupt organization block, for example,
TOP_SI contains the start information of the
interrupt OB. In the case of a call at restart,
TOP_SI and START_UP_SI have the same
contents.

Table 20.2 Start Information for the OB 1

Byte Variable Name Data Type Description Contents

0 OB1_EV_CLASS BYTE Event class B#16#11 = Call standard OB

1 OB1_SCAN_1 BYTE Start information B#16#01 = 1st cycle after warm
restart

B#16#02 = 1st cycle after hot
restart

B#16#03 = Every other cycle
B#16#04 = 1st cycle after cold

restart

2 OB1_PRIORITY BYTE Priority B#16#01

3 OB1_OB_NUMBR BYTE OB Number B#16#01

4 OB1_RESERVED_1 BYTE Spared -

5 OB1_RESERVED_2 BYTE Spared -

6..7 OB1_PREV_CYCLE INT Previous scan cycle time in ms

8..9 OB1_MIN_CYCLE INT Minimum scan cycle time in ms

10..11 OB1_MAX_CYCLE INT Maximum scan cycle time in ms

12..19 OB1_DATE_TIME DT Event occurrence Call time of the OB (cyclic)

20.3 Program Functions

285

20.3 Program Functions

In addition to parameterizing the CPU with the
Hardware Configuration, you can also select a
number of program functions dynamically at
runtime via the integrated system functions.

20.3.1 Time

Each SIMATIC CPU has a clock which you can
set and scan using STEP 7 or system functions.
The time is represented in the user program in
the format DATE_AND_TIME, consisting of
the date, time and day of week.

With newer CPUs with firmware version 3 or
higher, the time status is added. You can then
additionally set a difference from a time zone
and a summer/winter time ID.

You can use the following system functions to
set the CPU clock:

b SFC 0 SET_CLK
Set date and time

b SFC 1 READ_CLK
Read date and time

b SFC 48 SNC_RTCB
Synchronize Slave clocks

b SFC 100 SET_CLKS
Set date, time and clock status

You will find a list of system function parame-
ters in Table 20.4.

Set and read time

Calling SFC 0 SET_CLK or SFC 100 SET_
CLKS with MODE = B#16#01 or B#16#03
respectively sets the clock to the value specified
at parameter PDT. SFC 0 SET_CLK sets the
winter time for CPUs with summer/winter time
ID. With the SFC 100 SET_CLKS you can use
the parameter SUMMER to specify whether the
time to be set is the winter time (with “0”) or the
summer time (with “1”).

SFC 1 READ_CLK reads the current time and
outputs it at parameter CDT. When setting and
reading, the time has the format DATE_AND_
TIME, i.e. it includes both the date and time.

Module time, local time

The time on the CPU is the module time. This
is decisive for all timing processes controlled
by the CPU, e.g. run-time meter, starting of
time-of-day interrupts or entering of time
stamps in the diagnostics buffer and in the OB
start information. You set and read the module
time when using the system functions for the
CPU clock.

Appropriately designed CPUs additionally save
a “time status”. This contains a correction value
which, added to the module time, results in the
local time. The correction value is entered in
intervals of 30 minutes, and can also be nega-
tive (parameter CORR of the SFC 100 SET_
CLKS).

The local time can be used to visualize time
zones.

Table 20.3 Parameters for SFC 6 RD_SINFO

SFC Parameter Name Declaration Data Type Contents, Description

6 RET_VAL RETURN INT Error information

TOP_SI OUTPUT STRUCT Start information for the current OB (with the
same structure as START_UP_SI)

START_UP_SI OUTPUT STRUCT Start information for the last OB started:
.EV_CLASS BYTE Event ID and event class
.EV_NUM BYTE Event number
.PRIORITY BYTE Execution priority (number of the execution level)
.NUM BYTE OB number
.TYP2_3 BYTE ID of supplementary information 2_3
.TYP1 BYTE ID of supplementary information 1
.ZI1 WORD Supplementary information 1
.ZI2_3 DWORD Supplementary information 2_3

20 Main Program

286

Time status

The time status is set when parameterizing the
CPU with STEP 7 or with the SFC 100 SET_
CLKS. You can read the time and the time sta-
tus with the SFC 51 RDSYSST via the system
status list (SZL_ID = W#16#0132 with INDEX
W#16#0008). In the variable status, it includes:

b The correction value (bits 2 to 6) in interval
of 30 minutes

b The sign of the correction value (bit 7)

b The summer/winter time ID (bit 14)

b The announcement hour (bit 15)

The summer/winter time ID indicates whether
the local time calculated from the module time
and the correction value is the summer time
(with “1”) or the winter time (with “0”).

If the bit Announcement hour has the signal sta-
tus “1”, the conversion to summer or winter
time is carried out when the hour changes for
the next time.

Using the data in the time status, a local time
can be generated from the module time in order
to control the timing processes in the user pro-
gram.

Loadable standard blocks help you with handling
of the summer/winter time switching of the local
time in the user program, especially the starting
of time-of-day interrupts depending on the
local time (see “Loadable time blocks”)

Time synchronization

The clocks of all CPUs can be synchronized in
automation networks with several SIMATIC
stations which exchange data via subnets. You
parameterize the clock of one CPU as the “mas-
ter clock”, and set the interval at which the syn-
chronization is to be carried out. You parame-
terize the clocks to be synchronized as “slave
clocks”.

The synchronization can be carried out within
an S7 station via the C bus (backplane bus) or
between the stations via the MPI bus. It is car-
ried out automatically at the parameterized
interval following initial setting of the master
clock. If you set a master clock with the SFC 0
SET_CLK or SFC 100 SET_CLKS, all other
clocks in the subnet are automatically synchro-
nized to this value.

Table 20.4 SFC Parameters for the CPU Clock

SFC Parameter Name Declaration Data Type Contents, Description

0 PDT INPUT DT Date and time (new)

RET_VAL RETURN INT Error information

1 RET_VAL RETURN INT Error information

CDT OUTPUT DT Date and time (current)

48 RET_VAL RETURN INT Error information

100 MODE INPUT BYTE Operating mode
B#16#01: only set time
B#16#02: only set time status
B#16#03: set time and time status

PDT INPUT DT Defined time

CORR INPUT INT Difference from basic time in 0.5-hour cycle
from –24 to +26

SUMMER INPUT BOOL Summer/winter time ID
(“1” = summer time)

ANN_1 INPUT BOOL Announcement of time switchover: with
“1”, a change is made from summer time to
winter time or vice versa at the next time the
hour changes

RET_VAL RETURN INT Error information

20.3 Program Functions

287

By calling the SFC 48 SNC_RTCB in the mas-
ter clock, you synchronize all slave clocks inde-
pendent of the automatic interval.

If the master clock does not have a time status,
the slave clocks are synchronized with the win-
ter time. The correction factor is zero, the local
time then corresponds to the module time.

If the master clock works with the time status,
the complete time status is transmitted in addi-
tion to the time. The same local time (the same
time zone) therefore also exists in the time net-
work on all CPUs.

Set time using STEP 7

In the CPU parameterization, you set the syn-
chronization type (master, slave, or none) and
interval in the "Diagnostics/Clock" tab. The
correction values set here are used to correct the
accuracy of the clock.

You can set the time and the time status using
STEP 7 if the programming device is connected
online to a CPU. Select PLC DIAGNOSTICS/
SETTINGS SET TIME OF DAY. In the extended
dialog, you can set the local time as a difference
from the module time, and define the summer/
winter time. The box “Status” then shows the
time status.

Loadable time blocks

The program Miscellaneous Blocks in the Stan-
dard Library contains loadable blocks for han-
dling the summer/winter time switchover and
the local time in the user program.

b FC 60 LOC_TIME
Determine local time

b FC 61 BT_LT
Convert module time into local time

b FC 62 LT_BT
Convert local time into module time

b FC 63 S_LTINT
Set time-of-day interrupt according to local
time

b FB 60 SET_SW
Switch over summer/winter time

b FB 61 SET_SW_S
Switch over summer/winter time with time
status

b UDT 60 WS_RULES
Rules for the summer/winter time switch-
over (e.g. time of switchover)

20.3.2 Read System Clock

A CPU's system clock starts running on power-
up or on a warm restart. The system clock keeps
running as long as the CPU is executing the
restart routine or is in RUN mode. When the
CPU goes to STOP or HOLD, the current sys-
tem time is “frozen”.

If you initiate a hot restart on an S7-400 CPU,
the system clock starts running again using the
saved value as its starting time. Cold restart or
warm restart reset the system time.

The system time has data format TIME,
whereby it can assume only positive values:

TIME#0ms to
TIME#24d20h31m23s647ms.

In the event of an overflow, the clock starts
again at 0. More recent CPUs update the system
clock every millisecond, older S7-300 CPUs
every 10 milliseconds.

SFC 64 TIME_TCK
Read system time

You can read the current system time with sys-
tem function SFC 64 TIME_TCK. The RET_
VAL parameter contains the system time in the
TIME data format.

You can use the system clock, for example, to
read out the current CPU runtime or, by com-
puting the difference, to calculate the time
between two SFC 64 calls. The difference
between two values in TIME format is com-
puted using DINT subtraction.

20.3.3 Run-Time Meter

A run-time meter in a CPU counts the hours.
You can use the run-time meter for such tasks as
determining the CPU runtime or ascertaining
the runtime of devices connected to that CPU.

The reading of a run-time meter is retained also
following a cold restart, failure of the backup
voltage or an overall reset.

The range of values and the number of run-time
meters per CPU depends on the CPU. The
range of values is 16 bits (215 – 1 hours) or

20 Main Program

288

32 bits (231 – 1 hours). When the CPU is at
STOP or HOLD, the run-time meter also stops
running; when the CPU is restarted, the run-
time meter begins again with the previous
value.

When a run-time meter reaches the maximum
duration limit value, it stops and reports an
overflow. A run-time meter can be set to a new
value or reset to zero only via an SFC call.

The following system functions are available to
control a run-time meter:

b SFC 2 SET_RTM
Set run-time meter 16-Bit

b SFC 3 CTRL_RTM
Start or stop run-time meter 16-Bit

b SFC 4 READ_RTM
Read run-time meter 16-Bit

b SFC 101 RTM
Use 32-bit run-time meter

Table 20.5 shows the parameter for these sys-
tem functions.

The NR parameter stands for the number of the
run-time meter, and has the data type BYTE. It
can be initialized using a constant or a variable
(as can all input parameters of elementary data
type). The PV parameter (data type INT) is
used to set the run-time meter to an initial
value. SFC 3's-S-parameter starts (with signal
state “1”) or stops (with signal state “0”) the
selected run-time meter. CQ indicates whether
the run-time meter was running (signal state
“1”) or stopped (signal state “0”) when
scanned. The CV parameter records the hours
in INT format.

By assigning the MODE parameter of the
SFC 101 you can control a 32-bit run-time
meter as follows:

B#16#00 Read current meter value

B#16#01 Start with the last meter value

B#16#02 Stop counter

B#16#04 Set to value specified at PV

Table 20.5 Parameters of the SFCs for the Run-Time Meter

SFC Parameter Declaration Data Type Contents, Description

2 NR INPUT BYTE Number of the run-time meter
(B#16#00 to B#16#07)

PV INPUT INT New value for the run-time meter

RET_VAL RETURN INT Error information

3 NR INPUT BYTE Number of the run-time meter
(B#16#00 to B#16#07)

S INPUT BOOL Start (with “1”) or stop (with “0”) run-time meter

RET_VAL RETURN INT Error information

4 NR INPUT BYTE Number of the run-time meter
(B#16#00 to B#16#07)

RET_VAL RETURN INT Error information

CQ OUTPUT BOOL Run-time meter running (“1”) or stopped (“0”)

CV OUTPUT INT Current value of the run-time meter

101 NR INPUT BYTE Number of the run-time meter
(B#16#00 to B#16#0F)

MODE INPUT BYTE Job ID (see text)

PV INPUT DINT New value for the run-time meter

RET_VAL RETURN INT Error information

CQ OUTPUT BOOL Run-time meter running (“1”) or stopped (“0”)

CV OUTPUT DINT Current value of the run-time meter

20.3 Program Functions

289

B#16#05 Set to and start at value specified at
PV

B#16#06 Set to and stop at value specified at
PV

You can also use the SFCs for a 16-bit run-time
meter to control a 32-bit run-time meter. The
latter then responds like a meter with a 16-bit
value range.

20.3.4 Compressing CPU Memory

Multiple deletion and reloading of blocks,
which often occur during online block modifi-
cation, can result in gaps in the CPU's work
memory and in the RAM load memory which
decrease the amount of usable space in mem-
ory. When you call the “Compress” function,
you start a CPU program which fills these gaps
by pushing the blocks together. You can initiate
the “Compress” function via a programming
device connected to the CPU or by calling sys-
tem function SFC 25 COMPRESS. The param-
eters for SFC 25 are listed in Table 20.6.

The compression procedure is distributed over
several program cycles. The SFC returns
BUSY = “1” to indicate that it is still in prog-
ress, and DONE = “1” to indicate that it has
completed the compression operation. The SFC
cannot compress when an externally initiated
compression is in progress, when the “Delete
Block” function is active, or when PG functions
are accessing the block to be shifted (for
instance the Block Status function).

Note that blocks of a particular CPU-specific
maximum length cannot be compressed, so that
gaps would still remain in CPU memory. Only
the Compress function initiated via the PG
while the CPU is at STOP closes all gaps.

20.3.5 Waiting and Stopping

The system function SFC 47 WAIT halts the
program scan for a specified period of time.

SFC 47 WAIT has input parameter WT of data
type INT in which you can specify the waiting
time in microseconds (ms).

The maximum waiting time is 32767 microsec-
onds; the minimum waiting time corresponds to
the execution time of the system function, which
is CPU-specific.

SFC 47 can be interrupted by higher-priority
events. On an S7-300, this increases the waiting
time by the scan time of the higher-priority inter-
rupt routine.

The system function SFC 46 STP terminates
the program scan, and the CPU goes to STOP.
SFC 46 STP has no parameters.

20.3.6 Multiprocessing Mode

The S7-400 enables multiprocessing. As many
as four appropriately designed CPUs can be
operated in one rack (universal rack UR) on the
same P bus and K bus.

An S7-400 station is automatically in multipro-
cessor mode if you arrange more than one CPU
in the central rack in the Hardware Configura-
tion. The slots are arbitrary; the CPUs are dis-
tinguished by a number assigned automatically
in ascending order when the CPUs are plugged
in. You can also assign this number yourself on
the “Multicomputing” tab.

The configuration data for all the CPUs must be
loaded into the PLC, even when you make
changes to only one CPU.

After assigning parameters to the CPUs, you
must assign each module in the station to a
CPU. This is done by parameterizing the mod-
ule in the “Addresses” tab under “CPU assign-
ment” (Figure 20.5). At the same time that you
assign the module's address area, you also
assign the module's interrupts to this CPU. With
VIEW FILTER CPU No. x-MODULES, you
can emphasize the modules assigned to a CPU
in the configuration tables.

Table 20.6 Parameters for SFC 25 COMPRESS

SFC Parameter Declaration Data Type Contents, Description

25 RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL Compression still in progress (with “1”)

DONE OUTPUT BOOL Compression completed (with “1”)

20 Main Program

290

The CPUs in a multiprocessing network all
have the same operating mode. This means

b They must all be parameterized with the
same restart mode,

b They all go to RUN simultaneously,

b They all go to HOLD when you debug in
single-step mode in one of the CPUs

b They all go to STOP as soon as one of the
CPUs goes to STOP.

When one rack in the station fails, organization
block OB 86 is called in each CPU.

The user programs in these CPUs execute inde-
pendently of one another; they are not synchro-
nized.

An SFC 35 MP_ALM call starts organization
block OB 60 “Multiprocessor interrupt” in all
CPUs simultaneously (see Chapter 21.7 “Mul-
tiprocessor Interrupt”).

20.3.7 Determining OB Program
Execution Time

The system function SFC 78 OB_RT deter-
mines the runtime of individual organization
blocks over different periods. This enables you
to determine the time loading of the user pro-
gram (workload).

The operating system of a CPU designed for
this purpose records the runtimes of the individ-
ual organization blocks and makes them avail-
able for reading by the SFC 78 OB_RT. The ac-
curacy of the time recording depends on the

CPU. The times are specified in microseconds.
If a value is not available for the requested time,
–1 (DW#16#FFFF FFFF) is returned.

Time measuring principle

A timer runs in the CPU’s operating system
with a relative time in microseconds from 0 to
231–1. The timer is started on a transition from
STOP to RUN, runs up to the upper limit, and
then commences at zero again.

The operating system records the OB start
event, the start and end of OB processing, and
the interruptions caused by OBs of higher pri-
ority. The data of the last completed OB pro-
cessing and of that being carried out when the
SFC 78 is called are saved.

SFC call outside the OB to be measured

When using the SFC, a distinction is made be-
tween a call in the program of the requested OB
and a call outside the requested OB. Example:
the SFC 78 is called in OB 1 and has a value of
30 in parameter OB_NR. The last recorded
times are then read for OB 30. Specification of
the synchronous error OBs with numbers 121
and 122 is not permissible, since these are in-
cluded in the priority class of the OBs causing
the errors and thus to their program.

Figure 20.6 shows a number of examples of
calling the SFC 78 outside the OB to be mea-
sured. The start values following a STOP/RUN
transition are –1 (example a).

Figure 20.5 Module Assignments in Multiprocessor Mode

20.3 Program Functions

291

LAST_RT indicates the runtime in microsec-
onds of the last completed OB processing (ex-
amples s to h). The “net” runtimes are out-
put. The interruption times resulting from pro-
gram execution levels of higher priority are not
included in LAST_RT (f).

LAST_ET indicates the time span in microsec-
onds between the start request and the end of
processing for the last completed processing of
the OB to be measured (examples s to h). In
this case, the interruption times resulting from
program execution levels of higher priority are
included in LAST_ET (f).

CUR_T indicates the relative time in microsec-
onds (counter value in operating system) of the
start request of the OB. Following initializa-
tion, –1 is present in CUR_T (a). On comple-
tion of OB processing, CUR_T is set to zero.
Since the SFC 78 is called outside the OB in
these examples, it subsequently outputs zero in
this parameter.

CUR_RT indicates the effective processing
time of the OB in microseconds up to calling of
the SFC 78. Following initialization, –1 is pres-
ent in CUR_RT (a). On completion of OB pro-
cessing, the value present in CUR_RT is im-
ported into LAST_RT, and CUR_RT is set to
zero. Since the SFC call is outside the OB in
these examples, the value is always zero.

CUR_ET indicates the time span in microsec-
onds from the OB start request up to calling of

the SFC 78. On completion of OB processing,
the value present in CUR_ET is imported into
LAST_ET, and CUR_ET is set to zero. Since
the SFC call is outside the OB in these exam-
ples, the value is always zero.

NEXT_RT indicates the time span in microsec-
onds from the subsequent OB start request up to
calling of the SFC if further unprocessed start
requests are present. NEXT_RT is not deter-
mined in the currently supplied CPUs, and the
value is always –1.

SFC call in program of OB to be measured

The SFC 78 can also be called in the program
of the OB to be measured. The parameter OB_
NR is then supplied with zero, and the parame-
ter RET_VAL returns the current OB number if
the processing is fault-free. The times are read
for the OB in which the SFC 78 is called. When
calling in one of the synchronous error OBs
with the numbers 121 and 122, these are the da-
ta of the OB causing the error.

Figure 20.7 shows a number of examples of
calling the SFC 78 in the program of the OB to
be measured. This can be directly in the OB
program or in one of the blocks called there.
The start values following a STOP/RUN transi-
tion are –1.

LAST_RT indicates the runtime in microsec-
onds of the last completed OB processing (ex-

Table 20.7 Parameters of the SFC 78

SFC Parameter Declaration Data Type Contents, Description

78 OB_NR INPUT INT Number of the OB whose times are to be
scanned

RET_VAL RETURN INT Error information or number of the OB with
OB_NR=0

PRIO OUTPUT INT Priority class of scanned OB

LAST_RT OUTPUT DINT Runtime of last completed processing

LAST_ET OUTPUT DINT Time span between OB request and end of
processing for the last completed processing

CUR_T OUTPUT DINT Time of OB request (relative time)

CUR_RT OUTPUT DINT Previous runtime of OB processing

CUR_ET OUTPUT DINT Time span between OB request and scanning
by SFC 78 in the requested OB

NEXT_ET OUTPUT DINT Time span since next OB request and scan-
ning by SFC 78

20 Main Program

292

amples k, l and A). If the SFC is called more
than once in the OB to be measured, –1 is out-
put (example ;). The “net” runtimes are out-
put; the interruption times resulting from pro-
gram execution levels of higher priority are not
included in LAST_RT (example l).

LAST_ET indicates the time span in microsec-
onds between the request and the end of pro-
cessing for the last completed processing of the
OB to be measured (examples k and l). This
also applies to the first call of the SFC 78 in the
OB to be measured (l). If the SFC is called
more than once in the OB to be measured, –1 is
output (example ;). LAST_ET also contains
the interruption times resulting from program
levels of higher priority (l).

CUR_T indicates the relative time in microsec-
onds (counter value in operating system) of the
start request of the OB if – as in the following
examples – the SFC 78 is called within the OB.
On completion of OB processing, CUR_T is set
to zero.

CUR_RT indicates the effective processing
time of the OB in microseconds up to calling of
the SFC 78. On completion of OB processing,

the value present in CUR_RT is imported into
LAST_RT, and CUR_RT is set to zero. The in-
terruption times resulting from program levels
of higher priority are not included in CUR_RT
(l and ;)

CUR_ET indicates the time span in microsec-
onds from the OB start request up to calling of
the SFC 78. On completion of OB processing,
the value present in CUR_ET is imported into
LAST_ET, and CUR_ET is set to zero. CUR_
ET also includes the runtimes of the OBs of
higher priority which interrupt the current OB
to be measured.

NEXT_RT indicates the time span in microsec-
onds from the subsequent OB start request up to
calling of the SFC if further unprocessed start
requests are present. NEXT_RT is not deter-
mined in the currently supplied CPUs, and the
value is always –1.

20.3.8 Changing the Program Protection

The application program in a CPU can be pro-
tected against unauthorized access in three pro-
tection levels (see Chapter 2.6.2 “Protection of
the user program”). You can use the system

Figure 20.6 Call of SFC 78 Outside the Organization Block to be Measured

20.3 Program Functions

293

function SFC 109 PROTECT to switch back
and forth program-controlled between protec-
tion levels 1 and 2. The parameters of this sys-
tem function are listed in Table 20.8.

Calling of the SFC 109 PROTECT is only
effective if you have set protection level 1 in
hardware configuration. It remains ineffective
if protection level 2 or 3 is set or if a password
has been entered in protection level 1 using the
option “Can be canceled by password”.

The protection level set using the SFC 109
PROTECT remains unchanged if

b the CPU goes to STOP as a result of a (pro-
gram) error, by calling of SFC 46 STP, or by
an operator input

b the CPU is buffered and the power supply
returns

b a restart is carried out (S7-400)

In all other cases, the protection level is set to 1
when there is an operating mode transition.
Even if you set the mode selector to the STOP
position, protection level 1 is (re)set.

You can identify the current protection level
online in the SIMATIC Manager by selecting
the CPU selected and PLC DIAGNOSTICS/
SETTINGS MODE. Using the program, you
can identify the protection level with SFC 51
RDSYSST by means of the SSL parts list
W#16#0232 with the index W#16#0004.

With a CPU with key-operated switch as mode
selector, you can remove the switch in the RUN

Figure 20.7 Call of SFC 78 Inside the Organization Block to be Measured

Table 20.8 Parameters of the SFC 109 PROTECT

SFC Parameter Declaration Data Type Contents, Description

109 MODE INPUT WORD Job ID:
W#16#0000 Protection level 1
W#16#0001 Protection level 2

RET_VAL RETURN INT Error information

20 Main Program

294

position, and only permit reading by the pro-
gramming device during operation. This possi-
bility does not exist if a toggle switch is used as
mode selector. In this case, you can activate
protection level 2 when switching on the CPU,
i.e. write protection (only reading possible), by
calling SFC 109 PROTECT in the startup orga-
nization blocks.

You can use SFC 109 PROTECT to change the
protection level during ongoing operation with-
out activating the mode selector. For example,
you can use SFC 109 PROTECT and MODE =
W#16#0000 to (re)set the protection level to 1
depending on the signal status of a binary vari-
able, e.g. to download program sections. You
can then activate write protection again with
MODE = W#16#0001.

20.4 Communication via
Distributed I/O

Distributed I/O is understood as modules con-
nected over PROFIBUS DP or PROFINET IO.

With PROFIBUS DP, the DP master communi-
cates with the DP slaves assigned to it over the
PROFIBUS subnet. With PROFINET IO, it is
the IO controller which exchanges data with the
IO devices assigned to it over the Industrial
Ethernet subnet.

Data exchange takes place “automatically”,
you need not be concerned with it. You config-
ure and address the distributed I/O in a manner
similar to the central modules using the Hard-
ware Configuration. You address the inputs and
outputs in the distributed I/O stations from the
user program just like the inputs and outputs of
the central modules.

20.4.1 Addressing PROFIBUS DP

Similarly to the way in which centrally
arranged modules are assigned to a CPU and
are controlled from the CPU, distributed mod-
ules with PROFIBUS DP (stations, DP slaves)
are assigned to a DP master. The DP master
with all its DP slaves is referred to as a DP mas-
ter system. One S7 station can contain several
DP master systems.

Currently available DP masters recognize two
modes: DPV1 and S7-compatible. “S7-compat-
ible” corresponds to the previous mode. In this
case you can operate all DP standard slaves
according to EN 50170, plus the “DP S7
slaves” from Siemens which were already able
to send interrupts to the DP master. In DPV1
mode, DP slaves can be additionally used
which exhibit the new properties according to
IEC 61131, such as increased diagnostics and
parameterization capabilities through the use of
acyclically transmitted data records or the use
of new types of interrupt. New system func-
tions also exist for these new “DPV1 slaves”
for transmission of data records, as well as new
interrupt organization blocks.

The DP slaves occupy addresses in the I/O area
of the CPU (“logical address area”) just like the
central modules. The DP master can be consid-
ered as being “transparent” for the addresses of
the DP slaves; the CPU “sees” the addresses of
the DP slaves so that their addresses do not
overlap with those of the central modules, not
even with those of DP slaves in other DP master
systems assigned to the CPU.

Every DP slave has in addition to the node ad-
dress a geographical address, a module starting
address and at least a diagnostics address (Fig-
ure 20.8).

Node address

Every node on the PROFIBUS subnet has a
unique address, the node address (station num-
ber) in that subnet that distinguishes it from the
other nodes on the subnet. The station (the DP
master or a DP slave) is accessed on PROFI-
BUS with this node address.

Please note that there must be a gap of at least 1
between the addresses of the active bus nodes
(e.g. in the case of DP master and nodes in cross
traffic). STEP 7 takes this into account when
assigning node addresses automatically.

Geographical address

The geographical address identifies the module
slot. With central modules, the geographical
address contains the number of the rack and the

20.4 Communication via Distributed I/O

295

slot. Accordingly, with PROFIBUS DP, the
geographical address contains the number of
the DP master system, the station number and
the slot number.

The slot number of a DP slave depends on its
type. If it is integrated via a GSD file, the
entries in the GSD file define the slot at which
the I/O modules commence. With DP standard
slaves, the slots for I/O modules commence
at 1. The slot numbering of an S7 slave is based
on the slots of an S7-300 station. Slots 1 (power
supply) and 3 (expansion unit interface mod-
ule) remain vacant. Slot 2 (CPU) corresponds
to the interface module (header module) of the
modular DP slave. The signal modules (SM)
are positioned starting at slot 4. The “virtual”
(not physically present) slot 0 exists in addition;
it represents the complete station.

The case is similar with intelligent DP slaves.
In this case, the transfer memory constitutes the
interface to the DP master. Through configura-
tion of the transfer memory, which you carry
out with the Hardware Configuration, areas are
formed which correspond to the modules or
slots. The slots do not actually exist, and they
are therefore referred to as “virtual” slots.

Virtual slot 0 represents the DP station, virtual
slot 2 the bus interface, in this case the slave
CPU as “header module” of the DP slave. From

virtual slot 4 onwards, the user data areas are
present in the transfer memory; they corre-
spond to the signal modules. The virtual slots in
the transfer memory are “seen” by both the
master CPU and the slave CPU.

The definition of virtual slots permits direct as-
signment of diagnostics and interrupt events to
the interface module or station (see “Diagnos-
tics address” below). The system functions
SFC 5 GADR_LGC and SFC 49 LGC_GADR
and, also suitable for PROFINET IO, the sys-
tem functions SFC 70 GEO_LOG and SFC 71
LOG_GEO are available for conversion of the
geographical address into the logical address
and vice versa.

Note that the DP slaves which are integrated
into the Hardware Configuration via a GSD file
according to EN 50170 equal to Revision 3 or
higher (DPV1) can save the user data starting at
slot 1.

Logical address, module starting address

With the logical address you access the user da-
ta of a station. Each byte of the user data is de-
fined unambiguously by the logical address.
The logical address corresponds to the absolute
address; it can be assigned a symbol (a name)
so that it is easier to read (symbolic addressing).

Figure 20.8 Addresses in a DP Master System

20 Main Program

296

The smallest logical address of a module or sta-
tion is the module starting address (see also
Chapter 1.4 “Module Addresses”).

Diagnostics address

The diagnostics address is used to identify
modules and stations which can deliver diag-
nostics data and do not have a user data address
themselves. The diagnostics address occupies
one byte of peripheral inputs in the logical
address volume. As standard, STEP 7 assigns
the diagnostics address commencing with the
highest address in the I/O area of the CPU. You
can change the diagnostics address. The
address overview in the Hardware Configura-
tion identifies the diagnostics address by a
asterisk.

Signal modules or user data areas in the transfer
memory of intelligent DP slaves have logical
addresses, also for scanning diagnostics data.
The complete station delivers its diagnostics
data via a diagnostics address which is assigned
to the virtual slot 0. With modular and intelli-
gent DP slaves, the bus interface can deliver its
diagnostics data via the diagnostics address of
slot 2.

Figure 20.9 shows an example of the diagnos-
tics addresses in a DP master system. A com-
pact DP slave has one diagnostics address for
the complete station, a modular DP slave has
one diagnostics address for the station and one
for the interface module. Intelligent DP slaves
have an additional diagnostics address for the
DP interface.

The diagnostic addresses are assigned starting
downwards from the highest I/O address. For
example, the DP interface of the CPU 317-
2PN/DP is assigned the diagnostic address
8191, the PN interface and the two ports the ad-
dresses 8190 to 8188 (not shown in Figure
20.9), and the virtual slots 0 and 2 in the trans-
fer memory the addresses 8187 and 8186. It is
similar with the master CPU: Here, the diag-
nostic addresses begin at 16383 for the DP in-
terface and continue with 16382 for the MPI/
DP interface (not shown), 16381 and 16380 for
virtual slots 0 and 2 of the first intelligent DP
slave, 16379 and 16378 for the second DP
slave, etc. The diagnostic address for the DP
slaves is assigned by the hardware configura-

tion following the order of connections to the
DP master system.

The diagnostics data are scanned by system
blocks in the user program. The system func-
tion SFC 13 DPNRM_DG is available for this
for conventional DP standard slaves. With DP
S7 slaves, the SFC 59 RD_REC is used to read
the data set DS1 with the diagnostics data.
DPV1 slaves are able to deliver more compre-
hensive diagnostics data which can be read with
the system function block SFB 52 RDREC. The
modules are addressed using the logical module
starting addresses of the user data or using the
diagnostics addresses.

Transfer memory on intelligent DP slaves

In the case of compact and modular DP slaves,
the addresses of the inputs and outputs together
with the addresses for the central modules are
located in the address volume of the master
CPU. In the case of intelligent slaves, the mas-
ter CPU has no direct access to the input/output
modules of the DP slave. Every intelligent DP
slave therefore has a transfer memory whose
size depends on the CPU used. The transfer
memory can be divided into several subsidiary
areas of different length and data consistency.
The individual areas then respond like modules
whose lowest address is the module starting ad-
dress. From the viewpoint of the master CPU,
the intelligent DP slave then appears as a com-
pact or modular DP slave, depending on the di-
vision (Figure 20.10).

During configuration of the slave, you can con-
figure individual areas of the transfer memory
as inputs or outputs with the “module starting
address” and the area length. Exception: if the
CP 342-5DP forms the DP interface for the
intelligent slave, the division of its transfer
memory is not configured until the slave is con-
nected to the DP master system. The addresses
of the transfer memory must not overlap with
those of the central modules located in the intel-
ligent DP slave. If the addresses are present in
the process image, the areas can be handled by
the user program like inputs and outputs, other-
wise like peripheral inputs and peripheral out-
puts. If the slave CPU has partial process
images, you can also assign a partial process
image to each area.

20.4 Communication via Distributed I/O

297

Figure 20.9 Diagnostic addresses in a DP master system

Intelligent DP slave

Intelligent DP slave

Modular DP slave

Compact DP slave

DP master

Slave CPU (317-2PN/DP)

Slave CPU (314C-2DP)

Master CPU (416-2DP)

DP interface

DP interface

DP interface

DP interface

DP interface

Slave station

Slave station

Slave station

Slave station

Bus interface

Bus interface

Bus interface

16383*

16381*

16379*

16377*

16375*

16380*

16378*

16376*

8191*

1023*

8187*

1022*

8186*

1021*

The user
program in the
slave CPU works
with these addresses

The user
program in the
slave CPU works
with these addresses

The user
program in the
master CPU
works with these
addresses

a Each bus interface has a diagnostic address
which is set in the object properties of
the interface in the “Addresses” tab
(double-click on the “DP” line in the master CPU).

d Each bus interface has a diagnostic address
which is set in the object properties of
the interface in the “Addresses” tab
(double-click on the “DP” line in the slave CPU).

s The station and bus interface in the station have
a diagnostic address which is set in the object
properties of the station in the “General” tab
(double-click in the hardware configuration of
the DP master on the DP slave station).

f The station and bus interface in the station have
a diagnostic address which is set in the object
properties of the station in the “Mode” tab
(double-click on the DP line in the slave CPU).

a

d

s f

20 Main Program

298

When coupling to the DP master system, you
supplement the configuration at the master end
by the "module starting addresses" from the
viewpoint of the master CPU and by the trans-
mission direction. You assign inputs on the
slave side to outputs on the master side and vice
versa. If the addresses are present in the process
image, the areas can be handled by the user pro-
gram like inputs and outputs, otherwise like pe-
ripheral inputs and outputs. If the master CPU
possesses process image partitions, you can al-
so assign a process image partition to each area.
From the viewpoint of the master CPU, the ad-
dresses of the transfer memory may not overlap
with the addresses of other modules in the (cen-
tral) S7 station, neither with the addresses of the
centrally arranged modules, nor with the ad-
dresses in other DP master systems assigned to
the master CPU.

You also define the diagnostics addresses from
the viewpoint of the intelligent DP slave during
configuration of the DP slave. You define the
diagnostics addresses from the viewpoint of the
master CPU when coupling of the intelligent
DP slave to the DP master system.

20.4.2 Configuring PROFIBUS DP

General procedure

You configure the distributed I/O on PROFI-
BUS DP essentially in the same way as the cen-

tralized modules. Instead of arranging modules
in a mounting rack, you assign DP stations
(PROFIBUS nodes) to a DP master system.
The following order is recommended for the
necessary actions:

 1) Create a new project or open an existing
one with the SIMATIC Manager.

 2) Create a PROFIBUS subnet in the project
with the SIMATIC Manager and, if
required, set the bus profile.

 3) Use the SIMATIC Manager to create the
master station in the project that is to
accommodate the DP master, e.g. an S7-
400 station.

If your system contains intelligent DP
slaves, you also create the relevant slave
stations at this point, e.g. S7-300 stations.

You start the Hardware Configuration by
opening the master station.

 4) With the Hardware Configuration, you
place a DP master in the master station.
This can be, for example, a CPU with inte-
gral DP interface. You assign the previ-
ously created PROFIBUS subnet to the DP
interface and you then have a DP master
system. You also define the DP mode in the
“Operating mode” tab: DPV1 or S7-com-
patible. You can also configure the remain-
ing modules later. Save and compile the
station.

Figure 20.10 Transfer memory of an intelligent DP slave

20.4 Communication via Distributed I/O

299

 5) When you have created an S7 station for an
intelligent DP slave, open it in the hard-
ware configuration and "plug in" the mod-
ule with the desired DP interface, e.g. an
S7-300 CPU with integrated DP interface
or an ET 200pro basic module IM 154-8/
CPU. If necessary, set the DP interface to
"DP slave", assign the previously created
PROFIBUS subnet to the DP interface, and
configure the transfer memory from the
viewpoint of the DP slave. You can also
configure the remaining modules later.
Save and compile the station.

Proceed in the same way for the remaining
stations intended for intelligent DP slaves.

 6) Open the master station with the DP master
system and use the mouse to drag the PRO-
FIBUS nodes (compact and modular DP
slaves) from the hardware catalog to the
DP master system. Assign node addresses
and, if necessary, set the module starting
address and the diagnostics address.

 7) If you have created intelligent DP slaves,
drag the relevant icon (in the hardware cat-
alog under “PROFIBUS DP” and “Config-
ured Stations”) with the mouse to the DP
master system.

Open the icon and assign an already config-
ured intelligent DP slave ("Couple"), assign
a node address, and configure the transfer
memory from the viewpoint of the DP mas-
ter (or from the viewpoint of the central
master CPU). Proceed in the same manner
with each intelligent DP slave.

 8) Save and compile all stations. The DP mas-
ter system is now configured. You can now
supplement the configuration with central-
ized modules or with further DP slaves.

You can also represent the DP master system
configured in this way graphically with the
Network Configuration tool. Open Network
Configuration by, for example, double-click-
ing on a subnet. Select VIEW DP SLAVES/
IO DEVICES to display the slaves. You can also
create a DP master system (or more precisely,
assign the nodes to a PROFIBUS subnet) with
the Network Configuration tool. You parame-
terize the stations after opening them with the
Hardware Configuration. Here too, you must

first set up an intelligent DP slave before you
can integrate it into a DP master system.

Configuring the DP master

Prerequisite: You have created a project and an
S7 station with the SIMATIC Manager. Open
the S7 station and position the DP master mod-
ule. This can be an S7 or ET 200 CPU with DP
interface, a CP 342 communications processor
(for S7-300), or an IM 467 interface module
(for S7-400) (see Chapter 2.3.1 “Arranging
Modules”).

When placing the DP master module, you
select in a window the PROFIBUS subnet to
which the DP master system is to be assigned
and the node address to be assigned to the DP
master. You can also create a new PROFIBUS
subnet in this window.

You also define the DP mode with which the
DP master is to be operated in the “Operating
mode” tab. This mode applies to the complete
DP master system.

Together with the DP master, the hardware con-
figuration shows a DP master system (broken
black-and-white bar) in the station window. If
there is no DP master system available (it may
be that it is obscured behind an object or it is
outside the visible area), create one by selecting
the DP master in the configuration window and
then selecting INSERT MASTER SYSTEM.
You can change the node address and the con-
nection to the PROFIBUS subnet by selecting
the module and then making your changes with
the “Properties” button on the “General” tab
under EDIT OBJECT PROPERTIES.

CP 342-5DP as DP master

If a CP 342-5DP is the DP master, place it in the
configuration table of the station, select it and
then EDIT OBJECT PROPERTIES. Set “DP
Master” on the “Mode” tab.

The “Addresses” tab shows the user data
address occupied by the CP in the address area
of the CPU. From the viewpoint of the master
CPU, the CP 342-5DP is an “analog module”
with a module starting address and 16 bytes of
user data.

Only DP standard slaves, or DP S7 slaves that
behave like DP standard slaves, can be con-

20 Main Program

300

nected to a CP 342-5DP as DP master. You can
find the suitable DP slaves in the hardware cat-
alog under “PROFIBUS DP” and “CP 342-5 as
DP Master”. Select the desired slave type and
drag it to the DP master system.

The transfer memory as DP master has a maxi-
mum length of 240 bytes. It is transferred as
one with the loadable blocks FC 1 DP_SEND
and FC 2 DP_RECV (included in the Standard
Library under the Communication Blocks pro-
gram).

The data consistency covers the entire transfer
memory.

You read the diagnostics data of the connected
DP slaves with FC 3 DP_DIAG (e.g. station
list, diagnostics data of a specific station). FC 4
DP_CTRL transfers control jobs to the CP 342-
5DP (e.g. SYNC/FREEZE command, CLEAR
command, set operating state of the CP 342-
5DP).

If you select CPU or CP 342-5DP, VIEW
ADDRESS OVERVIEW shows you a list of the
assigned addresses, inputs and/or outputs. You
can also screen the existing address gaps.

Configuring compact DP slaves

The compact DP slaves can be found in the
hardware catalog under "PROFIBUS DP" and
the corresponding subcatalog, e.g. ET 200B.
Click on the selected DP slave and use the
mouse to drag it to the DP master system icon.

You will see the properties sheet of the station;
here, you set the node address and any diagnos-
tics address. Then the DP slave appears as an
icon in the upper section of the station window
and the lower section contains a configuration
table for this station.

A double-click on the icon in the upper section
of the station window opens a dialog box with
one or more tabs in which you set the desired
station properties. In the lower sub-window,
you then see the input/output addresses. Dou-
ble-clicking on an address line shows you a
window where you can change the suggested
addresses.

The lower sub-window shows optionally the
configuration table of the selected DP slave or
of the master system (toggle with the “arrow”
button).

Configuring modular DP slaves

The modular DP slaves can be found in the hard-
ware catalog under "PROFIBUS DP" and the cor-
responding subcatalog, e.g. ET 200M.

Click on the selected interface module (basic
module) and drag it to the icon for the DP mas-
ter system. This screens the properties sheet for
the station; here, you set the node address and
any diagnostics address. Then the DP slave
appears as an icon in the upper section of the
station window and the lower section contains
configuration table for this station.

Now place the modules that you can find in the
hardware catalog under the selected interface
module (!) in the configuration table. Double-
clicking on the line opens the properties sheet
of the module and allows you to parameterize
the module.

The bottom pane displays either the configura-
tion table of the selected DP slave or of the mas-
ter system (selectable using the “Arrow” but-
ton).

Combining modules

Digital electronic modules with two or four bit
channels, e.g. with ET 200S or ET 200pro, ini-
tially occupy one address each with one byte in
the configuration table. After all modules have
been configured, you can use the "Pack ad-
dresses" button in the configuration table to re-
move the gaps between the bit channels of the
selected modules; fewer addresses are thus oc-
cupied. The address areas for inputs, outputs,
and motor starters are packed separately.

Please note the following special features of a
“packed” module:

b Slot assignment is no longer possible; the
CPU cannot determine a geographical ad-
dress for this module.

b No module status information can be read
for this module.

b Interrupts cannot be assigned to a “packed”
address. A diagnostics address is therefore
assigned to a module (italics with star in the
configuration table), at which you can ob-
tain interrupt information.

b “Pack addresses” and “Insert/remove mod-
ule interrupts” are mutually exclusive.

20.4 Communication via Distributed I/O

301

Handling of options in general

With the handling of options you prepare an
ET 200S or ET 200pro station for a future ex-
pansion. This means you can start operation
with a small configuration and subsequently
upgrade the station to a (previously) planned
maximum configuration without modification
of the hardware configuration. To do this, you
require appropriately designed IM interface
modules and PM power modules. The user pro-
gram in an ET 200S can scan and control the
slot assignment during runtime via a control
and feedback interface.

Please note when calculating runtimes, as nec-
essary e.g. for isochronous mode, that these
must always be based on the configured maxi-
mum configuration.

Depending on the version of the interface mod-
ule, you can use the handling of options with or
without reserve modules. With the handling of
options without reserve modules, you configure
the envisaged maximum configuration of the
ET 200 station, where you position the modules
to be inserted later in the rear slots. Before the
station commences with cyclic data exchange
with I/O access operations following the initial
startup, you use the user program to define the
slots identified as "reserve" via the control in-
terface, and then enable operation. Following
replacement by the planned module, you cancel
the identification as "reserve" using the user
program.

With the option handling function with reserve
modules, you can carry out the retrofitting at
any slots – occupation of the slots without gaps
must be ensured however. You configure the
planned maximum configuration and identify
the slots which are to be initially occupied by
reserve modules in the hardware configuration.
The reserve modules provide the signal status
“0” as replacement value for digital inputs, and
the value W#16#7FFF for analog channels.
Following replacement by the planned module,
you delete the “Reserve” identification in the
user program via the control interface. The use
of reserve modules provides the advantage that
the wiring for the maximum configuration can
be carried out completely right at the begin-
ning.

Handling of options with ET 200S

Prerequisite: You have at least configured the
ET 200S station with the power module. You
activate the handling of options in both the IM
interface module and the PM power module.

To activate the handling of options in the inter-
face module, open the station's Properties win-
dow (select station and EDIT OBJECT PROP-
ERTIES). On the "Option handling" tab, switch
on the handling of options using the "Option
handling active" checkbox. With a correspond-
ingly designed module, you can choose be-
tween "Without reserve module" and "With re-
serve module". When selecting "Without re-
serve module", terminate configuration using
"OK".

If you have chosen "With reserve module" or if
this selection is missing for the interface mod-
ule, now select the slots in the "Parameters"
window which are only to be equipped later
with the envisaged modules. The reserve mod-
ules are not configured; you configure the sta-
tion with the planned maximum configuration
of electronic modules envisaged for later.

Open the Properties window of the power mod-
ule (select module in the configuration table
and EDIT OBJECT PROPERTIES).

On the "Addresses" tab, check the "Option han-
dling" checkbox. In the address area of the sta-
tion, an additional eight bytes of digital inputs
are then assigned for the feedback interface and
an additional eight bytes of digital outputs for
the control interface. The user program can
query via the feedback interface whether the
handling of options is active and whether the
envisaged (configured) module is inserted in a
slot and ready for operation.

If you activate the handling of options immedi-
ately following "insertion" of the power mod-
ule and before configuration of the electronic
modules, the addresses of these interfaces are
set as standard to the beginning of the ET 200S
address area.

Handling of options with ET 200pro

Prerequisite: You have at least configured the
ET 200pro station with the power module. The
power module must be designed for the han-
dling of options (PM-O). You activate the han-
dling of options in the IM interface module.

20 Main Program

302

To activate the handling of options in the inter-
face module, open the station's Properties win-
dow (select station and EDIT OBJECT PROP-
ERTIES). On the "Operating parameters" tab,
check the "Option handling" checkbox.

Configuring a CPU with integral DP
interface as an intelligent DP slave

With an appropriately equipped CPU, you can
parameterize the station either as a DP master
station or as a DP slave station. Before the sta-
tion can be connected as a DP slave to a DP
master system, it must be created. The proce-
dure for doing this is exactly the same as that
for a “normal” station; insert an S7 station into
the project using the SIMATIC Manager and
open the Hardware object. Drag a mounting
rack to the window in the Hardware Configura-
tion and place the desired modules. For config-
uring the DP slave, it is enough to place the
CPU; you can add all other modules later.

When inserting the CPU, the properties sheet of
the PROFIBUS interface is screened. Here, you
must assign a subnet to the DP interface and
you must assign an address. If the PROFIBUS
subnet does not yet exist in the project, you can
create a new one with the “New” button. This is
the subnet to which the intelligent slave will
later be connected.

EDIT OBJECT PROPERTIES with a selected DP
interface or double-click on the interface to open
the properties sheet of the interface. On the
"Mode" tab, select the option "DP Slave". Now
you can configure the transfer memory on the
"Configuration" tab from the viewpoint of the
DP slave. Select MS (master/slave configura-
tion) as the mode and define the structure and ad-
dresses of the transfer memory from the view-
point of the slave CPU. You can find information
on the transfer memory in Chapter 20.4.1 “Ad-
dressing PROFIBUS DP” under “Transfer
memory on intelligent DP slaves”.

If the intelligent DP slave is already coupled to
a DP master system, you can also immediately
enter the user data addresses from the view-
point of the DP master (Figure 20.11).

The size and structure of the transfer memory
depends on the CPU. In the case of the CPU
317-2DP, for example, you can divide the entire
transfer memory into a total of 32 address areas

that you can access separately. Such an address
area can be up to 32 bytes in size. The entire
transfer memory can encompass up to 244 input
addresses and 244 output addresses.

The locally defined addresses are within the ad-
dress volume of the slave CPU. These address-
es must not overlap with addresses of the cen-
tral or distributed modules in the DP slave sta-
tion. The lowest address of an address area is
the "module starting address".

The user program in the slave CPU gets diag-
nostics information from the DP master via the
diagnostics addresses specified on this tab.

You terminate configuration of the intelligent
DP slave with STATION SAVE AND COM-
PILE. Connecting the intelligent DP slave into
the DP master system is described below.

Configuring an ET200pro as
an intelligent DP slave

If you want to create an ET 200pro as intelli-
gent DP slave, first add a SIMATIC-300 Station
in SIMATIC Manager under the project and
open the Hardware object.

Now drag an interface module with CPU func-
tionality IM xxx CPU under "PROFIBUS DP"
and "ET 200pro" in the hardware catalog to the
free window or select it by double-clicking on
it. On the displayed properties sheet of the
Ethernet interface, set "not networked".

EDIT OBJECT PROPERTIES with the X1 inter-
face selected or a double-click on the MPI/DP
interface opens the properties window. On the
“General” tab, select PROFIBUS as the inter-
face, and select the station address and the PRO-
FIBUS subnet in the properties window of the
PROFIBUS interface. If the PROFIBUS subnet
does not yet exist in the project, you can create
one using the “New” button. This is the subnet
to which the intelligent slave will be connected
later.

Select the “DP slave” option on the “Mode” tab.
The meanings of the addresses on this tab and of
the address on the tab “Addresses” are described
in Chapter 20.4.1 “Addressing PROFIBUS DP”
under “Diagnostics address”.

Now you can configure the transfer memory on
the "Configuration" tab from the viewpoint of
the DP slave. Select MS (master/slave configu-

20.4 Communication via Distributed I/O

303

ration) as the mode and define the structure and
addresses of the transfer memory from the
viewpoint of the ET 200pro CPU. If the intelli-
gent DP slave is already coupled to a DP master
system, you can also immediately enter the user
data addresses from the viewpoint of the DP
master (Figure 20.11). You can find informa-
tion on the transfer memory in Chapter 20.4.1
“Addressing PROFIBUS DP” under “Transfer
memory on an intelligent IO device”.

On the IM 154-8 CPU interface module, you
can divide the entire transfer memory into up to
32 address areas that you can address separate-
ly. Such an address area can be up to 32 bytes in
size. The entire transfer memory can encom-
pass up to 244 input addresses and 244 output
addresses.

The locally defined addresses are within the ad-
dress volume of the ET 200pro CPU. These ad-
dresses must not overlap with addresses of the
central or distributed modules in the ET 200pro

station. The lowest address of an address area is
the "module starting address".

The further configuration of the ET 200pro sta-
tion is as with an S7-300 station with fixed slot
addressing. You can only arrange modules that
can be found in the hardware catalog under the
interface module used.

STATION SAVE AND COMPILE is used to fin-
ish the configuration of the ET 200pro station
as an intelligent DP slave. The connection of
the intelligent DP slave to the DP master sys-
tem will be described further below.

Configuring an ET 200S as intelligent DP
slave

If you want to create an ET 200S as an intelli-
gent DP slave, first add a SIMATIC 300 station
in SIMATIC Manager under the project and
open the Hardware object.

Figure 20.11 Configuring the transfer memory of an intelligent slave with integrated DP interface

20 Main Program

304

Now drag an interface module with CPU func-
tionality IM xxx CPU under "PROFIBUS DP"
and "ET 200S" from the hardware catalog to
the free window or select it by double-clicking
on it.

You are given a configuration table as with a SI-
MATIC 300 station. Instead of the CPU, there
is an IM 151 intelligent interface module of the
ET 200S station.

Double-clicking on the IM 151 line opens the
window for the IM properties; double-clicking
on the DP interface opens the properties win-
dow of the interface. If you have not already
done so, set the interface type "PROFIBUS",
the node address, and the PROFIBUS subnet
used on the "General" tab.

Set the address areas for the transfer memory
from the viewpoint of the DP slave. If the intel-
ligent DP slave is already coupled to a DP mas-
ter system, you can also immediately enter the
user data addresses from the viewpoint of the
DP master (Figure 20.11). The maximum size
of the user data area is 32 bytes of inputs and 32
bytes of outputs for the IM 151/CPU interface
module. You can divide this area into eight sub-
areas with different data consistencies. The
slave program obtains diagnostic information
from the DP master via the diagnostic address.

The further configuration of the ET 200S sta-
tion is as with an S7-300 station with fixed slot
addressing. You can only arrange modules that
can be found in the hardware catalog under the
interface module used.

You conclude configuring the intelligent DP
slave with STATION SAVE AND COMPILE.
Integration of the intelligent DP slave into the
DP master system is described further below.

Configuring an S7-300 station with
CP 342-5DP as an intelligent DP slave

If you insert an S7-300 station in the SIMATIC
Manager, open the Hardware object and con-
figure a “normal” S7-300 station. Among other
things, you arrange a CP 342-5DP communica-
tions processor in the configuration table.

When inserting the station, the properties sheet
of the DP interface appears; the subnet to which
the intelligent DP slave is later to be connected

is to be assigned to the DP interface here and
you must also assign the node address.

To open the properties window, select the CP
342-5DP and then EDIT OBJECT PROPER-
TIES, or double-click on the CP 342-5DP. Select
the option “DP Slave” on the “Mode” tab.

The "Addresses" tab shows the transfer memo-
ry from the viewpoint of the slave CPU. The
maximum size of the transfer memory with the
CP 342-5DP as DP slave is 240 bytes each for
inputs and outputs, which you can divide into a
maximum of 63 address areas following cou-
pling to the master system.

STATION SAVE AND COMPILE terminates
configuration of the intelligent DP slave.

Connecting an intelligent DP slave
to a DP master

You must have created a project and configured
a DP master station and the intelligent DP slave
(in each case at least with the DP interface).
The DP master and the DP slave must be con-
figured for the same PROFIBUS subnet.

Open the master station; a DP master station
(black/white dashed rail) must be present, oth-
erwise generate it with the DP interface select-
ed with INSERT MASTER SYSTEM.

In the hardware catalog under "PROFIBUS
DP" and "Configured stations", you can find
the objects which represent the intelligence
slaves: "CPU31x" and "CPU41x" stand for
S7-300 or S7-400 stations with an integrated
DP slave, "ET 200pro/CPU" and "ET 200S/
CPU" stand for stations configured as DP slave,
and in the folder "S7-300 CP342-5 DP" you can
find the proxies for S7-300 stations with CP
342-5 as DP slave interface. Select the desired
slave type and drag it onto the DP master sys-
tem.

CPU, ET 200pro or ET 200S as DP slave

"Dragging" to the DP master system or double-
clicking on the DP slave opens the properties
sheet. The "Coupling" tab lists the DP slaves al-
ready configured for this PROFIBUS subnet.
Select the required DP slave and click on the
"Couple" button. The result is shown in the
same dialog box under the active coupling.

20.4 Communication via Distributed I/O

305

In the "General" tab, set the diagnostics address
of the DP slave from the viewpoint of the mas-
ter station.

Now, in the "Configuration" tab, set the address-
es of the transfer memory from the viewpoint of
the DP master. Output addresses at the master
are input addresses at the slave and vice versa.
You can find further information on the transfer
memory in Chapter 20.4.1 “Addressing PROFI-
BUS DP” under “Transfer memory on intelli-
gent DP slaves”.

CP 342-5DP as DP slave

"Dragging" to the DP master system or double-
clicking on the DP slave opens the properties
sheet. The "Coupling" tab lists the DP slaves al-
ready configured for this PROFIBUS subnet.
Select the required DP slave and click on the
"Couple" button. The result is shown in the
same dialog box under the active coupling.

The configuration table of the selected DP slave
is shown in the lower part of the station win-
dow. You now configure the transfer memory:
Drag the modules with the required properties
from the selection under the used CP, or the uni-
versal module, into the configuration table.

EDIT OBJECT PROPERTIES with the module
selected in the bottom part of the window, or a
double-click on the table line, opens a window
in which you can set the start address. In the
properties of the universal module, you can set
whether an empty location, an input or output
area, or both is to be displayed.

If a CP 342-5DP is the DP master, structuring
of the transfer memory can be omitted because
the CP 342-5DP transfers the entire transfer
area in one piece.

When dividing the transfer memory, you
arrange the address areas together without gaps
starting from byte 0. You access the entire
assigned transfer memory in the slave CPU
with the loadable blocks FC 1 DP_SEND and
FC 2 DP_RECV (included in the Standard
Library under the Communication Blocks pro-
gram).

The data consistency covers the entire transfer
memory.

On the “General” tab, you set the diagnostics
address of the DP slave from the viewpoint of

the master station. The diagnostics data are read
with FC 3 DP_DIAG (in the master station).

You can find further information on the transfer
memory in Chapter 20.4.1 “Addressing PRO-
FIBUS DP” under “Transfer memory on intel-
ligent DP slaves”.

Configuring the DP/DP coupler

The DP/DP coupler connects two PROFIBUS
subnets. It is configured as a modular DP slave
in both subnets.

Prerequisite: the two subnets, each with a DP
master system, are configured. Open one of the
stations with the DP master. In the hardware
catalog under “PROFIBUS DP” and “Network
components” you can find the DP/DP Coupler,
Release 2, which you drag using the mouse to
the DP master system.

The properties sheet of the PROFIBUS inter-
face appears on which you set the node address.
You set the diagnostic address and further pa-
rameters on the "General" and "Parameterize"
tabs in the object properties of the DP/DP cou-
pler.

When the DP/DP coupler is selected, the con-
figuration table for the transfer memory is
shown. Then “insert” the desired modules
which are listed in the hardware catalog under
the DP/DP coupler into the configuration table
without gaps, starting with slot 1. You can set
the universal module to the desired number of
inputs and outputs. The user data addresses
which you specify in the module properties are
in the address space of the opened DP master
CPU.

Configure the second part of the DP/DP coupler
in the same manner. The structure of the trans-
fer memory must agree with that of the first
part. Note that inputs on one side are outputs on
the other side, and vice versa. The addresses in
both parts of the DP/DP coupler depend on the
address assignments of the respective master
CPU, and can differ.

Configuring the DP/AS-i link

You configure the DP/AS interface link like a
modular DP slave. Under “PROFIBUS DP”
and “DP/AS-i” in the hardware catalog, you
can select the modules which you can “drag” to

20 Main Program

306

the DP master system. You subsequently set the
properties of the DP part and configure the AS-i
slaves – in the properties sheet or the configu-
ration table depending on the link.

The AS-i master system with the AS-i slaves is
not displayed as a subnet by the Hardware Con-
figuration.

DP/AS-i Link 20E and DP/AS-i Link Advanced

"Drag" the DP/AS-i Link from the hardware
catalog to the bar of the PROFIBUS DP master
system. You can set the node address on the dis-
played window or in the properties of the DP
slave under the PROFIBUS button.

A configuration table with the AS-i interfaces
and AS-i slaves appears. If you have selected
the double master for DP/AS-i Link Advanced,

the configuration table is designed for both
masters.

Now set the address area under which you want
to access the AS-i slaves from the user pro-
gram. EDIT OBJECT PROPERTIES with a se-
lected AS-i master interface (in the configura-
tion table), or double-click on the master line to
open the properties dialog. On the "Digital Ad-
dresses" tab, you can set the start address and
the inputs; this address also applies to the out-
puts. You can select different values for the re-
served area lengths for inputs and outputs. This
tab also contains the "Pack" and "Sort" buttons
with which you can optimize the address as-
signments after you have configured the AS-i
slaves.

Then “drag” the dummy value for an AS-i slave
located under the link from the hardware cata-

Figure 20.12 Properties and selection dialog for AS-i slaves

20.4 Communication via Distributed I/O

307

log into the configuration table. Repeat the pro-
cess for all envisaged AS-i slaves. EDIT
OBJECT PROPERTIES with the AS-i slave
selected (in the configuration table) or double-
clicking on the slaves line opens the properties
dialog. Set the slave properties in the “Config-
uration” tab. Using the “Selection” button you
are provided with all AS-i slaves known to the
Hardware Configuration (Figure 20.12).

Configuring the DP/RS232C link

You configure the DP/RS232C link as with a
modular DP slave. You can find the DP/
RS232C link in the hardware catalog under
"PROFIBUS DP", "Other field devices" and
"Gateway" and can drag it to the DP master sys-
tem.

The properties sheet of the PROFIBUS inter-
face appears on which you set the node address.
You set the diagnostic address and further pa-
rameters on the "General" and "Parameterize"
tabs in the object properties of the DP/RS232C
link.

With the DP/RS232C link selected, you are
provided with the configuration table. Now
"Connect" the desired modules listed in the
hardware catalog under DP/RS232C link into
the configuration table, without gaps and start-
ing at slot 1. You can set the universal module
to the desired number of inputs and outputs.
The user data addresses that you specify in the
module properties are in the address area of the
opened DP master CPU.

20.4.3 Special Functions for
PROFIBUS DP

GSD files

You can subsequently install DP slaves which
are not included in the module catalog. To do
this, you require the type file tailored to the
slave (GSD file, General Station Description).
As of GSD revision 3, DP slaves introduced
with a GSD file support the DPV1 functional-
ity.

To install, select OPTIONS INSTALL GSD
FILES in the hardware configuration and enter
the directory of the GSD file or of a different
STEP 7 project in the displayed window. STEP
7 imports the GSD file and shows the slave in

the hardware catalog under "PROFIBUS DP"
and "Other field devices".

STEP 7 saves the GSD files in the directory
...\Step7\S7DATA\GSD. The GSD files deleted
when installing or importing at a later time are
stored in the subdirectory ...\GSD\BKPn. From
here, they can be restored with OPTIONS
INSTALL GSD FILE.

Configuring SYNC/FREEZE groups

The SYNC control command causes the DP
slaves combined as a group to output their out-
put states simultaneously (synchronously). The
FREEZE control command causes the DP slaves
combined as a group to “freeze” the current in-
put signal states simultaneously (synchronous-
ly), in order to allow them to be then fetched cy-
clically by the DP master. The UNSYNC and
UNFREEZE control commands revoke the ef-
fect of SYNC and FREEZE respectively.

It is a requirement that the DP master and the
DP slaves have the relevant functionality. From
the object properties of a slave, you can see
which command it supports (select DP slave,
EDIT OBJECT PROPERTIES, “General” tab
under “SYNC/FREEZE Capabilities”).

Per DP master system, you can form up to 8
SYNC/FREEZE groups that are to execute
either the SYNC command or the FREEZE
command or both. You can assign any DP slave
to a group; on the CP 342-5DP of a specific ver-
sion, one DP slave can be represented in up to 8
groups.

When you call SFC 11 DPSYC_FR, you cause
the user program to output a command to a
group (see Chapter 20.4.7 “System Blocks for
the Distributed I/O”). The DP master then
sends the relevant command simultaneously to
all DP slaves in the specified group.

You configure the SYNC/FREEZE groups fol-
lowing configuration of the DP master system
(all DP slaves must be present in the DP master
system). Select the DP master system (the
black/white dashed rail) and choose EDIT
OBJECT PROPERTIES. In the window that ap-
pears, first specify the commands to be per-
formed for the groups (Figure 20.13) in the
"Group Properties" tab, and then assign the DP
slaves to the individual groups in the "Group
assignment" tab.

20 Main Program

308

Here you select each of the DP slaves listed
with its node number, one after the other, and
select the group to which each should belong. If
a DP slave cannot execute a specific command,
e.g. FREEZE, it cannot be assigned to a group
which contains this command. Finish configur-
ing the SYNC/FREEZE groups by clicking
OK.

Please note that when configuring bus cycles of
the same length (equidistant), groups 7 and 8
acquire a special meaning.

Configuring PROFIBUS PA

To configure a PROFIBUS PA master system
and to parameterize the PA field devices, use
the Hardware Configuration for STEP 7 V5.1
SP3 and higher, or the SIMATIC PDM option
software for an earlier version of STEP 7. Use
the Hardware Configuration to establish the

connection to the DP master system with the
DP/PA Link: drag the IM 157 to the DP master
system in the hardware catalog under “PROFI-
BUS DP” and “DP/PA Link”. With the DP
slave, a PA master system is simultaneously
created in a separate PROFIBUS subnet
(45.45 kbit/s); this is indicated by the broken
black-and-white bar.

The DP/PA coupler exchanges the data between
the bus systems unchanged and without inter-
preting them; it is therefore not parameterized.
The PA field devices are addressed by the DP
master. They can be integrated as a DP standard
slave into the hardware configuration of STEP
7 by means of a GSD file. The PA field devices
are subsequently found in the hardware catalog
under “PROFIBUS DP” and “Other field de-
vices”.

Figure 20.13 Configuration of SYNC and FREEZE groups

20.4 Communication via Distributed I/O

309

Configuring direct data exchange
(lateral communication)

In a DP master system, the DP master has
exclusive control over the slaves assigned to it.
With appropriately equipped stations, another
node (master or intelligent slave, referred to as
the receiver or subscriber) can monitor the
PROFIBUS subnet to learn which input data a
DP slave (sender or publisher) is sending to
“its” master. This direct data exchange is also
called “lateral communication”. In principle all
DP slaves from a specific revision level can
function as senders in direct data exchange.

You configure the direct data exchange with the
Hardware Configuration in the Properties win-
dow of the DP slave (receiver) if all stations are
connected to the PROFIBUS subnet. Open the
receiver station and, with a selected DP inter-
face, select EDIT OBJECT PROPERTIES. The
"Configuration" tab contains the transfer mem-
ory between the DP slave and DP master. Click
on "New" and set the DX mode (direct data ex-
change) in the configuration window that ap-
pears. In the same window, set the parameters
for the DP partner (transmitter).

You can also use the direct data exchange be-
tween two DP master systems on the same
PROFIBUS subnet. For example, the master in
master system 1 can “monitor” the data of a
slave in master system 2 in this manner.

Configuring constant bus cycle time
and isochrone mode

Constant bus cycle time

Normally, the DP master controls the DP slaves
assigned to it cyclically without a pause. With
S7 Communication, such as when the program-
ming device executes modify functions via the
PROFIBUS subnet, this can result in variations
in the time intervals. If, for example, the out-
puts are to be modified via DP slaves at a regu-
lar interval, you can set constant bus cycles
with the appropriately equipped DP master. For
this purpose, the DP master must be the only
Class 1 master on the PROFIBUS subnet. Con-
stant bus cycle time behavior is possible with
the bus profiles “DP” and “User-Defined”. The
PROFIBUS must not be cross-project, and nei-

ther a fault-tolerant system nor a CiR (Config-
uration in Run) object may be connected.

If you configure SYNC/FREEZE groups in
addition to the equidistant behavior, please note
the following:

b For DP slaves in group 7, the DP master
automatically initiates a SYNC/FREEZE
command in every bus cycle. Initiation per
user program is prevented.

b Group 8 is used for the equidistance signal
and is disabled for DP slaves. You cannot
configure equidistant behavior if you have
already configured slaves for group 8.

Isochrone mode

We refer to isochrone mode if a program is exe-
cuted synchronous to the PROFIBUS DP cycle.
In association with equidistant bus cycles, the
result is reproducible response times to the pro-
cess I/O of equal duration which include the
distributed signal acquisition, the signal trans-
mission via PROFIBUS and the program exe-
cution including updating of the process image.
The isochronous user program is present in
organizations blocks OB 61 to OB 64. The sys-
tem functions SFC 126 SYNC_PI and SFC 127
SYNC_PO are available for the isochronous
updating of the process image (see Chapter
21.8 “Synchronous Cycle Interrupts”).

Figure 20.14 shows the times involved in the
isochronous mode. Ti is the time required for
reading in the process values. It contains the ex-
ecution time in the input modules or electronic
modules and, in the case of modular DP slaves,
the transfer time on the backplane bus. At the
end of Ti, the input information for transfer us-
ing the global control command (GC) is avail-
able. Then the equidistance time begins. It is
the time between two global control commands
and encompasses the transfer to the subnet as
well as the execution of the isochronous inter-
rupt OB. Between completion of the execution
of this OB to the next global control command
there must be time for execution of the main
program.

To is the time required to output the process
values. It begins with the global control com-
mand and comprises the transfer time on the
subnet as well as the processing time in the out-

20 Main Program

310

put modules or electronic modules. In the case
of modular DP slaves, the transfer time on the
backplane bus is also added. The response time
in the case of isochronous mode is the total of
the times Ti, equidistance time, and To.

Appropriately designed DP slaves permit short-
ening of the response time through so-called
overlapping isochrone mode. The input and
output signals are then updated overlapping
(overlapping of Ti and To). In this case, you
must deactivate the checkbox “Ti and To times
same for all slaves” in the “Equidistance” tab,
and enter the individual times for the modules
involved. If modules operated in isochrone
mode have both inputs and outputs, overlap-
ping of Ti and To is not possible.

Configuration of isochrone mode

A prerequisite for configuration of isochronous
mode is the constant bus cycle time and the cor-
responding functionality of the participating
DP components.

Add a station and a CPU with integrated DP in-
terface in the project, for example an S7-300
station with a CPU 317-2PN/DP. To insert a DP
master system, set the type "PROFIBUS" on
the "General" tab in the interface properties of
the MPI/DP interface, and the option "DP Mas-
ter" on the "Mode" tab. Click the "Properties..."

button on the "General" tab, and connect the in-
terface to a PROFIBUS subnet.

Click the "Properties..." button to activate the
constant bus cycle times. Select the "Network
Settings" tab in the properties window of the
PROFIBUS interface. Note that the constant
bus cycle times can only be set with the bus
profiles "DP" and "User-defined". Click the
"Options" button and the "Activate constant
bus cycle times" checkbox in the options win-
dow which is then displayed.

For isochronous mode, specify additionally the
times Ti and To on this tab. Either select the
"Times Ti and To same for all slaves", or set the
times individually in the slave properties.

Each module or each submodule participating
in isochronous mode must have a user data ad-
dress in a process image partition that is updat-
ed in isochronous mode by the system functions
SFC 126 SNYC_PI and SFC 127 SNYC_PO.
You make the assignment between the user data
addresses and a process image partition in the
module or submodule properties when setting
the address.

The isochronous modules must be made known
to the DP interface module. In the properties
window of the DP slave, activate the option
"Synchronize DP slave to equidistant DP cy-
cle" on the "Isochronous mode" tab. Here you

Figure 20.14 Response time with isochronous mode and constant bus cycle time

20.4 Communication via Distributed I/O

311

also select the modules or submodules involved
in isochronous mode.

To update Ti and To, click in the properties of
the DP master system on the "Properties" but-
ton on the "General" tab. In the displayed win-
dow, change to the "Network Settings" tab and
click on the "Options" button. When the "Re-
calculate" button is activated, STEP 7 updates
all times involved in isochronous mode. You
can modify the suggested equidistance time but
not below the displayed minimum time. The
"Details" button shows the individual propor-
tions of the equidistance time. Please note that
the equidistance time increases the more pro-
gramming devices are connected directly to the

PROFIBUS subnet and the more intelligent DP
slaves are in the DP master system.

EDIT MASTER SYSTEM ISOCHRONOUS

MODE gives you an overview of all compo-
nents involved in isochronous mode and the rel-
evant parameters (Figure 20.15). If the check-
box "Times Ti and To identical for all slaves"
under "Network settings" and "Options" has
been deactivated, you can set the update times
individually for each slave (prerequisite for
overlapping isochronous mode). Select the DP
slave in the "Isochronous mode" window. "Edit
Parameters" provides you with a dialog win-
dow for entering the individual update times
and the modules involved in isochronous mode.

Figure 20.15 Isochronous mode: Overview and DP slave properties

20 Main Program

312

20.4.4 Addressing PROFINET IO

Similar to the manner in which central modules
are assigned to a CPU and are controlled by this,
the distributed modules with PROFINET IO (sta-
tions, IO devices) are assigned to an IO controller.
The IO controller together with all of “its” IO de-
vices is referred to as a PROFINET IO system.

Like the central module, the I/O devices are as-
signed addresses in the I/O area of the CPU
("logical address area"). The IO controller is so
to say "transparent" for the addresses of the IO
devices; the CPU "sees" the addresses of the IO
devices so that the addresses of the IO devices
must not overlap with those of the central mod-
ules, not even with the addresses of further dis-
tributed modules.

Each station operated on the Industrial Ethernet
has an IP address. This is assigned to the IO con-
troller during configuration. The IP addresses for
the IO devices are derived from the IP address of
the IO controller. In addition, an IO device is as-
signed a device name, a device number (station
number), a geographical address (slot) and at least
one diagnostics address (Figure 20.16).

MAC address

The MAC assigned to the device is a unique
global address. It comprises three bytes with
the manufacturer’s ID and three bytes with the
device ID. The MAC address is usually printed
on the device, and is assigned to it during con-
figuration (unless already factory-assigned).

IP address

Each station on the Industrial Ethernet subnet
which uses the TCP/IP protocol requires an IP
address. The IP address must be unique on the
subnet. For the nodes of a PROFINET IO sys-
tem, it is assigned for the I/O controller once.
Based on this, the hardware configuration as-
signs the IP addresses to the IO devices in as-
cending order.

The IP address consists of four bytes, each sep-
arated by a dot. Each byte is represented as a
decimal number from 0 to 255.

The IP address consists of the subnet address
and the station address. The contribution made
by the network address to the IP address is de-
termined by the subnet mask. This consists –
like the IP address – of four bytes which nor-
mally have a value of 255 or 0. Those bytes with

Figure 20.16 Addresses in a PROFINET IO system

Node
address
(part of the
IP address)

IP address (4 bytes)
Device name (symbol)

Geographic address (slot)

“Virtual”
slot
(physically
not
present)

Logical address
(user data address)

Device number (station number)

PROFINET IO system on the Industrial Ethernet

Modular IO device (e.g. ET 200M)

Output DO

Station

Input DI

QB 32

IB 56

8185*

8184*

8187*

8186*

Slot 0

Slot 0 X1

Slot 0 X1 P1

Slot 0 X1 P2

PN IO interface

Port 1

Port 2

Slot 1

IP address 192.168.0.2
IM153 4PN

1
Device name
Device number

Slot 2

Slot 0 represents the complete station
Xn are the interfaces..
Pn are the ports..
The signal modules are operated
beginning with slot 1.0.2

Diagnostic address (italic with asteri
Module starting address
(shaded in gray)

Byte 0
Byte 1

Byte 1

Byte 2
Byte 3

Byte 0

DI Digital input
DO Digital output

IB 57

QB 33

IB 58
IB 59

20.4 Communication via Distributed I/O

313

a value of 255 in the subnet mask determine the
subnet address, those bytes with a value of 0 de-
termine the node address (Figure 20.17).

Values other than 0 and 255 can also be as-
signed in a subnet mask, thereby dividing up
the address area even further. For example, in a
subnet 192.168.x.x, the subnet mask
255.255.128.0 divides the stations into the two
address areas 192.168.0.0 to 192.168.127.254
and 192.168.128.0 to 192.168.255.254.

Please note that assignment of the IP addresses is
carried out according to international, national
and company rules. For example, the IP
addresses 10.0.0.0 to 10.255.255.255, 172.16.0.0
to 172.31.255.255 and 192.168.0.0 to
192.168.255.255 are provided for private net-
works in accordance with RFC 1918. These
addresses are not passed on in the Internet.

The value 255 in the node address is provided
for broadcasting. With an address x.y.255.255,
for example, all nodes in subnet x.y are
addressed.

Device name, devices number

You assign a device name to the IO controller
and each IO device during configuration. This
name must not be longer than 127 characters,
and may consist of letters, digits, hyphens and
dots.

The name of the IO system can be appended to
the device name, separated by a dot. To do so,
check the "Use name in IO device/controller"

checkbox in the properties of the PROFINET
IO system.

As a supplement to the device name, the hard-
ware configuration assigns a device number to
each IO device which is independent of the IP
address and which you can change. You can use
this device number (station number) to address
the IO device from the user program, e.g. as an
actual parameter on a system block.

Geographical address

The geographical address identifies a module
slot. With central modules, the geographical ad-
dress contains the number of the rack and slot.
Accordingly, the geographical address with
PROFINET IO contains the number of the
PROFINET IO system, the station number, the
slot number, and possibly a subslot number.

The "virtual" (not physically present) slot 0 rep-
resents the IO device. The user data is stored
beginning with slot 1. The system functions
SFC 70 GEO_LOG and SFC 71 LOG_GEO are
used to convert geographical addresses into
logical addresses and vice versa.

Logical address, module starting address

You use the logical address to address the user
data of a station. Each byte of the user data is
uniquely defined by a logical address. The logi-
cal address corresponds to the absolute address;
a symbol (a name) can be assigned to it to make
it easier to read (symbolic addressing).

The smallest logical address of a module or sta-
tion is the module starting address (see also
Chapter 1.4 “Module Addresses”).

Diagnostics address

The diagnostics address is used to identify
modules and stations which can deliver diag-
nostics data but do not have a user data address
themselves. The diagnostics address occupies
one byte of peripheral inputs in the logical ad-
dress volume. As default, STEP 7 assigns the
diagnostics address commencing with the high-
est address in the I/O area of the CPU. You can
change the diagnostics address. The address
overview in the Hardware Configuration iden-
tifies the diagnostics address by a star.

Figure 20.17
Example of the structure of the IP address

20 Main Program

314

Figure 20.18 Diagnostics addresses in a PROFINET IO system

Intelligent IO device

Modular IO device (ET 200M)

Compact IO device (ET 200eco)

IO controller

Device CPU (IM151-8)

Controller CPU (414-3/PN/DP)

PN interface

Port 1

Port 2

PN IO system

PN interface

PN interface

PN interface

Device station

Device station

Device station

Port 1

Port 1

Port 1

Port 2

Port 2

Port 2

Port 3

PN IO system

8190*

8189*

8188*

8187*

8185*

8182*

8178*

8186*

8179*

8175*

512*

8180*

8176*

8184*

8181*

8177*

8183*

2047*

2046*

2045*

2044*

2043*

The user
program in the
device CPU works
with these addresses

The user
program in the
controller CPU
works with these
addresses

a Each bus interface has a diagnostic address which
is set in the object properties of the interface in the
“Addresses” tab (double-click on the “PN” line
in the controller CPU).

s Each bus interface has a diagnostic address which
is set in the object properties of the interface in the
“Addresses” tab (double-click on the “PN” line
in the device CPU).

d The diagnostic address of the station of an intelligent
 IO device corresponds to the user data address
(“module starting address”) of the first
transfer area in the transfer memory.

f The IO controller only assigns the diagnostic addresses
of the PN interface and ports of the intelligent IO device
if the “Parameter assignment for the PN interface
and its ports on the higher-level IO controller”
checkbox is selected.

a

d

sf

20.4 Communication via Distributed I/O

315

In the example shown (Figure 20.18), the MPI/
DP interface of the controller CPU 414-3 PN/
DP is assigned the diagnostic address 8191 (not
shown) and the PN interface is assigned address
8190. The diagnostic addresses for the ports
and the PN IO system are assigned in subse-
quent order. The diagnostic addresses are as-
signed to the device CPU in a similar manner.
From the viewpoint of the IO controller, the sta-
tion of the device CPU is assigned the user data
address of the first transfer area as the diagnos-
tic address. It can then still address the station
even if the parameters of the PN interface have
been assigned by the device CPU (from the
viewpoint of the controller CPU, no more diag-
nostic addresses are visible for the PN interface
and the ports of the IO device).

Each compact and modular IO device is as-
signed the diagnostic addresses for the station,
the PN interface, and the ports by the IO con-
troller.

The diagnostics data are scanned in the user
program by means of system blocks. For exam-
ple, SFB 54 RALRM is used for a diagnostics
interrupt, and reads the supplementary interrupt
information. You can use the SFB 52 RDREC
to scan the diagnostics record DS1.

Transfer memory on an intelligent IO device

In the case of compact and modular IO devices,
the addresses of the inputs and outputs are lo-
cated together with the addresses for the central
modules in the address volume of the controller
CPU. Intelligent IO devices have a transfer
memory which can be divided into several
transfer areas of different lengths. The individ-
ual areas then respond like modules whose low-
est address is the module starting address. From
the viewpoint of the controller CPU, the intelli-
gent IO device then appears as a compact or
modular IO device, depending on the division.

When configuring the device, you can config-
ure the individual areas of the transfer memory
as inputs or outputs with the “module starting
address” and the area length. The addresses of
the transfer memory must not overlap with the
central modules in the device CPU. If the ad-
dresses are present in the process image, the ar-
eas can be handled by the user program like in-
puts and outputs, otherwise like peripheral in-

puts and outputs. If the device CPU possesses
process image partitions, you can also assign a
process image partition to each area.

When coupling to the PROFINET IO system,
you supplement the configuration at the con-
troller end by the "module starting addresses"
from the viewpoint of the controller CPU and
by the transmission direction. You assign inputs
on the device side to outputs on the controller
side and vice versa. If the addresses are present
in the process image, the areas can be handled
by the user program like inputs and outputs,
otherwise like peripheral inputs and outputs. If
the controller CPU possesses process image
partitions, you can also assign a process image
partition to each area. From the viewpoint of
the controller CPU, the addresses of the transfer
memory must not overlap with the addresses of
other central or distributed modules in the con-
troller station.

20.4.5 Configuring PROFINET IO

General procedure

You basically configure the distributed I/O on
PROFINET IO like the central modules. In-
stead of arranging modules in a rack, you assign
IO devices (nodes on the Industrial Ethernet
subnet) in this case to a PROFINET IO system.
The following sequence is recommended:

 1) Use the SIMATIC Manager to create a new
project or open an existing one.

 2) Use the SIMATIC Manager to create an In-
dustrial Ethernet subnet in the project.

 3) Use the SIMATIC Manager to create the sta-
tion in the project which is to accommodate
the IO controller, e.g. an S7-300 station.

 4) If the project contains intelligent IO devices,
you can now also create the corresponding
device stations, for example an ET 200pro
station.

 5) You start the hardware configuration by
opening the controller station. Insert a CPU
with integrated PN interface. You assign the
previously created Ethernet subnetwork to
the PN interface and create a PROFINET
IO system. In the "General" tab, you can
change the specified device name and IP
address. You can also configure the remain-

20 Main Program

316

ing modules later. Save and compile the sta-
tion.

 6) If you have created an S7 station for an in-
telligent IO device, open this in the hard-
ware configuration and insert an appropri-
ate CPU with integrated PN interface, if ap-
plicable (with an ET 200 station, the CPU is
inserted by STEP 7). Activate the "I-device
mode" of the PN interface, and configure
the transfer memory from the viewpoint of
the IO device. You can also configure the
remaining modules later. Save and compile
the station.

Subsequently generate a GSD file from the
intelligent IO device and install it.

Proceed in the same manner with further sta-
tions envisaged for intelligent IO devices.

 7) Now couple the IO devices to the PROFI-
NET IO system. Open the controller station
and drag the PROFINET nodes using the
mouse from the hardware catalog to the
PROFINET IO system, assign a device
name and, if applicable, the device number
(station number).

 8) If you use IRT communication, create a
new sync domain, import the involved
PROFINET IO systems, and set the proper-
ties of the corresponding devices.

 9) If you use IRT with the option “High per-
formance”, you must configure the network
topology either in the Hardware Configura-
tion directly on the port (interface connec-
tion) or centrally using the Topology Editor.

 10)Saving and compiling stations. The PRO-
FINET IO system is now configured. You
can now supplement the configuration with
centralized modules, with IO systems, or
with further IO devices. If you change the
assignment of an intelligent IO device, you
must also generate a new GSD file, and in
turn a station from this, which you can add
to the PROFINET IO system.

You can also graphically display the configured
PROFINET IO system using the network con-
figuration. Open the network configuration,
e.g. by double-clicking on a subnet. Select
VIEW DP-SLAVES/IO DEVICES to display
the IO devices. You can also use the network
configuration to create a PROFINET IO system

(more exactly: assign the nodes to an Ethernet
subnet). When the stations are open, set their
parameters using the Hardware Configuration.

Before the configuration data is downloaded,
the device name must be assigned to each IO
device. In the STOP state, download the config-
uration data to the CPU which applies its own
parameters such as the IP address. Use the
Hardware Configuration to download the data
of the currently opened station (PLC DOWN-
LOAD TO MODULE), use the Network Configu-
ration to send the data to several stations, e.g.
using PLC DOWNLOAD TO CURRENT PROJ-
ECT STATIONS IN SUBNET.

During the startup, the CPU transfers the con-
figuration information to the IO devices and
monitors the parameterization. The IO devices
are also assigned their IP address together with
the parameters. Following successful parame-
terization, the useful data are subsequently
exchanged cyclically between IO controller
and IO devices in RUN.

Configuring IO controller

Prerequisite: You have created a project and an
S7 station with the SIMATIC Manager. Using
the hardware configuration, open the station
and position a CPU with a PN interface (see
Chapter 2.3.1 “Arranging Modules”).

To set the properties, double-click in the con-
figuration table on the line with the PN inter-
face. You can change the device name of the IO
controller on the "General" tab of the Properties
window.

In order to assign an Ethernet subnet to the PN
interface, click on the "Properties" button. Se-
lect the subnet in the displayed window, or cre-
ate a new one using the "New" button. Adjust
the IP address and possibly the subnet mask if
necessary. Close the dialog box with "OK".

To create the PROFINET IO system, select the
PN interface in the configuration table and then
the command INSERT PROFINET IO SYS-
TEM.

Select the black/white rail and then EDIT
OBJECT PROPERTIES. Assign a name and an IO
system number (from 100 to 115) on the "Gen-
eral" tab of the Properties window. Here you

20.4 Communication via Distributed I/O

317

can also choose whether the system name is to
be a component of the device name for IO con-
trollers and IO devices. You can access the S7
subnet ID using the "Properties…" button.

Configuring a compact IO device

The IO devices can be found in the hardware
catalog under "PROFINET IO" in the corre-
sponding subcatalog, e.g. "I/O". Select the de-
sired IO device and drag it with the mouse to
the PROFINET IO system.

Double-clicking on the IO device opens the
Properties window. You can change the device
name and number on the "General" tab. To
change the IP address, click on the "Ether-
net…" button.

The bottom part of the window shows the con-
figuration table of either the selected IO device
or the PROFINET IO system. You can switch
over using the "Arrow" buttons.

In order to change a user data address, select the
IO device and double-click on the address line
in the configuration table. In the Properties
window, you can then change the address on the
"Addresses" tab.

Configuring a modular IO device

The IO devices can be found in the hardware
catalog under "PROFINET IO" in the corre-
sponding subcatalog, e.g. "I/O".

Click on the desired interface module (basic
module) and drag it to the icon for the PROFI-
NET IO system. By double-clicking on the IO
device, you are provided with the properties
sheet of the station; you can set the device name
and number on the "General" tab. You can
change the proposed IP address after clicking
on the "Ethernet…" button.

The bottom part of the window shows the con-
figuration table of either the selected IO device
or the PROFINET IO system. You can switch
over using the "Arrow" buttons.

Now place the modules that you can find in the
hardware catalog under the selected interface
module (!) into the configuration table. Double-
clicking on the line opens the Properties win-
dow and allows the assignment of parameters to
the module.

Special functions for ET 200S and ET 200pro

The Combine modules function optimizes the
address assignments for modules with two or
four bit channels. You can find a description of
this function under “Combining modules” on
Seite 300.

With the Option handling function, you prepare
a future extension of an ET 200S or ET 200pro
station. You can find a description of this func-
tion under “Handling of options in general”
starting on Seite 300.

Configuring an intelligent IO device

You configure a station for an intelligent IO de-
vice like a controller station: In the SIMATIC
Manager or in the hardware configuration, in-
sert a new station into the project, position the
CPU with the PN interface, and connect the PN
interface to the Ethernet subnet. Examples of
intelligent IO devices you can use are a CPU
400 with firmware release V6.0 or higher, a
CPU 300, a CPU ET 200S, or a CPU ET
200pro with firmware release V3.2 or higher.

To set the operating mode, select the PN inter-
face in the configuration table and then EDIT
OBJECT PROPERTIES. Select the "I device" tab
in the Properties window, and check the "I de-
vice mode" checkbox there.

If the "Parameter assignment for the PN inter-
face and its ports on the higher-level IO control-
ler" checkbox is selected, the IO controller as-
signs the parameters for the PN interface. Oth-
erwise the parameters are set by the IO device.

You must subsequently still configure the trans-
fer memory. The transfer memory is the user
data interface between the IO controller and the
IO device. It can be divided into several transfer
areas whose addresses correspond to individual
modules. With correspondingly designed
CPUs, you can also specify input modules of
the IO device in the transfer area, which the IO
controller can then access almost directly.

Following activation of the I device mode, you
create a new transfer area in the transfer mem-
ory using the "New…" button. You define the
type of transfer area in the transfer area's prop-
erties: "Application" if it is to be a freely-de-
fined area and "I/O" if an I/O module is to be
addressed.

20 Main Program

318

When selecting "Application", you define
whether the area is to be an input or output from
the viewpoint of the IO device, and define the
start address, the length (in bytes), and also the
process image partition if required (Figure
20.19).

When selecting "I/O", you click on the "Select
I/O" button and then select the desired input
module from the previously configured input
modules in the dialog window. The I/O module
appears automatically as the output transfer ar-
ea whose start address (corresponds to the mod-
ule starting address) you can change.

Once you have configured all transfer areas,
save and compile the station, and generate a
GSD file with OPTIONS CREATE GSD FILE

FOR I DEVICE … from the IO device. In the
"Designation for I device proxy" box in the di-
alog window, you can change the name of the

PN interface as it is to be displayed later in the
IO controller.

Click the "Create" button. Following creation
of the GSD file, you can save it using "Export"
and install it later. To install it immediately,
click on the "Install" button and then on
"Close". STEP 7 creates a folder "Preconfig-
ured Stations" in the hardware catalog under
"PROFINET IO", and inserts a folder with the
symbol for the intelligent IO device just creat-
ed.

The intelligent IO device is now coupled as
with a compact IO device: Open the controller
station and drag the symbol for the intelligent
IO device to the PROFINET IO system using
the mouse.

With the IO device selected, the transfer areas
are displayed in the configuration table as a
subslot for slot 2 with the user data address as

Figure 20.19 Configuring the transfer memory of an intelligent IO device

20.4 Communication via Distributed I/O

319

"seen" by the controller CPU. To change an ad-
dress, double-click on the address line and enter
the new address on the "Addresses" tab in the
Properties window.

PN/PN coupler configuration

The PN/PN coupler connects each of two In-
dustrial Ethernet subnets to a PROFINET IO
system. In each of the two PROFINET IO sys-
tems, one half of the PN/PN coupler appears as
an IO device. Using Configuration of transfer
memory, combine the two IO devices.

With a correspondingly designed PN/PN cou-
pler, you can use other functions in addition to
the cyclic I/O transmission, for example the
shared device function (see section „Shared de-
vice“ on page 321).

Prerequisite: The two PROFINET IO systems
are set up. You have opened one of the control-
ler stations.

You can find the symbol of the PN/PN coupler
in the hardware catalog under "PROFINET IO"
and "Gateway" in the "PN/PN coupler" folder.
Use the mouse to drag one half of the PN/PN
coupler (e.g. X1) to the PROFINET IO system.
Drag the second half to the second PROFINET
IO system.

To combine the two halves, select the PN/PN
coupler and then EDIT OBJECT PROPERTIES.
Configure the coupling partner on the "Cou-
pling" tab in the Properties window. Specify the
other half of the PN/PN coupler here (Figure
20.20).

You can set the device name and number for
each half of the coupler on the "General" tab in
the Properties window – just like with an IO de-
vice – and change the IP address after clicking
on the "Ethernet…" button.

Figure 20.20 Configuring a PN/PN coupler V3.0: Connection and characteristics of the transfer interface

20 Main Program

320

With the PN/PN coupler selected, the configu-
ration table is displayed in the bottom part of
the window. Double-clicking on the station line
(slot 0) or on the interface line opens the Prop-
erties window in which you can set the param-
eters of the station or of the PN interface for the
current part of the PN/PN coupler.

Both halves of the coupler have a transfer mem-
ory for data exchange which can be divided into
several transfer areas. Each area corresponds to
a signal module whose addresses are within the
address volume of the respective IO controller.
Each area has a start address ("module starting
address") and a length in bytes.

If an input area is configured in one half of the
PN/PN coupler, an output area of the same
length must be created in the other half, and
vice versa. If the other subnet is in the same
project, STEP 7 creates the associated transfer
area in the other half of the coupler.

You configure the transfer areas like signal
modules: Input and output areas of various
lengths are listed in the hardware catalog under
the corresponding PN/PN coupler. Use the
mouse to drag the symbol with the desired
property to a slot in the configuration table,
starting without gaps at slot 1. A double-click
on the line of the transfer area opens the Prop-
erties window in which you can set the start ad-
dress and the process image partition used on
the "Addresses" tab.

If you are using the universal module, you must
set the I/O type, the start address, the area
length, and the process image partition in the
properties (Figure 20.20).

On the "Connection" tab, you can also clear
down the connection between the subnets again
(enter "- - - - -" under "Subnet").

Configuring IE/PB Link

You can find the IE/PB Link PNIO in the hard-
ware catalog under "PROFINET IO" and
"Gateway" in the "IE/PB Link PN IO" folder.
Use the mouse to drag the symbol for the IE/PB
link to the PROFINET IO system. In the Prop-
erties window which is displayed, you set the
PROFIBUS subnet and the station numbers in
this subnet.

Selecting EDIT OBJECT PROPERTIES with the
IE/PB Link selected shows its properties window
with the possibility for setting the device name
and number on the Ethernet subnet. You can
change the IP address using the “Ethernet...” but-
ton (Figure 20.18).

The IE/PB Link is quasi the DP master for the
“subordinate” DP master system. Position the
DP slaves from the hardware catalog in this
master system, and assign them the desired
properties (see Chapter 20.4.2 “Configuring
PROFIBUS DP”).

You require a device number in order to address
the DP slaves over PROFINET IO. You make
the assignment between node number on the
PROFIBUS and device number on the PROFI-
NET in the “Device numbers” tab in the prop-
erties window of the IE/PB Link. As standard,
STEP 7 uses the PROFIBUS address as the de-
vice number (indicated by a star on the num-
ber). Select a DP slave in the list, and click the
“Change” button.

The IE/PB Link is able to pass on time frames
and parameter records. You make the settings
for these in the “Options” tab in the properties
window.

Configuring IE/AS-i link

You can find the IE/AS-i Link PNIO in the
hardware catalog under "PROFINET IO" and
"Gateway" in the "IE/AS-i Link PN IO" folder.
Use the mouse to drag the symbol for the IE/
AS-i link to the PROFINET IO system.

EDIT OBJECT PROPERTIES with the IE/AS-i
link selected shows its properties window with
the option for setting the device name and num-
ber on the Ethernet subnet. You can change the
IP address using the “Ethernet…” button.

The IE/AS-i link is quasi the AS-i master. The
AS-i master system with the AS-i slaves is not
displayed as a subnet by the Hardware Config-
uration. With the IE/AS-i link selected, you are
provided with the configuration table in which
you “insert” the AS-i slaves which are arranged
in the catalog under the link symbol.

The configuration of the AS-i master system is
described in Chapter 20.4.2 “Configuring
PROFIBUS DP” under “Configuring the DP/
AS-i link”.

20.4 Communication via Distributed I/O

321

20.4.6 Special functions for PROFINET IO

GSD files

You can subsequently install IO devices which
are not included in the module catalog. To do
this, you require the type file tailored to the IO
device (GSD file, Generic Station Description).
Suitable for IO devices are GSD files with GSD
version 5 or higher in XML format (GSDML,
Generic Station Description Markup Lan-
guage).

To install, select OPTIONS INSTALL GSD
FILES in the hardware configuration and enter
the directory of the GSD file or of a different
STEP 7 project in the displayed window. STEP
7 imports the GSD file and shows the IO device
in the hardware catalog under "PROFINET IO"
and "Other field devices".

STEP 7 saves the GSD files in the directory
…\Step7\S7DATA\GSD. The GSD files
deleted during post-installation or importing
are saved in the subdirectory …\GSD\BKPn.
They can be restored from there using OPTIONS
 INSTALL GSD FILES.

Shared device

The "Shared device" function allows different
IO controllers to access submodules (I/O mod-
ules and transfer areas) in one IO device. The
associated IO device is used by the IO control-
lers together (shared device). Each submodule
of the shared device is assigned to an IO con-
troller.

The basic conditions for use of a shared device
are:

b The IO controller and the IO device must be
present in the same Ethernet subnet.

b When using isochronous real-time commu-
nication (IRT), a shared device can only be
used with the IRT option "High perfor-
mance".

b The shared device function can only be used
with "even" send cycle times.

b A shared device cannot be operated in an
isochronous manner with the constant PRO-
FINET IO cycle.

The shared device function is available with a
CPU 400 with firmware version 6.0 and higher

and with a CPU 300 or CPU ET 200 with firm-
ware version 3.2 and higher.

Prerequisite: A project has been created with
two or more IO controllers and PROFINET IO
systems on the same Ethernet subnet.

To create a (modular) shared device, open a
controller station and drag the IO device from
the hardware catalog to the PROFINET IO sys-
tem with the mouse. Configure the modules by
dragging from the hardware catalog to the slot
in the configuration table. Position all modules
for all IO controllers.

Following configuration, copy the IO device
into the clipboard, for example using the "Co-
py" command from the shortcut menu. Save the
controller station, and open another one.

To insert the saved IO device, click with the
right mouse button on the PROFINET IO sys-
tem and select the "Shared insert" command
from the shortcut menu. Subsequently save the
controller station. IO devices of identical de-
sign are now present in the two controller sta-
tions. Repeat inserting with the other IO con-
trollers if applicable.

Double-click on the IO device in one of the
controller stations. The shared device (of the
other PN IO system) is entered in the Properties
window in the "Coupled devices" table on the
"Shared" tab. Here you can also delete the cou-
pling again: Select the shared device in the
"Coupled devices" table and click on the "Un-
couple" button. This tab also permits coupling
of the same type of IO devices which were not
transferred with the "Shared insert" command:
Select the IO device in the "Devices which can
be coupled" table and click on the "Couple"
button.

To assign the modules to an IO controller, open
the "Access" tab. All modules are listed in a tree
structure. A module has the value "Full" if it is
assigned to the IO controller of the currently
open PROFINET IO system. Otherwise it has
the value "---". Open the shared devices in suc-
cession in each PROFINET IO system, and as-
sign the modules to the associated IO controller
by clicking in the "Value" column (Figure
20.21).

If the IO controller is in a different project, you
must manually configure the shared device in

20 Main Program

322

the other project with exactly the same module
assignment, but with the assignment referring
to the current IO controller. Save the controller
station following the assignment.

Real-time communication with PROFINET

PROFINET IO enables several types of data
transmission:

b Non-time-critical data such as configuration
and diagnostics information is transmitted
acyclically with the standard TCP/IP com-
munication.

b User data (input/output information) is
exchanged cyclically within a defined time

period – the updating time – between IO
controller and IO device (real-time RT).

b Time-critical user data, e.g. for motion con-
trol applications, is transferred with hard-
ware support isochronously (isochronous
real time IRT).

A fixed communications channel is reserved on
the Ethernet subnet for IRT communication.
Within the updating time, the RT communica-
tion (the cyclic data exchange between IO con-
troller and IO devices) and the non-real-time
TCP/IP communication are carried out parallel
to this. In this manner, all three types of com-
munication can exist in parallel in the same
subnet.

Figure 20.21 Configuring a shared device

20.4 Communication via Distributed I/O

323

Send cycle time, updating time

Cyclic data exchange is carried out at a defined
rate, the send cycle time. STEP 7 calculates the
send cycle time from the configuration data for
the PROFINET IO system. The send cycle time
is the shortest possible updating time. This is
the time period within which each IO device in
the IO system exchanges its user data with the
IO controller. The actual updating time for an
IO device can be a multiple of the send cycle
time. You can manually increase the updating
time, e.g. to reduce the load on the bus.

As standard, the updating time is the same for
all IO devices in the IO system. If necessary,
one can shorten the updating time for individual
IO devices if the time for other devices can be
increased because the rate at which their user
data are exchanged is non-critical.

You can configure the send cycle time (without
IRT communication) centrally in the properties
dialog of the PN interface on the “PROFINET”
tab or in the properties dialog of the PROFI-
NET IO system on the “Updating time” tab.

This tab also lists the IO devices with the up-
date times. You can increase the time for an IO
device by selecting it and clicking on the "Edit"
button, or you can set the time in the Properties
dialog box of the PN interface of the IO device
on the "IO cycle" tab.

In addition to the updating time, you can also
set the response monitoring time in the inter-
face properties. This is the product of the updat-
ing time and the “Number of accepted updating
cycles with missing IO data”.

If there is at least one synchronized device in
the IO system, the send frequency is deter-
mined by the sync master of the sync domain
and can only be modified in the properties of
the sync domain. Select the IO system in the
Hardware Configuration or the subnet in the
Network Configuration. Select EDIT PRO-
FINET IO DOMAIN MANAGEMENT. The cy-
cle time can then no longer be modified any-
where else.

Real-time

Real-time (RT) means that a system processes
external events within a defined time. If it
reacts predictably, it is referred to as determin-

istic. In the case of RT communication, the
transmission takes place in a defined interval
(updating time) at a defined point in time (Send
cycle time). PROFINET IO permits the use of
standard network components for RT commu-
nication.

If it is impossible to transmit all required data
within the planned interval, e.g. because new
network components have been added, some of
the data is transferred to other send cycle times,
and this can lead to an increase in the updating
time for individual IO devices.

Isochronous real-time

Isochronous real-time (IRT) is hardware-sup-
ported real-time communication designed, for
example, for motion control applications. IRT
message frames are deterministically transmit-
ted via planned communication paths in a spec-
ified order. IRT communication therefore re-
quires network components that support this
planned data transmission.

Isochronous real-time is available in the
options “High flexibility” for simple configura-
tion and plant expansion, and “High perfor-
mance” for fast updating times.

To be able to configure IRT communication, set
up a new sync domain (see next section) and
determine a sync master to handle the synchro-
nized distribution of the IRT message frames to
the sync slaves. IRT with the "High perfor-
mance" option requires a topology configura-
tion (see section “Topology Editor”) and thus a
defined structure that takes account of the trans-
mission properties of the cables and the switch-
es used.

SYNC domain

A sync domain is a group of PROFINET IO
nodes which exchange synchronized data with
one another. A node, which can be an IO con-
troller or IO device, takes on the role of the sync
master, the others are the sync slaves.

A sync domain can include several IO systems,
where one IO system is always completely
assigned to a single sync domain. Several sync
domains can exist on an Ethernet subnet.

When configuring an IO system, a special sync
domain is created automatically: the sync

20 Main Program

324

domain default. All configured IO systems, IO
controllers and IO devices are initially present
in the sync domain sync domain default.

You create a new sync domain for IRT commu-
nication, and import the IO system (from the
sync domain default) into the new sync domain.
It is not necessary to synchronize all devices of
an IO system, i.e. not all exchange data by
means of IRT communication. When configur-
ing, the non-synchronized nodes are initially
also listed in the sync domain, but during run-
time only the synchronized nodes are present in
the sync domain.

Configuring a new sync domain

Prerequisite: You have configured the Ethernet
subnet with one or more PROFINET IO sys-
tems. The nodes involved in IRT communica-
tion must also support this function.

To create a new sync domain, select the PRO-
FINET IO system in the Hardware Configura-
tion or the subnet in the Network Configura-
tion, and select EDIT PROFINET IO DO-
MAIN MANAGEMENT. The "Domain Manage-
ment" window that appears shows the sync
domain sync domain-default and all IO systems
on the same subnet that are located in the sync
domain (Figure 20.22).

Figure 20.22 Configuring a new SYNC domain

20.4 Communication via Distributed I/O

325

Create a new sync domain using the “New”
button, assign a name, and select an IO system
using the “Add” button. Repeat the procedure if
you wish to add further IO systems. IO systems
added to the new sync domain are no longer
part of the sync domain sync domain default.

The IO systems of the sync domain and the bus
nodes of the selected IO system are displayed.
Then select a device, select “Device proper-
ties”, and set the type of synchronization (sync
master or sync slave) and the RT class (RT, IRT
“High flexibility” or IRT “High performance”)
in the parameters of the displayed properties
window. Proceed in the same manner for the
other bus nodes. Only one device can be the
sync master, all other devices are sync slaves.
In a sync domain, either devices of classes IRT
“High flexibility” and RT or of classes IRT
“High performance” and RT may be present.

In the “Send cycle time” box, select the send
cycle time and use the “Details” button to select
the portion of bus communication reserved for
IRT. Save the settings using “OK”.

Topology Editor

The topology editor allows you to configure the
cabling of devices on the Industrial Ethernet
subnet. The logic connections between the
PROFINET devices are configured using the
Hardware Configuration and Network Config-
uration tools. The topology editor is used to
configure the physical connections with the
length and cable type properties with which the
signal propagation times are determined.
Application of the topology editor is a prerequi-
site for use of IRT communication (isochronous
real-time) with the “High performance” option.

The physical connections between devices on
the Ethernet subnet are point-to-point connec-
tions. The connections on a PN interface are
called ports. The Ethernet cable connects a port
of one device to a port of the partner device.

To enable several nodes to communicate with
each other, they are connected to a switch that
has several connections (ports) and that distrib-
utes signals. There are also S7 devices featuring
a PN interface that has two or more ports con-
nected by an integral switch. With this interface
you can cable communication devices in a lin-
ear bus topology without external switches.

The connection between two ports can be con-
figured using the Hardware Configuration.
Select the port in the configuration table, and
then EDIT OBJECT PROPERTIES. On the
“Topology” tab in the display properties win-
dow, you can now determine the partner port
and edit the cable properties.

Before you call up the Topology Editor, use the
Hardware Configuration or the Network Con-
figuration to configure the communication
partners on the Ethernet subnet including the
necessary switches. In the Hardware Configu-
ration, open the controller station, select the
PROFINET IO system, and choose EDIT
PROFINET IO TOPOLOGY. In the Network
Configuration, select an Ethernet subnet and
then EDIT PROFINET IO TOPOLOGY.

The interconnection table in the tabular view
shows the pairs of ports of all configured active
and passive components. By setting filters, you
can display all ports, only the interconnected
ones, or only the non-interconnected ones (Fig-
ure 20.23).

In the object properties of the port you can set
the connection to the partner port. You can can-
cel an interconnection by selecting the port fol-
lowed by clicking SEPARATE PORT INTERCON-
NECTION with the right mouse button.

If there is a connection to the plant, you can use
the "Online" button to check whether the devic-
es configured offline are available and what
their status is. The comparison is based on the
device name, the IP address and the device ID.
The data determined online is displayed in the
"Status" and "Attenuation value" columns.

The topology window in the graphic view
shows the devices, their ports and the intercon-
nection. The offline view shows the configured
devices, the online view – with an existent
online connection to the system – shows those
actually present in the system.

To improve editing, you can “shut” the display
of the stations, suppress the miniature view and
the catalog of the passive components
(“Options” button and “Options” tab), and
zoom the view by scrolling with the center
mouse button.

To interconnect two ports, select a port and
“drag” a connection to the partner port with the

20 Main Program

326

right mouse button pressed. You can cancel an
interconnection by selecting it with the right
mouse button and clicking SEPARATE PORT IN-
TERCONNECTION.

The topology configured offline is displayed
compared to the topology determined online on
the Offline/Online comparison tab. All stations
and modules with their ports and the respective
partner port and the cable data are displayed.
You can thus check the configuration with the
connections and cables, and supplement any
system components which are missing.

A selection can be made with the relevant filter
settings. In the overviews the determined dif-
ferences, e.g. the modules that the Topology
Editor could not assign, are highlighted in col-
or. You can now undertake manual assignment.

Isochronous mode

The "Isochronous mode" function permits syn-
chronous reading, processing and output of I/O
signals in a fixed (equidistant) cycle. A prereq-

uisite for isochronous mode is isochronous
realtime (IRT) with the "High performance"
option.

The basis of the time pattern is the cycle time
and the data cycle derived from this (the update
time, Figure 20.24).

The data cycle is the interval at which the IRT
transmission takes place on the subnet. The ap-
plication cycle is the interval at which the iso-
chronous mode OB is called. This is a multiple
of the data cycle.

Ti is the time required for reading the I/O sig-
nals. It includes the times for preparation of the
I/O signals in the input modules or electronic
modules, and for processing in the IO device.

Ti is followed by the data cycle. This begins
with transmission of the I/O signals over the
subnet. Transmission takes place in both direc-
tions; the input signals are transmitted to the
controller station, and the output signals (from
the previous application cycle) are transmitted
to the IO devices.

Figure 20.23 Tabular and graphical view of the Topology Editor

20.4 Communication via Distributed I/O

327

The isochronous mode organization block as-
signed to the PROFINET IO system is called
following a delay time during which the IRT
transmission takes place. System function SFC
126 SYNC_PI must be called in the organiza-
tion block in order to read the input signals in
isochronous mode, and system function SFC
127 SYNC_PO in order to write the output sig-
nals in isochronous mode. The processing time
of the isochronous mode OB must be (signifi-
cantly) shorter than the application cycle time,
for the main program is further processed dur-
ing the differential time.

To begins at the end of the data cycle. This is
the time required for output of the I/O signals.
It is made up of the transmission time on the
subnet, the time for processing in the IO device,
and the times for preparation of the I/O signals
in the output modules or electronic modules.

With isochronous mode, a distinction is made
between two types: The processing time of the
isochronous mode program is (significantly)
shorter than the time for one data cycle, or it is
longer. In the first case, the isochronous mode
OB can be called in every data cycle (shown in

Figure 20.24); in the second case, the cycle in
which the isochronous mode OB is called – the
application cycle – is a multiple of the data cy-
cle (shown with factor 2 in Figure 20.25).

If the isochronous mode OB is called in every
data cycle – the "Application cycle factor" is
then 1 – the system function SFC 126 SYNC_
PI for isochronous updating of the input signals
is called first in the isochronous mode program.
This is followed by processing of the signals,
and subsequent output with the system function
SFC 127 SYNC_PO.

With this mode, the shortest response time be-
tween an input signal and the corresponding
output signal is therefore the total of Ti, the data
cycle time, and To. The longest response time
occurs if the input signal changes shortly after
the time for reading-in, and is the total of Ti, To,
and twice the data cycle time.

With an application cycle which takes longer
than the data cycle (Figure 20.25), you should
select a different sequence for updating of the
process image: Updating of the output signals
first, then of the input signals, and then the pro-
cessing. In this manner it is possible that the

Figure 20.24 Isochronous mode in the PROFINET IO system (mode 1)

IRT IRTIRTRT + acyclic RT + acyclic

Isochronous mode OB Isochronous mode OB

Processing Processing

Changing the sensor signal
at the module terminal

Delay

Output at
module terminal

Input Output

Ti To

Data cycle

Application cycle Application cycle

Data cycle

Execution time

AEE A

Mode 1: The execution time of the isochronous mode program is shorter than a data cycle.

 1 × data cycle

 1 × data cycle

20 Main Program

328

output signals are transmitted with the next pos-
sible data cycle (in the next application cycle)
even if the data cycle time is short compared to
the process image updating time.

With this mode, the shortest response time be-
tween an input signal and the corresponding
output signal is therefore the total of Ti, the ap-
plication cycle time, the data cycle time, and
To. The longest response time occurs if the in-
put signal changes shortly after the time for
reading-in, and is the total of Ti, To, the data cy-
cle time, and twice the application cycle time.

In order to configure isochronous mode, you
create a PROFINET IO system with the con-
troller station and the IO devices, import the
stations into a SYNC domain with the IRT op-
tion "High performance", and configure net-
working between the stations using the Topolo-
gy Editor. In the device stations, you assign a
process image partition, for example the TPA1,
to the modules in their properties on the "Ad-
dresses" tab.

You assign the isochronous mode organization
block to the PROFINET IO system in the CPU
properties: Open the controller station and dou-

ble-click on the CPU to open the CPU proper-
ties window; select the "Synchronous cycle in-
terrupts" tab and set the PROFINET IO system
for the organizational block, for example the IO
system number 100 for OB 61. Click on the
"Details" button (Figure 20.26).

The duration of the application cycle is calcu-
lated from the data cycle, multiplied by a factor
which you specify on this tab. It is therefore
necessary to estimate the processing time of the
isochronous mode program and to compare this
with the data cycle time.

If applicable, you set the delay time on this tab
with which the isochronous mode OB is to start,
and assign the process image partition which
you have set for the module addresses in the IO
devices. The following methods are available
for determining the times Ti and To:

b "Automatic" – STEP 7 determines the times
and sets them the same for all IO devices

b "Fixed" – you enter the times which then ap-
ply to all IO devices

b "In IO device" – the times are then set indi-
vidually in the respective IO device.

Figure 20.25 Isochronous mode in the PROFINET IO system (mode 2)

IRT IRT IRT IRTIRTRT + acyclic RT + acyclic RT + acyclic RT + acyclic

Isochronous mode OB Isochronous mode OB

Processing Processing

Changing the sensor signal
at the module terminal

Delay

Output at
module terminal

Input Output

Ti To

Data cycle

Application cycle Application cycle

Data cycle Data cycle Data cycle

Execution time

(n + 1) data cycle

A EE A

Mode 2: The execution time of the isochronous mode program is longer than a data cycle

 n × data cycle

 × data cycle

20.4 Communication via Distributed I/O

329

To assign the modules to isochronous mode, se-
lect the IO device, double-click on the PN inter-
face in the configuration table, and select the
"IO cycle" tab in the Properties dialog. In the
section "Isochronous mode", assign the iso-
chronous mode OB to the IO device, and click
on the "Isochronous module/submodule…"
button. You can activate or deactivate the indi-
vidual modules of the IO device for isochro-
nous mode in the displayed window. Proceed in
the same manner for the other IO devices.

You are provided with an overview of the con-
figuration if, with the controller station select-
ed, you then select the EDIT PROFINET IO
 ISOCHRONOUS MODE command.

20.4.7 System Blocks for the Distributed I/O

Read and write I/O signals

The following blocks transmit I/O signals from
and to stations of the distributed I/O:

b FB 20 GETIO
Read all inputs of a station

b FB 21 SETIO
Write all outputs of a station

b FB 22 GETIO_PA
Read some inputs of a station

b FB 23 SETIO_PA
Write some outputs of a station

b SFC 14 DPRD_DAT
Read user data

b SFC 15 DPWR_DAT
Write user data

You can find the block parameters in the Tables
20.9 (FBs) and 20.12 (SFCs).

The loadable function blocks FB 20 to FB 23
have interfaces compliant with PI (PROFIBUS
International) and can be used in conjunction
with DP standard slaves and IO devices.

Figure 20.26 Configuration of isochronous mode OB for PROFINET

20 Main Program

330

You can find the function blocks in the Stan-
dard Library supplied with STEP 7 in the pro-
gram Communication Blocks.

You can find the system functions SFC 14 and
SFC 15 in the Standard Library supplied with
STEP 7 in the program System Function Blocks.

FB 20 GETIO
Read all inputs of a station

With use of the SFC 14 DPRD_DAT, the FB 20
GETIO consistently reads all input data or all
data of an input area of stations with a modular
design from a DP standard slave or an IO
device. The right word of the parameter ID is
the start address of the input area to be read.

The target area specified by the parameter
INPUTS must be exactly as long as the config-

ured length of the input area read, which is
additionally output in the parameter LEN.

FB 21 SETIO
Write all outputs of a station

With use of the SFC 15 DPWR_DAT, the FB 21
SETIO consistently writes all output data to a
DP standard slave or an IO device or all data of
an output area of stations with a modular
design. The right word of parameter ID is the
start address of the output area to be written.

The source area specified by the parameter
OUTPUTS must be exactly as long as the con-
figured length of the output area to be written,
and therefore values for the parameter LEN are
irrelevant.

Table 20.9 Parameters of the function blocks for transferring I/O signals

FB Parameter Declaration Data type Assignment, description

20 ID INPUT DWORD Logical user data start address

STATUS OUTPUT DWORD Error information of SFC 14 DPRD_DAT 1)

LEN OUTPUT INT Amount of bytes to be read

INPUTS IN_OUT ANY Destination area for the user data read
(only data type BYTE permissible in the ANY pointer)

21 ID INPUT DWORD Logical user data start address

LEN INPUT INT Irrelevant

STATUS OUTPUT DWORD Error information of SFC 15 DPWR_DAT 1)

OUTPUTS IN_OUT ANY Source area for the user data to be written
(only data type BYTE permissible in the ANY pointer)

22 ID INPUT DWORD Logical user data start address

OFFSET INPUT INT Number of the first byte to be read (from number 0)

LEN INPUT INT Amount of bytes to be read

STATUS OUTPUT DWORD Error information of SFC 81 UBLKMOV 1)

ERROR OUTPUT BOOL Error occurred at signal state "1"

INPUTS IN_OUT ANY Destination area for the user data read
(only data type BYTE permissible in the ANY pointer)

23 ID INPUT DWORD Logical user data start address

OFFSET INPUT INT Number of the first byte to be written (from number 0)

LEN INPUT INT Amount of bytes to be written

STATUS OUTPUT DWORD Error information of SFC 81 UBLKMOV 1)

ERROR OUTPUT BOOL Error occurred at signal state "1"

OUTPUTS IN_OUT ANY Source area for the user data to be written
(only data type BYTE permissible in the ANY pointer)

1)Contains error information of the SFC used in the form DW#16#40xx xx00

20.4 Communication via Distributed I/O

331

FB 22 GETIO_PA
Read some inputs of a station

With use of the SFC 81 UBLKMOV, the FB 22
GETIO_PA consistently reads some of the
input data or some of the data of an input area
of stations with a modular design from a DP
standard slave or an IO device. The right word
of the parameter ID is the start address of the
input area. The parameter OFFSET is the num-
ber of the first byte to be read, and the parame-
ter LEN is the number of bytes.

A prerequisite for use of the FB 22 GETIO_PA
is that the input bytes to be read are addressed
in the process input image. If possible, it is pref-
erable to use a partial process image. Make sure
that no borders to adjacent data of other stations
are violated when using the parameters OFF-
SET and LEN.

If the destination area specified by the INPUTS
parameter is smaller than the input area read,
the function only transfers as many bytes as can
be written to the destination area. If the destina-
tion area is larger, only the first LEN bytes of
the area are written to. In both cases, no error is
indicated on the ERROR parameter. ERROR
only has signal state "1" if an error is reported
when calling SFC 81 BLKMOV.

FB 23 SETIO_PA
Write some outputs of a station

With use of the SFC 81 UBLKMOV, the FB 23
SETIO_PA consistently writes some of the out-
put data to a DP standard slave or an IO device
or some of the data of an output area of stations
with a modular design. The right word of the
parameter ID is the start address of the output

area. The parameter OFFSET is the number of
the first byte to be written, and the parameter
LEN is the number of bytes.

A prerequisite for use of the FB 23 SETIO_PA
is that the output bytes to be written are
addressed in the process output image. If possi-
ble, it is preferable to use a partial process
image. Make sure that no borders to adjacent
data of other stations are violated when using
the parameters OFFSET and LEN.

If the source area specified by the parameter
OUTPUTS is smaller than the input area to be
written, only as many bytes are transmitted as
are present in the source area. If the source area
is larger, only the first LEN bytes are trans-
ferred. An error is not indicated on the parame-
ter ERROR in either case. ERROR only has
signal state “1” if an error is signaled when call-
ing the SFC 81 BLKMOV.

SFC 14 DPRD_DAT
Read user data

SFC 14 DPRD_DAT reads consistent user data
with a length of exactly 3 bytes or greater than
4 bytes (means 5 bytes or higher) from a DP
slave or an IO device. You specify the length of
the data consistency when you parameterize the
station. Table 20.10 shows the parameters of
the SFCs 14 and 15.

The LADDR parameter receives the module
starting address of the user data (input area).
The RECORD parameter describes the area in
which the read data is saved. Variables of data
type ARRAY and STRUCT or an ANY pointer
of data type BYTE (e.g. P#DBzDBXy.x BYTE
nnn) are permissible as actual parameters.

Table 20.10 Parameters of the SFCs for consistent transfer of user data

SFC Parameter Declaration Data type Assignment, description

14 LADDR INPUT WORD Configured start address (from the I area)

RET_VAL RETURN INT Error information

RECORD OUTPUT ANY Destination area for the read user data

15 LADDR INPUT WORD Configured start address (from the Q area)

RECORD INPUT ANY Source area for the user data to be written

RET_VAL RETURN INT Error information

20 Main Program

332

Please note: If peripheral inputs (PI) are ad-
dressed whose addresses are in the process im-
age image (I), the process image is not updated.

SFC 15 DPWR_DAT
Write user data

SC 15 DPWR_DAT writes consistent user data
with a length of 3 bytes or greater than 4 bytes
to a DP slave or an IO device. You specify the
length of the data consistency when you param-
eterize the station.

The LADDR parameter receives the module
starting address of the user data (output area).

The RECORD parameter describes the area
from which the transferred data is read. Vari-
ables of data type ARRAY and STRUCT or an
ANY pointer of data type BYTE (e.g. P#DBz-
DBXy.x BYTE nnn) are permissible as actual
parameters.

If peripheral outputs (PQ) are addressed whose
addresses are in the process image output (Q),
the process image is updated as with the trans-
fer instruction (STL) or the MOVE box (LAD,
FBD).

Activate/deactivate distributed station

The following system function activates or de-
activates a station of the distributed I/O (DP
slave or IO device):

b SFC 12 D_ACT_DP
Activate/deactivate distributed station

The parameters of this system function are
shown in Table 20.11.

SFC 12 D_ACT_DP
Activate/deactivate distributed station

SFC 12 D_ACT_DP deactivates and activates
stations of the distributed I/O and allows scan-
ning of the deactivated or activated status. A
distributed station can be a DP slave or an IO
device.

SFC 12 D_ACT_DP is called in the cyclic pro-
gram; a call in the start-up routine is not sup-
ported. The SFC works in asynchronous
mode, i.e. processing of a job can extend over
several program cycles. An activation or deac-
tivation job is started by "1" in the REQ pa-
rameter. The REQ parameter must remain "1"
for as long as the BUSY parameter has signal
state "1". The job has been completed if
BUSY = "0".

After deactivation, a configured (and existing)
station is no longer addressed by the DP master
or the IO controller. The output terminals of de-
activated output modules carry zero or a substi-
tute value. The process image input of deacti-
vated input modules is set to "0".

A deactivated station can be removed from the
bus without generating an error message; it is
not signaled as faulty or missing. The calls of
the asynchronous error organization blocks OB
85 (program execution error if the user data of
the deactivated station is present in an automat-
ically updated process image), and OB 86 (sta-
tion failure) are omitted. They must no longer
address the station from the program following
deactivation, otherwise an I/O access error with
calling of OB 122 will result in the case of di-
rect access, or the station will be signaled as not
being present when reading the data record with
SFC 59 RD_REC or SFB 52 RDREC.

Table 20.11 Parameters of the SFC for activation and deactivation of I/O stations

SFC Parameter Declaration Data type Assignment, description

12 REQ INPUT BOOL Request for activation/deactivation if REQ = "1"

MODE INPUT BYTE Function mode
0 Scan whether the station is activated or deactivated
1 Activate station
2 Deactivate station

LADDR INPUT WORD Any logic address of the station

RET_VAL RETURN INT Result of scan or error information

BUSY OUTPUT BOOL Job still running if BUSY = "1"

20.4 Communication via Distributed I/O

333

Use SFC 12 D_ACT_DP to reactivate a deacti-
vated station. The station is configured and pa-
rameterized by the DP master or IO controller
as with a return of station. The asynchronous
error OBs 85 and 86 are not started when acti-
vating. If the BUSY parameter has signal state
"0" following activation, the station can be ad-
dressed from the user program.

In the case of a cold or warm restart, the CPU's
operating system automatically activates the
deactivated stations. An S7-300 CPU does not
start up until all stations have been activated.
An S7-400 CPU starts up and reports I/O access
errors until the stations have been activated.
The station status is retained during a hot re-
start.

Triggering and interrupt with PROFIBUS
DP

The following system blocks trigger an inter-
rupt with PROFIBUS DP:

b SFB 75 SALRM
Trigger interrupt

b SFC 7 DP_PRAL
Initiate hardware interrupt

The parameters of the system blocks are listed
in Table 20.12.

SFB 75 SALRM
Trigger interrupt

With SFB 75 SALRM, you initiate a diagnos-
tics or process interrupt from the user program

Table 20.12 Parameters of the system blocks for triggering an interrupt with PROFIBUS DP

Block Parameter Declaration Data type Assignment, description

SFB 75 REQ INPUT BOOL Request for triggering if REQ = "1"

ID INPUT DWORD Address of an address area in the
transfer memory

ATYPE INPUT INT Interrupt type: 1 = diagnostics interrupt
2 = hardware interrupt

ASPEC INPUT INT Interrupt ID:
0 = no additional information
1 = slot faulty (UP)
2 = slot no longer faulty (DOWN)
3 = slot still faulty (DOWN)

LEN INPUT INT Length (in bytes) of additional interrupt information
to be sent (max. 16)

DONE OUTPUT BOOL Interrupt has been transmitted if DONE = "1"

BUSY OUTPUT BOOL Interrupt transfer still running if BUSY = "1"

ERROR OUTPUT BOOL Error occurred if ERROR = "1"

STATUS OUTPUT DWORD Error information

AINFO IN_OUT ANY Source area for the additional interrupt information

SFC 7 REQ INPUT BOOL Request for triggering if REQ = "1"

IOID INPUT BYTE B#16#54 = input ID
B#16#55 = output ID

LADDR INPUT WORD Start address of an address area in the
transfer memory

AL_INFO INPUT DWORD Interrupt ID (transfer to the start information of the
interrupt OB)

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL Still no acknowledgment from DP master if
BUSY = "1"

20 Main Program

334

of an intelligent slave in the associated DP mas-
ter. You determine the type of interrupt using
the parameter ATYPE.

The interrupt request is initiated with REQ =
“1”; the parameters DONE, BUSY, ERROR
and STATUS indicate the job status. The job is
complete (BUSY = “0”), when the interrupt OB
in the DP master has been executed.

The transfer memory between the DP master
and the intelligent DP slave can be divided into
individual address areas that represent individ-
ual modules from the viewpoint of the master
CPU. You can trigger an interrupt in the master
for each of these address areas (“virtual” mod-
ules). You specify the address area with the pa-
rameter ID which you occupy with a user data
address from the viewpoint of the slave CPU.
Bit 15 contains the I/O code: “0” corresponds to
an input address, “1” to an output address. The
start information of the interrupt OB then con-
tains the addresses of the interrupt-triggering
“modules” from the viewpoint of the master
CPU.

You can use parameter AINFO to transfer addi-
tional interrupt information you have defined
which can be evaluated in the interrupt OB of
the master CPU. The data at AINFO is an ANY
pointer to a data area. The length of the trans-
mitted information is determined by the param-
eter LEN and by the area length of the ANY
pointer (the shorter length is decisive). The first
4 bytes are displayed in the start information of
the interrupt OB in the master CPU in bytes 8
to 11 (the variable OBxx_POINT_ADDR for
process interrupts, the data record DS 0 for
diagnostics interrupts). You can read out the
complete additional interrupt information in the
master CPU with the SFB 54 RALRM.

SFC 7 DP_PRAL
Initiate a process interrupt

With SFC 7 DP_PRAL you trigger a hardware
interrupt on the DP master from the user pro-
gram of an intelligent slave.

At the parameter AL_INFO you transfer an
interrupt ID defined by you that is transferred to
the start information of the interrupt OB called
in the DP master (variable OBxx_POINT_
ADDR). The interrupt request is initiated with
REQ = “1”; the parameters RET_VAL and

BUSY indicate job status. The job is complete
when the interrupt OB in the DP master has
been executed.

The transfer memory between the DP master
and the intelligent DP slave can be divided into
individual address areas that represent individ-
ual “modules” from the viewpoint of the master
CPU. The lowest address of an address area is
taken as the module starting address. You can
initiate a process interrupt in the master for
each of these address areas (“virtual” modules).

You specify an address area at SFC 7 with the
parameters IOID and LADDR from the view-
point of the slave CPU (the I/O ID and the start-
ing address of the slave side). The start infor-
mation of the interrupt OB then contains the
addresses of the “module” initiating the inter-
rupt from the viewpoint of the master CPU.

System blocks for PROFIBUS DP

You can additionally use the following system
functions with PROFIBUS DP:

b SFC 11 DPSYC_FR
Send SYNC/FREEZE commands

b SFC 13 DPNRM_DG
Read diagnostic data from a DP standard
slave

b SFC 103 DP_TOPOL
Determine bus topology

The parameters of these system functions are
shown in Table 20.13.

With DPV1 mode set and DP slaves which sup-
port the DPV1 functionality, you can use other
system blocks to parameterize and read the di-
agnostic data (see Chapters 21.9.3 “Reading
Additional Interrupt Information” and 22.5
“Parameterizing Modules”).

SFC 11 DPSYC_FR
Send SYNC/FREEZE commands

Using SFC 11 DPSYC_FR you send the
SYNC, UNSYNC, FREEZE, and UNFREEZE
commands to a SYNC/FREEZE group which
you have configured in the hardware configura-
tion. The send procedure is triggered by REQ =
"1" and is finished when BUSY signals "0".

In the parameter GROUP each group occupies
one bit (from bit 0 = group 1 to bit 7 = group 8).

20.4 Communication via Distributed I/O

335

The commands in the parameter MODE are
also organized by bit:

b UNFREEZE, if bit 2 = “1”
b FREEZE, if bit 3 = “1”
b UNSYNC, if bit 4 = “1”
b SYNC, if bit 5 = “1”

A SYNC and an UNSYNC command or a
FREEZE and an UNFREEZE command must
not be triggered simultaneously in a call.

In this way, SYNC mode and FREEZE mode
on the DP slaves are first switched off. The
inputs of the DP slaves are scanned in sequence
by the DP master and the outputs of the DP
slaves are modified; the DP slaves pass the
received output signals immediately to the out-
put terminals.

If you want to “freeze” the input signals of sev-
eral DP slaves at a specific time, you output the
command FREEZE to the relevant group. The
input signals then read in sequence by the DP
master have the signal states they had when

“frozen”. These input signals retain their value
until you output another FREEZE command to
cause the DP slaves to read in and hold the cur-
rent input signals, or until you switch the DP
slaves back to the “normal” mode with the
UNFREEZE command.

If you wish to output the output signals of sev-
eral DP slaves synchronously at a certain time,
first output the SYNC command to the associ-
ated group. The addressed DP slaves then re-
tain the current signals at the output terminals.
You can then transfer the desired signal states
to the DP slaves. Output the SYNC command
again following completion of transfer; in this
manner you request the DP slaves to connect
the received output signals simultaneously to
the output terminals. The DP slaves retain the
signals at the output terminals until you con-
nect the new output signals using a further
SYNC command, or until you switch the DP
slaves back to "normal" mode using the UN-
SYNC command.

Table 20.13 Parameters of the SFCs for addressing the distributed I/O

SFC Parameter Declaration Data type Assignment, description

11 REQ INPUT BOOL Request for sending if REQ = "1"

LADDR INPUT WORD Configured diagnostics address of the DP master

GROUP INPUT BYTE DP slave group (from the hardware configuration)

MODE INPUT BYTE Command (see text)

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL Job still running if BUSY = "1"

13 REQ INPUT BOOL Request for reading if REQ = "1"

LADDR INPUT WORD Configured diagnostics address of the DP slave

RET_VAL RETURN INT Error information

RECORD OUTPUT ANY Destination area for the read diagnostic data

BUSY OUTPUT BOOL Read operation still running if BUSY = "1"

103 REQ INPUT BOOL Triggering of topology determination if REQ = "1"

R INPUT BOOL Cancelation of topology determination if R = "1"

DP_ID INPUT INT ID of the DP master system whose topology is to be deter-
mined

RET_VAL RETURN INT Error information for the SFC

BUSY OUTPUT BOOL Determination still running if BUSY = "1"

DPR OUTPUT BYTE PROFIBUS address of the diagnostics repeater
reporting the error

DPRI OUTPUT BYTE Measuring segment and error information of the diagnos-
tics repeater reporting the error

20 Main Program

336

SFC 13 DPNRM_DG
Read diagnostic data

SFC 13 DPNRM_DG reads diagnostic data
from a DP slave. The read procedure is initiated
with REQ = “1”, and is terminated when BUSY
= “0” is returned. Function value RET_VAL
then contains the number of bytes read.
Depending on the slave, diagnostic data may
comprise from 6 to 240 bytes. If there are more
than 240 bytes, the first 240 bytes are trans-
ferred and the relevant overflow bit is then set
in the data.

The parameter RECORD writes to the area in
which the read data are stored. Variables of data
type ARRAY and STRUCT or an ANY pointer
of data type BYTE (e.g. P#DBzDBXy x BYTE
nnn) are permissible as actual parameters.

Please note that the SFC 13 DPMRM_DG is an
asynchronous system function. It must be exe-
cuted until the BUSY parameter has a signal
state “0”. With more recent CPUs, the SFB 54
RALRM is available which provides the data
synchronously, i.e. directly when it is called.

SFC 103 DP_TOPOL
Identify bus topology

With the assistance of a diagnostics repeater,
the SFC 103 DP_TOPOL determines the bus
topology of the DP master system whose ID
you specify at parameter DP_ID. The determi-
nation is triggered by REQ = “1” and is termi-
nated when BUSY signals “0”. You can abort
determination of the topology with R = “1”.

If an error is signaled by a diagnostics repeater
which prevents determination of the bus topol-
ogy, it is indicated in parameters DPR and
DPRI. If there are several diagnostics repeaters
signaling errors, the error message of the first
one is indicated, and the complete diagnostics
information can be read with the SFC 13
DPNRM_DG.

In the case of the error information at parameter
DPRI, a differentiation is made between tempo-
rary and permanent faults. It may not be possi-
ble to unambiguously identify temporary faults
such as a loose contact which may disappear on
their own. You must eliminate permanent faults

before you call the SFC 103 DP_TOPOL again
to determine the topology.

After SFC 103 DP_TOPOL is called, the deter-
mined data is available on the diagnostics re-
peater and can be read with the SFC 59 RD_
REC or the SFB 52 RDREC. The data compris-
es the topology of the bus segment (stations and
cable lengths), the contents of the segment di-
agnostic buffers (last ten events with fault in-
formation, location, and cause), and the statis-
tics data (information on the quality of the bus
system)

System block for PROFINET

The following system function block sets the IP
configuration during runtime:

b SFB 104 IP_CONF
Setting the IP configuration

The parameters of this block are shown in Table
20.14.

SFB 104 IP_CONF
Setting the IP configuration

SFB 104 IP_CONF overwrites the IP address,
the subnet mask, the router address, and – if the
station is an IO device – the device name during
runtime.

The job is triggered with REQ = "1"; the DO-
NE, BUSY, ERROR, and STATUS parameters
indicate the job status. The job has been com-
pleted if BUSY = "0".

Changing the IP configuration during runtime
must already be prepared in the hardware con-
figuration: In the properties of the PN interface,
click on the "Properties" button and check the
"Obtain IP address in different manner" on the
"Parameters" tab in the displayed window.

The ANY pointer in the CONF_DB parameter
points to a data area which contains the new
values for the IP configuration. It consists of a
header containing the field type (= 0), the field
ID (= 0), and the number of following sub-
fields. The header is followed by the subfields.

Subfields are currently defined for the IP pa-
rameters and the device name (Figure 20.27).

20.5 Global Data Communication

337

20.5 Global Data Communication

20.5.1 Fundamentals

Global data communication (GD communica-
tion) is a communications service integrated
into the operating system of the CPU and used
for exchanging small volumes of non-time-crit-
ical data via the MPI bus.

The transferable global data include

b Inputs and outputs (process images)

b Memory bits

b Data in data blocks

b Timer and counter values as data to be sent.

It is a requirement that the CPUs are networked
together via the MPI interface or connected via
the K bus as in the S7-400 mounting rack. All
CPUs must exist in the same STEP 7 project in
order to be able to configure GD communica-
tion.

The cyclic GD communication service does not
require an operating system: there are system

Table 20.14 Parameters of the SFB for setting the IP configuration

SFB Parameter Declaration Data type Assignment, description

104 REQ INPUT BOOL Request for setting if REQ = "1"

LADDR INPUT WORD Diagnostics address of the PROFINET interface

CONF_DB INPUT ANY Pointer to the configuration data

DONE OUTPUT BOOL Job completed without error if "1"

BUSY OUTPUT BOOL Job still running if BUSY = "1"

ERROR OUTPUT BOOL An error has occurred if "1"

STATUS OUTPUT DWORD Error information

ERR_LOC OUTPUT DWORD Error source

Figure 20.27 Data structure for the IP configuration

field type id := 0

:= 30

:= 40

id

id

field id := 0

:= 18

:= 246

len

len

subfield cnt := n

:= 1

:= 1

mode

mode

ipaddr 3

nos

snmask 3

router 3

Header data
subfield 2

ipaddr 0

snmask 0

router 0

...

...

...

...
subfield n

Subfield specific
parameters

INT
INT

INT

INT

BYTE

BYTE

BYTE

INT

INT

BYTE

ARRAY [1..240] OF BYTE

BYTE

BYTE

INT

INT

INT

Subfield for the IP parameters

Subfield

Subfield for the device name

CONF_DB data area

Header

Header

IP address

Subnet mask

Router address

subfield 1

The CONF_DB data area comprises a header and
several subfields. Subfields are currently defined
for the IP parameters and for the device name.

If the length of the device name field is defined
to be shorter, the length must be adapted in the
header.
If the device name is shorter than the field,
B#16#: 00 must be assigned to the byte after the
device name.
If B#16#: 00 is at the beginning of the device
name, the name will be deleted.

*)

*)

20 Main Program

338

functions available for event-driven GD com-
munication on the S7-400.

Please note that a receiver CPU does not
acknowledge receipt of global data. The sender
therefore does not receive any response to tell it
if a receiver has received data and if so, which
one. However, you can screen the communica-
tion status between two CPUs as well as the
overall status of all GD circles of a CPU.

Sending and receiving global data is controlled
with what are known as scan rates. These spec-
ify the number of (user program) cycles after
which the CPU sends or receives the data.
Sending and receiving takes place synchro-
nously between the sender and the receiver at
the cycle control point in each case, i.e. follow-
ing cyclic program execution and before a new
program cycle begins (like process image
updating, for example).

Data is exchanged in the form of data packets
(GD packets) between CPUs grouped into GD
circles.

GD circle

The CPUs that exchange a shared GD packet
form a GD circle. A GD circle can be any of the
following

b The one-way connection of a CPU that
sends a GD packet to several other CPUs
that then receive that packet.

b The two-way connection between two
CPUs where each of the two CPUs can send
a GD packet to the other.

b The two-way connection between three
CPUs where each of the three CPUs can
send one GD packet to the other two CPUs
(S7-400 CPUs only)

Up to 15 CPUs can exchange data with each
other in one GD circle. One CPU can also
belong to several GD circles. See Table 20.14
for the resources of each individual CPU here.

GD packet

A GD packet comprises the packet header and
one or more global data elements (GD ele-
ments):

b Packet header (8 bytes)

b ID of 1st GD element (2 bytes)

b User data of 1st GD element (x bytes)

b ID of 2nd GD element (2 bytes)

b User data of 2nd GD element (x bytes)

b etc.

Figure 20.28 Global Data Communication

SIMATIC S7 stationSIMATIC S7 station

Subnetz
MPI

Event-driven: transfer with an SFC call
in the user program

Event-driven: transfer with an SFC call
in the user program

Cyclic: the operating system transfers
the data without a user program

Cyclic: the operating system transfers
the data without a user program

Global data tableGlobal data table

User program in the CPUUser program in the CPU

CPUCPU
Operating

system
Operating

system

Re
sour
ces

Re
sour
ces

SFC
60/61

SFC
60/61

DataData

DataData

20.5 Global Data Communication

339

Each GD element consists of 2 bytes of descrip-
tion and the actual net data. 3 bytes are required
in the GD packet to transfer a memory byte, 4
bytes are required for a memory word, and 6
bytes for a memory doubleword. A Boolean
variable occupies 1 byte of net data; it therefore
requires the same space as a byte-sized vari-
able. Timer and counter values with 2 bytes
each occupy 4 bytes each in the GD packet.

A GD element can also be an address area.
MB 0:15, for example, represents the area
from memory byte MB 0 to MB 15, and
DB20.DBW14:8 represents the data area
located in DB 20 that starts from data word
DBW 14 and comprises 8 data words.

The maximum size of a GD package is 32 bytes
for the S7-300 and 64 bytes for the S7-400. You
can achieve the maximum number of net data
bytes per packet by transmitting only one GD
element which can contain max. 22 bytes of net
data with S7-300 and max. 54 bytes with
S7-400.

Data consistency

The data consistency covers one GD element. If
a GD element overwrites a CPU-specific vari-
able, the areas specified in Table 20.15 apply.

If a GD element is greater than the length of the
data consistency, blocks with consistent data of
the relevant length are formed, starting with the
first byte.

20.5.2 Configuring GD Communication

Requirements

You must have created a project, there must be
an MPI subnet available and you must have
configured the S7 stations. The CPU, at least,
must be available in the stations. Under the
“Properties” button of the MPI interface, on the
“General” tab of the properties window of the
CPU (double-click on the CPU line in the Hard-
ware Configuration or on the line with the MPI
interface submodule), you can set the MPI
address and select the MPI subnet with which
the CPU is connected.

Global data table

You configure GD communication by filling
out a table. With the icon for the MPI subnet
selected in the SIMATIC Manager or in the
Network Configuration, you can call up an
empty table with OPTIONS DEFINE GLOBAL

DATA. Select a column and then EDIT CPU.

Figure 20.29 Example for GD circles

20 Main Program

340

Select the station in the left half of the project
selection window that then opens, and select
the CPU in the right half. This CPU is accepted
into the global data table with “OK”.

Proceed in exactly the same way with the other
CPUs participating in GD communication. A
global data table can contain up to 15 CPU col-
umns.

To configure data transfer between CPUs,
select the first line under the send CPU and
specify the address whose value is to be trans-
ferred (terminate with RETURN).

With EDIT SENDER, you define this value as
the value to be sent, indicated by a prefixed
character “>” and shading. In the same line

under Receiver CPU, you enter the address that
is to accept the value (the property “Receiver”
is set as default). You may use timer and coun-
ter functions only as senders; the receiver must
be an address of word width for each timer or
counter function.

A line can contain several receivers but only
one sender (Table 20.16). After filling this in,
you select GD TABLE COMPILE.

After initial compilation (phase 1), the system
data produced is sufficient for global data com-
munication. If you also configure the GD status
(the status of the GD connection) and the reduc-
tion ratios, you must then compile the GD table
a second time.

Table 20.15 CPU resources for global data communication

GD resources

Maximum number of:

CPU 312
CPU 313
CPU 314
CPU3xxC

CPU 315
CPU 317
CPU 319

CPU 412
CPU 414

CPU 416
CPU 417

GD circles per CPU 4 8 8 16

Receive GD packages per CPU 4 8 16 32

Receive GD packages per circle 1 1 2 2

Send GD packages per CPU 4 8 8 16

Send GD packages per circle 1 1 1 1

Max. size of a GD package 22 bytes 22 bytes 64 bytes 64 bytes

Max. data consistency 22 bytes 22 bytes 1 tag 1 tag

Table 20.16 Example for a GD table with status and reduction ratios

GD
identifier

Station 417 \
CPU417 (3)

Station 417 \
CPU414 (4)

Station 416\
CPU 416 (5)

Station 315
Slave\ CPU315
(7)

Station 314CP\
CPU314 (10)

GST MD100 MD100 MD100 DB10.DBD200 DB10.DBD200

GDS 1.1 DB9.DBD0 MD92 DB10.DBD204 DB10.DBD204

SR 1.1 44 0 44 8 8

GD 1.1.1 >DB9.DBW10 MW90 DB10.DBW208 DB10.DBW208

GDS 2.1 MD96 MD96

SR 2.1 44 23 0 0 0

GD 2.1.1 >Z10:10 DB3.DBW20:10

GDS 3.1 MD96

SR 3.1 0 0 44 8 8

GD 3.1.1 >MW98 DB10.DBW220 DB10.DBW210

20.5 Global Data Communication

341

GD ID

Following error-free compiling, STEP 7 com-
pletes the “GD ID” column. The GD ID shows
you how the transferred data are structured into
GD circles, GD packets and GD elements. For
example, the GD ID “GD 2.1.3” corresponds to
GD circle 2, GD packet 1, GD element 3. You
can then find the resource assignment (number
of GD circles) per CPU in the CPU column of
the global data table.

GD status

Following compiling, you can enter the
addresses for the communication status into the
global data table with VIEW GD STATUS. The
overall status (GST) shows the status of all
communications connections in the table. The
status (GDS) shows the status of a communica-
tions connection (a transmitted GD packet). The
status is shown in a doubleword in each case.

Scan rates

The GD communication service requires a sig-
nificant portion of execution time in the CPU
operating system and demands transmission
time on the MPI bus. To keep this “communica-
tions load” to a minimum, it is possible to spec-
ify a “scan rate”. A scan rate specifies the num-
ber of program cycles after which the data (or
more precisely, a GD packet) are to be sent or
received.

Since the data are not updated in every program
cycle with a scan rate, you should avoid send-
ing time-critical data via this form of communi-
cation.

After the first (error-free) compilation, you can
use VIEW SCAN RATES to define the scan
rates (SRs) yourself for each GD packet and
each CPU. The scan rate is set as standard in
such a way that with an “empty” CPU (no user
program) the GD packets are sent and received
approximately every 10 ms. If a user program is
then loaded, the time interval increases.

You can enter the scan rates in the area between
1 and 255. Please note, that as the scan rates
decrease, the communications load on the CPU
increases. To keep the communications load
within tolerable limits, set the scan rate in the
send CPU in such a way that the product of scan
rate and cycle time on the S7-300 is greater than

60 ms and on the S7-400 greater than 10 ms. In
the receive CPU, this product must be less than
that in the send CPU to avoid the loss of any
GD packets.

With reduction ratio 0, you switch off cyclic da-
ta exchange of the relevant GD packet with S7-
400 CPUs if you only want to send or receive it
event-driven with SFCs.

After configuring the GD status and the scan
rates, you must compile the GD table for a sec-
ond time. Then STEP 7 enters the compiled
data in the System data object. GD communica-
tion becomes effective when you transfer the
GD table to the connected CPUs with PLC
DOWNLOAD.

GD communication also becomes effective
when the System data object, that contains all
hardware settings and parameter settings, is
transferred.

20.5.3 System Functions for GD
Communication

In S7-400 systems, you can also control GD
communication in your program. Additionally
or alternatively to the cyclic transfer of global
data, you can send or receive a GD packet with
the following SFCs:

b SFC 60 GD_SND
Send GD packet

b SFC 61 GD_RCV
Receive GD packet

The parameters for these SFCs are listed in
Table 20.17. The prerequisite for the use of
these SFCs is a configured global data table.
After compiling this table, STEP 7 shows you,
in the “GD Identifier” column, the numbers of
the GD circles and GD packets which you need
for parameter assignments.

SFC 60 GD_SND enters the GD packet in the
system memory of the CPU and initiates trans-
fer; SFC 61 GD_RCV fetches the GD packet
from the system memory. If a scan rate greater
than 0 has been specified for the GD packet in
the GD table, cyclic transfer also takes place.

If you want to ensure data consistency for the
entire GD packet when transferring with SFCs
60 and 61, you must disable or delay higher-pri-
ority interrupts and asynchronous errors on

20 Main Program

342

both the Send and Receive side during process-
ing of SFC 60 or SFC 61.

The SFCs need not be called in pairs; “mixed”
operation is also possible. For example, you can
use SFC 60 GD_SND to have event-driven
transmission of GD packets but then receive
cyclically.

20.6 S7 Basic Communication

20.6.1 Station-Internal
S7 Basic Communication

Fundamentals

With station-internal S7 basic communication,
you can exchange data between programmable
modules within a SIMATIC station. The com-
munication functions required here are SFCs in
the operating system of the CPU. These SFCs
establish the communication connections them-
selves, if necessary. For this reason, these sta-
tion-internal connections are not configured via
the connection table (“Communication via non-
configured connections”).

Station-internal S7 basic communication can,
for example, take place in parallel to the cycli-
cal data exchange via PROFIBUS DP between
the master CPU and the slave CPU. Event-trig-
gered data is transferred (Figure 20.30).

Addressing the nodes, connections

Node identification is derived from the I/O
address: at the LADDR parameter, you specify
the module starting address and at the IOID
parameter, you specify whether this address is
in the input area or the output area.

These system functions establish the necessary
communication connections dynamically and
they clear the connections down again follow-
ing completion of the job (programmable). If a
connection buildup cannot be executed due to
lack of resources either in the sending device or
in the receiving device, “Temporary lack of
resources” is signaled. Transfer must then be
reinitiated. There can only be one connection
between two communication partners in each
direction.

Table 20.17 Parameters of the SFCs for GD communication

Parameter Available in SFC Declaration Data type Assignment, description

CIRCLE_ID 60 61 INPUT BYTE Number of the GD circle

BLOCK_ID 60 61 INPUT BYTE Number of the GD package to be sent or re-
ceived

RET_VAL 60 61 RETURN INT Error information

Figure 20.30 Station-internal S7 basic communication

SIMATIC S7 stationSIMATIC S7 station

Subnet
PROFIBUS

One-way connection:
in the delivering station, the operating
system fetches or writes the data

One-way connection:
in the requesting station, the transfer
takes place with an SFC call in the
user program

User program in the CPU ModuleCPU

Operating
system

Operating
system

Re
sour
ces

Re
sour
ces

SFC
72/73

DataData

20.6 S7 Basic Communication

343

You can use one system function for different
communication connections by modifying the
block parameters at runtime. An SFC cannot
interrupt itself. A program section in which one
of these SFCs is used can only be modified in
the STOP mode; following this, a cold or warm
restart is executed.

User data, data consistency

These SFCs transfer up to 76 bytes as user data.
Regardless of the direction of transfer, the oper-
ating system of a CPU arranges the user data in
blocks that are consistent within themselves.
On the S7-300, these blocks have a length of 8
bytes, on the CPU 412/413, they have a length
of 16 bytes and on the CPU 414/416, they have
a length of 32 bytes. If two CPUs exchange
data, the block size of the “passive” CPU is
decisive for data consistency.

Configuring station-internal S7 basic
communication

Station-internal S7 basic communication is a
special case in that it requires no configuring
since data transfer is handled via dynamic con-
nections. You simply use an existing PROFI-
BUS subnet or you create one either in the
SIMATIC Manager (select the Project object
and then INSERT SUBNET PROFIBUS) or
in the Network Configuration (see Chapter 2.4
“Configuring the Network”).

Example: you have configured distributed I/O
with a CPU 315-2DP as master. You use
another CPU 315-2DP as an “intelligent” slave.
You can now use station-internal S7 basic com-
munication from both controllers to read and
write data.

20.6.2 System Functions for Data
Interchange within a Station

The following system functions handle data
transfers between two CPUs in the same sta-
tion:

b SFC 72 I_GET
Read data

b SFC 73 I_PUT
Write data

b SFC 74 I_ABORT
Disconnect

The parameters for these SFCs are listed in
Table 20.18.

SFC 72 I_GET
Read data

A job is initiated with REQ = “1” and BUSY =
“0” (“first call”). While the job is in progress,
BUSY is set to “1”. Changes to the REQ
parameter no longer have any effect. When the
job is completed, BUSY is reset to “0”. If REQ
is still “1”, the job is immediately restarted.

Table 20.18 Parameters of the SFCs for station-internal S7 basic communication

Parameter Available in SFC Declaration Data type Assignment, description

REQ 72 73 74 INPUT BOOL Trigger job with REQ = "1"

CONT 72 73 - INPUT BOOL CONT = "1": Connection remains af-
ter job is completed

IOID 72 73 74 INPUT BYTE B#16#54 = input range,
B#16#55 = output range

LADDR 72 73 74 INPUT WORD Module starting address

VAR_ADDR 72 73 - INPUT ANY Data area in partner device

SD - 73 - INPUT ANY Data area in the own CPU containing
send data

RET_VAL 72 73 74 RETURN INT Error information

BUSY 72 73 74 OUTPUT BOOL Job running if BUSY = "1"

RD 72 - - OUTPUT ANY Data area in the own CPU that accepts
receive data

20 Main Program

344

When the read procedure has been initiated, the
operating system in the partner CPU assembles
and sends the requested data. An SFC call
transfers the Receive data to the target area.
RET_VAL then shows the number of bytes
transferred.

If CONT is = “0”, the communication link is
broken. If CONT is = “1”, the link is main-
tained. The data are also read when the commu-
nication partner is in STOP mode.

The RD and VAR_ADDR parameters describe
the area from which the data to be transferred
are to be read or to which the receive data are to
be written. Actual parameters may be
addresses, variables or data areas addressed
with an ANY pointer. The Send and Receive
data are not checked for identical data types.

SFC 73 I_PUT
Write data

A job is initiated with REQ = “1” and BUSY =
“0” (“first call”). While the job is in progress,
BUSY is set to “1”. Changes to the REQ
parameter no longer have any effect. When the
job is completed, BUSY is reset to “0”. If REQ
is still “1”, the job is immediately restarted.

Following triggering of the write operation, the
operating system accepts all data from the
source area into an internal buffer during the
initial call and sends it to the partner device.
The received data is written there by its operat-
ing system into the data area VAR_ADDR.
BUSY is subsequently set to "0". The data is
even written if the communication partner is at
STOP.

The SD and VAR_ADDR parameters describe
the area from which the data to be transferred
are to be read or to which the receive data are to
be written. Actual parameters may be
addresses, variables or data areas addressed
with an ANY pointer. The Send and Receive
data are not checked for identical data types.

SFC 74 I_ABORT
Disconnect

REQ = “1” breaks a connection to the specified
communication partner. With I_ABORT, you
can break only those connections established in
the same station with I_GET or I_PUT.

While the job is in progress, BUSY is set to “1”.
Changes to the REQ parameter no longer have
any effect. When the job is completed, BUSY is
reset to “0”. If REQ is still “1”, the job is imme-
diately restarted.

20.6.3 Station-External
S7 Basic Communication

Fundamentals

With station-external S7 basic communication,
you can have event-driven data exchange
between SIMATIC S7 stations. The stations
must be connected to each other via an MPI
subnet. The communications functions
required for this are SFCs in the operating sys-
tem of the CPU. These SFCs establish the com-
munication connections themselves, if neces-
sary. For this reason, these station-external con-
nections are not configured via the connection
table (“Communication via non-configured
connections”).

Station-external S7 basic communication can
execute event-driven data transfer, for example,
parallel to cyclic global data communication.

Addressing the nodes, connections

These functions address nodes that are on the
same MPI subnet. The node identification is
derived from the MPI address (DEST_ID
parameter).

These system functions establish the necessary
communication connections dynamically and
they terminate the connections following com-
pletion of the job (programmable). If a connec-
tion cannot be established because resources
are missing either in the sender or receiver,
"Temporary shortage of resources" is signaled.
Triggering of the transmission must then be re-
peated. There can only be one connection in
each direction between two communication
partners.

On a transition from RUN to STOP, all active con-
nections (all SFCs except X_RECV) are cleared.

By modifying the block parameters at run time,
you can utilize a system function for different
communication links. An SFC may not interrupt
itself. You may modify a program section in
which one of these SFCs is used only in STOP

20.6 S7 Basic Communication

345

mode; a cold or warm restart must then be exe-
cuted.

User data, data consistency

These SFCs transfer a maximum of 76 bytes of
user data. A CPU's operating system combines
the user data into blocks consistent within
themselves, without regard to the direction of
transfer. In S7-300 systems, these blocks have a
length of 8 bytes, in systems with a CPU 412/
413 a length of 16 bytes, and in systems with a
CPU 414/416 a length of 32 bytes.

If two CPUs exchange data via X_GET or
X_PUT, the block size of the “passive” CPU is
decisive to data consistency of the transferred
data.

In the case of a SEND/RECEIVE connection,
all data are consistent.

Configuring station-external S7 basic
communication

Station-external S7 basic communication is a
special case in that it requires no configuring
since data transfer is handled via dynamic con-
nections. You simply use an existing PROFI-
BUS subnet or you create one.

Example: you have a divided S7-400 mounting
rack with one CPU 416 in each section. In addi-
tion, you connect an S7-300 station with a CPU
314 via an MPI cable to one of the S7-400s.
You configure all three CPUs in the Hardware
Configuration, for example, as “networked” via
an MPI subnet. You can now use station-exter-
nal S7 basic communication from all three con-
trollers to exchange data.

20.6.4 System Functions for Station-
External S7 Basic Communication

The following system functions handle data
transfers between partners in different stations:

b SFC 65 X_SEND
Send data

b SFC 66 X_RCV
Receive data

b SFC 67 X_GET
Read data

b SFC 68 X_PUT
Write data

b SFC 69 X_ABORT
Disconnect

The parameters for these SFCs are listed in
Table 20.19.

Figure 20.31 Station-external S7 basic communication

SIMATIC S7 stationSIMATIC S7 station

Subnet
MPI

Two-way connection:
transfer with an SFC call in the
user program

Two-way connection:
transfer with an SFC call in the
user program

User program in the CPUUser program in the CPU CPU CPU
Operating

system
Operating

system

Re
sour
ces

Re
sour
ces

SFC
65/66

SFC
65/66

SFC
67/68

DataData

DataData

One-way connection:
in the delivering station, the operating
system fetches or writes the data

One-way connection:
in the requesting station, the transfer
takes place with an SFC call in the
user program

20 Main Program

346

SFC 65 X_SEND
Send data

A job is initiated with REQ = “1” and BUSY =
“0” (“first call”). While the job is in progress,
BUSY is set to “1”; changes to the REQ param-
eter now no longer have any effect. When the
job terminates, BUSY is set back to “0”. If REQ
is still “1”, the job is immediately restarted.

On the first call, the operating system transfers
all data from the source area to an internal buf-
fer, then transfers the data to the partner CPU.

BUSY is “1” for the duration of the send proce-
dure. When the partner has signaled that it has
fetched the data, BUSY is set to “0” and the
send job terminated.

If CONT is = “0”, are available to other com-
munication links. If CONT is = “1”, the con-
nection is maintained. The REQ_ID parameter
makes it possible for you to assign an ID to the
Send data which you can evaluate with SFC X_
RCV.

The SD parameter describes the area from which
the data to be sent are to be read. Actual parame-
ters may be addresses, variables, or data areas
addressed with an ANY pointer. Send and
Receive data are not checked for matching data
types.

SFC 66 X_RCV
Receive data

The Receive data are placed in an internal buf-
fer. Multiple packets can be put in a queue in
the chronological order of their arrival.

Use EN_DT = “0” to check whether or not data
were received; if so, NDA is “1”, RET_VAL
shows the number of bytes of Receive data, and
REQ_ID is the same as the corresponding
parameter in SFC 65 X_SEND. When EN_DT
is = “1”, the SFC transfers the first (oldest)
packet to the target area; NDA is then “1” and
RET_VAL shows the number of bytes trans-
ferred. If EN_DT is “1” but there are no data in
the internal queue, NDA is “0”.

On a cold or warm restart, all data packets in the
queue are rejected.

In the event of a broken connection or a restart,
the oldest entry in the queue, if already “que-
ried” with EN_DT = “0”, is retained; otherwise,
it is rejected like the other queue entries.

The RD parameter describes the area to which
the Receive data are to be written. Actual
parameters may be addresses, variables, or data
areas addressed with an ANY pointer.

Send and Receive data are not checked for
matching data types. When the Receive data are

Table 20.19 SFC Parameters for Station-External S7 Basic Communication

Parameter Present in SFC Declaration Data Type Contents, Description

REQ 65 - 67 68 69 INPUT BOOL Job initiation with REQ = “1”

CONT 65 - 67 68 - INPUT BOOL CONT = “1”: Connection is main-
tained when job is completed

DEST_ID 65 - 67 68 69 INPUT WORD Partner's node identification
(MPI address)

REQ_ID 65 - - - - INPUT DWORD Job identification

VAR_ADDR - - 67 68 - INPUT ANY Data area in partner CPU

SD 65 - - 68 - INPUT ANY Data area in own CPU which con-
tains the Send data

EN_DT - 66 - - - INPUT BOOL If “1”: Accept Receive data

RET_VAL 65 66 67 68 69 RETURN INT Error information

BUSY 65 - 67 68 69 OUTPUT BOOL Job in progress when BUSY = “1”

REQ_ID - 66 - - - OUTPUT DWORD Job identification

NDA - 66 - - - OUTPUT BOOL When “1”: Data received

RD - 66 67 - - OUTPUT ANY Data area in own CPU which will
accept the Receive data

20.7 S7 Communication

347

irrelevant, a “blank” ANY pointer (NIL
pointer) as RD parameter in X_RCV is permis-
sible.

SFC 67 X_GET
Read data

A job is initiated with REQ = “1” and BUSY =
“0” (“first call”). While the job is in progress,
BUSY is set to “1”; changes to the REQ param-
eter now no longer have any effect.

When the job terminates, BUSY is set back to
“0”. If REQ is still “1”, the job is immediately
restarted.

When the read procedure has been initiated, the
operating system in the partner CPU assembles
and sends the data required under VAR_
ADDR. On an SFC call, the Receive data are
entered in the target area specified at the RD
parameter. RET_VAL then shows the number
of bytes transferred.

If CONT is “0”, the communication link is bro-
ken. If CONT is “1”, the connection is main-
tained. The data are then read even when the
communication partner is in STOP mode.

The RD and VAR_ADDR parameters describe
the area from which the data to be sent are to be
read or to which the Receive data are to be writ-
ten. Actual parameters may be addresses, vari-
ables, or data areas addressed with an ANY
pointer. Send and Receive data are not checked
for matching data types.

SFC 68 X_PUT
Write data

A job is initiated with REQ = “1” and BUSY =
“0” (“first call”). While the job is in progress,
BUSY is set to “1”; changes to the REQ param-
eter now no longer have any effect.

When the job terminates, BUSY is set back to
“0”. If REQ is still “1”, the job is immediately
restarted.

When the write procedure has been initiated,
the operating system transfers all data from the
source area specified at the SD parameter to an
internal buffer on the first call, then sends the
data to the partner CPU. There, the partner
CPU’s operating system writes the Receive

data to the data area specified at the VAR_
ADDR parameter. BUSY is then set to “0”.

The data are written even if the communication
partner is in STOP mode.

The RD and VAR_ADDR parameters describe
the area from which the data to be sent are to be
read or to which the Receive data are to be writ-
ten. Actual parameters may be addresses, vari-
ables, or data areas addressed with an ANY
pointer. Send and Receive data are not checked
for matching data types.

SFC 69 X_ABORT
Disconnect

REQ = “1” breaks an existing connection to the
specified communication partner. The SFC X_
ABORT can be used to break only those con-
nections established in the CPU's own station
with the SFCs X_SEND, X_GET or X_PUT.

20.7 S7 Communication

20.7.1 Fundamentals

With S7 communication, you transfer larger
volumes of data between SIMATIC S7 stations.
The stations are connected to each other via a
subnet; this can be an MPI subnet, a PROFI-
BUS subnet or an Ethernet subnet. The commu-
nications connections are static; they are con-
figured in the connection table (“Communica-
tion via configured connections”).

The communications functions are S7-400 sys-
tem function blocks SFBs integrated in the
operating system of the CPUs. The associated
instance data block is located in the user mem-
ory. If you want to use S7 communication, copy
the interface description of the SFBs from the
Standard Library under System Function
Blocks to the Blocks container, generate an
instance data block for each call and call the
SFB with the associated instance data block.
With incremental input, you can also select the
SFB from the program element catalog and
have the instance data block generated auto-
matically.

With S7-300, the communications functions are
standard function blocks FB which you can find

20 Main Program

348

under Communication Blocks in the Standard
Library. Copy the function blocks you wish to
use into the container Blocks and use them
exactly like “normal” function blocks.

Configuring S7 communication

The prerequisite for S7 communication is a
configured connection table in which the com-
munication links are defined.

A communication link is specified by a connec-
tion ID for each communication partner. STEP
7 assigns the connection IDs when it compiles
the connection table. Use the “local ID” to ini-
tialize the FB or SFB in the local or “own”
module and the “remote ID” to initialize the FB
or SFB in the partner module.

The same logical connection can be used for
different Send/Receive requests. To distinguish
between them, you must add a job ID to the
connection ID in order to define the relation-
ship between the Send block and Receive
block.

Initialization

S7 communication must be initialized at restart
so that the connection to the communication
partner can be established. Initialization takes
place in the CPU that receives the attribute
“Active connection buildup = Yes” in the con-
nection table. You call the communication
SFBs used in cyclic operation in a restart OB
and initialize the parameters (provided they are
available) as follows:

b REQ = FALSE

b ID = local connection ID from the connec-
tion table (data type WORD W#16#xxxx)

b R_ID = request ID which you define for a
“block pair” (data type DWORD
DW#16#xxxx xxxx)

b PI_NAME = variable with the contents
‘P_PROGRAM’ in ASCII coding
(e.g. ARRAY[1..9] OF CHAR).

The blocks must continue to be called in a pro-
gram loop until the DONE parameter has signal
state “1”. The parameters ERROR and STA-
TUS give information concerning the errors
that have occurred and the job status.

Figure 20.32 S7 Communication

SIMATIC S7 stationSIMATIC S7 station

Subnet
MPI, PROFIBUS, Industrial Ethernet

Two-way connection:
transfer with an FB/SFB call in
the user program

Two-way connection:
transfer with an FB/SFB call in the
user program

CPUCPU

Operating
system

Operating
system

Re
sour
ces

Re
sour
ces

FB
SFB
8/9

12/13

FB
SFB
8/9

12/13

FB
SFB

14/15

DataData

DataData

One-way connection:
in the delivering station, the operating
system fetches or writes the data

One-way connection:
in the requesting station, the transfer
takes place with an FB/SFB call in
the user program

Connection tableConnection table

User program in the CPU User program in the CPU

20.7 S7 Communication

349

You do not need to switch the data areas at start-
up (concerns the ADDR_n, RD_n, and SD_n
parameters). Exceptions for S7-400: For the
SFB 8 USEND, SFB 9 URCV, SFB 14 GET,
and SFB 15 PUT the communication buffers
are created on the first call to ensure consisten-
cy; these define the maximum data amount per
transfer for all subsequent calls.

Cyclic operation

In cyclic operation, you call the communication
blocks absolutely and you control data transfer
via the parameters REQ and EN_R. You must
evaluate the results at the parameters NDR,
DONE, ERROR and STATUS immediately fol-
lowing each processing of a communication
block since they are only valid up to the next
call.

With S7-300, the parameters with data type
ANY (SD_1, RD_1, ADDR_1) must only be as-
signed with bit memory and data address areas.

20.7.2 Two-Way Data Exchange

For two-way data exchange, you require one
SEND block and one RECEIVE block each at
the ends of a connection. Both blocks carry the
connection IDs that are located in the connec-
tion table in the same line. You can also use sev-
eral “block pairs” which are then distinguished
from each other by the job ID.

The following blocks are available for two-way
data interchange:

b FB/SFB 8 USEND
Uncoordinated sending of a data packet of
CPU-specific length

b FB/SFB 9 URCV
Uncoordinated receiving of a data packet of
CPU-specific length

b FB/SFB 12 BSEND
Sending of a data block of up to 32 or
64 Kbytes in length

b FB/SFB 13 BRCV
Receiving of a data block of up to 32 or
64 Kbytes in length

FB/SFB 8 and FB/SFB 9 or FB/SFB 12 and FB/
SFB 13 must always be used as a pair.

The parameters of these blocks are listed in Ta-
ble 20.20.

FB 8 USEND and FB 9 URCV
FB 28 USEND_E and FB 29 URCV_E
SFB 8 USEND and SFB 9 URCV
Uncoordinated sending and receiving

The SD_n and RD_n parameters are used to
specify the variable or the area you want to
transfer. The send area SD_n must correspond
to the respective receive area RD_n. Use the pa-
rameters without gaps, beginning with 1. Un-
needed parameters are not assigned (as in an
FB, an SFB does not have to have values for all
parameters).

A positive edge at the REQ (request) parameter
starts the data exchange, a positive edge at the
R (reset) parameter aborts it. A “1” in the
EN_R (enable receive) parameter signals that
the partner is ready to receive data, “0” can be
used to abort a current request.

When the parameter NDR has assumed the
value “1” following the data transfer, call the
block again, this time with EN_R = “0”, to pre-
vent the receive area from being overwritten by
new data during the data evaluation.

Initialize the ID parameter with the connection
ID, which STEP 7 enters in the connection table
for both the local and the partner (the two IDs
may differ). R_ID allows you to choose a spec-
ifiable but unique job ID which must be identi-
cal for the Send and Receive block. This allows
several pairs of Send and Receive blocks to
share a single logical connection (as each has a
unique ID).

With S7-400, the system function blocks
import the ID and R_ID values to their instance
data block on the first call. The first call estab-
lishes the communication relationship (for this
instance) until the next warm restart. With S7-
300, you can change the assignment of the ID
and R_ID parameters following each com-
pleted job.

With signal state “1” in the DONE or NDR
parameter, the block signals that the job termi-
nated without error. An error, if any, is flagged
in the ERROR parameter. A value other than
zero in the STATUS parameter indicates either
a warning (ERROR = “0”) or an error (ERROR
= “1”).

20 Main Program

350

FB 12 BSEND and FB 13 BRCV
SFB 12 BSEND and SFB 13 BRCV
Block-oriented sending and receiving

At the SD_n or RD_n parameter you specify a
pointer to the first byte of the data area (when
called for the first time, the length of this actual
parameter determines the maximum size of the
communication buffer, it is not evaluated with
further calls); the number of bytes of the data to
be currently sent or received is present at the
LEN parameter.

Up to 64 Kbytes (32 Kbytes with S7-300 with-
out integrated interface) may be transferred; the
data are transferred in blocks (sometimes called
frames), and the transfer itself is asynchronous
to the user program scan. The LEN parameter is
updated following each received block.

A positive edge at the REQ (request) parameter
starts the data exchange, a positive edge at the
R (reset) parameter aborts it. A “1” in the EN_
R (enable receive) parameter signals that the
partner is ready to receive data, “0” can be used
to abort a current job.

If the NDR parameter has assumed the value
“1” following the data transmission, call the
block again, this time with EN_R = “0”, to pre-
vent the received area from being overwritten
by new data during the data evaluation.

Supply the ID parameter with the connection
ID which STEP 7 defines in the connection
table both for the local device and for the part-
ner device (the two IDs can be different). R_ID
allows you to choose a specifiable but unique
job ID which must be identical for the Send and
Receive block. This allows several pairs of
Send and Receive blocks to share a single logi-
cal connection (as each has a unique ID.

With S7-400, the system function blocks
import the ID and R_ID values to their instance
data block on the first call. The first call estab-
lishes the communication relationship (for this
instance) until the next warm or cold restart.
With S7-300, you can change the assignment of
the ID and R_ID parameters following each fin-
ished job.

Table 20.20 FB/SFB parameters for sending and receiving data

Parameter Available for FB/SFB Declaration Data type Assignment, description

REQ 8 28 12 - - - INPUT BOOL Start data exchange

EN_R - - - 9 29 13 INPUT BOOL Ready to receive

R - - 12 - - - INPUT BOOL Cancel data exchange

ID 8 28 12 9 29 13 INPUT WORD Connection ID

R_ID 8 28 12 9 29 13 INPUT DWORD Job ID

DONE 8 28 12 - - - OUTPUT BOOL Job completely processed

NDR - - - 9 29 13 OUTPUT BOOL New data accepted

ERROR 8 28 12 9 29 13 OUTPUT BOOL Fault occurred

STATUS 8 28 12 9 29 13 OUTPUT WORD Job status

SD_1 8 28 12 - - - IN_OUT ANY First send area

SD_2 1) 8 28 - - - - IN_OUT ANY Second send area

SD_3 1) 8 28 - - - - IN_OUT ANY Third send area

SD_4 1) 8 28 - - - - IN_OUT ANY Fourth send area

RD_1 - - - 9 29 13 IN_OUT ANY First receive area

RD_2 1) - - - 9 29 - IN_OUT ANY Second receive area

RD_3 1) - - - 9 29 - IN_OUT ANY Third receive area

RD_4 1) - - - 9 29 - IN_OUT ANY Fourth receive area

LEN - - 12 - - 13 IN_OUT WORD Data block length in bytes
 1) Not for FB 8 or FB 9

20.7 S7 Communication

351

With signal state “1” in the DONE or NDR
parameter, the block signals that the job termi-
nated without error. An error, if any, is flagged
in the ERROR parameter. A value other than
zero in the STATUS parameter indicates either
a warning (ERROR = “0”) or an error (ERROR
= “1”).

20.7.3 One-Way Data Exchange

In one-way data exchange, the communication
block call is located in only one CPU. In the
partner CPU, the operating system handles the
necessary communication functions.

The following blocks are available for one-way
data interchange:

b FB 14 GET
FB 34 GET_E
SFB 14 GET
Read data from a partner CPU

b FB 15 PUT
FB 35 PUT_E
SFB 15 PUT
Write data to a partner CPU

Table 20.21 lists the parameters for these
blocks.

The operating system in the partner CPU col-
lects the data read with FB/SFB 14; the operat-
ing system in the partner CPU distributes the
data written with FB/SFB 15. A Send or
Receive (user) program in the partner CPU is
not required. The partner CPU can provide the
required communications services both in RUN
and STOP. The size of the consistent data blocks
transmitted depends on the (server) CPU used.

A positive edge at parameter REQ (request)
starts the data interchange. Set the ID parameter
to the connection ID entered by STEP 7 in the
connection table.

With a “1” in the DONE or NDR parameter, the
block signals that the job terminated without
error. An error, if any, is flagged with a “1” in
the ERROR parameter. A value other than zero
in the STATUS parameter is indicative of either
a warning (ERROR = “0”) or an error (ERROR
= “1”). You must evaluate the DONE, NDR,
ERROR and STATUS parameters after every
block call.

Table 20.21 FB/SFB parameters for reading and writing data

Parameter Available for FB/SFB Declaration Data type Assignment, description

REQ 14 34 15 35 INPUT BOOL Start data exchange

ID 14 34 15 35 INPUT WORD Connection ID

NDR 14 34 - - OUTPUT BOOL New data accepted

DONE - - 15 35 OUTPUT BOOL Job completely processed

ERROR 14 34 15 35 OUTPUT BOOL Fault occurred

STATUS 14 34 15 35 OUTPUT WORD Job status

ADDR_1 14 34 15 35 IN_OUT ANY First data area in partner device

ADDR_2 1) 14 34 15 35 IN_OUT ANY Second data area in partner device

ADDR_3 1) 14 34 15 35 IN_OUT ANY Third data area in partner device

ADDR_4 1) 14 34 15 35 IN_OUT ANY Fourth data area in partner device

RD_1 14 34 - - IN_OUT ANY First receive area

RD_2 1) 14 34 - - IN_OUT ANY Second receive area

RD_3 1) 14 34 - - IN_OUT ANY Third receive area

RD_4 1) 14 34 - - IN_OUT ANY Fourth receive area

SD_1 - - 15 35 IN_OUT ANY First send area

SD_2 1) - - 15 35 IN_OUT ANY Second send area

SD_3 1) - - 15 35 IN_OUT ANY Third send area

SD_4 1) - - 15 35 IN_OUT ANY Fourth send area
 1) Not for FB 14 or FB 15

20 Main Program

352

At the ADDR_n parameter, you specify the tag
or area in the partner device from which you
wish to fetch data or to which you wish to send
data. The areas at ADDR_n must agree with the
corresponding areas at SD_n or RD_n. Use the
parameters without gaps, beginning with 1. Un-
needed parameters are not assigned (as in an
FB, an SFB does not have to have values for all
parameters).

20.7.4 Transferring Print Data

SFB 16 PRINT allows you to transfer a format
description and data to a printer via a CP 441
communications processor. Table 20.22 lists
the parameters for this SFB.

A positive edge at the REQ parameter starts the
data exchange with the printer specified by the
ID and PRN_NR parameters. The block signals
an error-free transfer by setting DONE to “1”.
An error, if any, is flagged by a “1” in the
ERROR parameter. A value other than zero in
the STATUS parameter is indicative of either a
warning (ERROR = “0”) or an error (ERROR =
“1”). You must evaluate the DONE, ERROR
and STATUS parameters after every block call.

Enter the characters to be printed in STRING
format in the FORMAT parameter. You can
integrate as many as four format descriptions
for variables in this string, defined in parame-
ters SD_1 to SD_4. Use the parameters without
gaps, beginning with 1; do not specify values
for unneeded parameters. You can transfer up to

420 bytes (the sum of FORMAT and all vari-
ables) per print request.

20.7.5 Control Functions

The following SFBs are available for control-
ling the communication partner

b SFB 19 START
Execute a cold or warm restart in the partner
controller

b SFB 20 STOP
Switch the partner controller to STOP

b SFB 21 RESUME
Execute a hot restart in the partner control-
ler

These SFBs are for one-way data exchange; no
user program is required in the partner device
for this purpose. The parameters for them are
listed in Table 20.23.

A positive edge at the REQ parameter starts the
data exchange. Enter as ID parameter the con-
nection ID which STEP 7 entered in the con-
nection table.

With a “1” in the DONE parameter, the block
signals that the job terminated without error. An
error, if any, is flagged by a “1” in the ERROR
parameter. A value other than zero in the STA-
TUS parameter is indicative of either a warning
(ERROR = “0”) or an error (ERROR = “0”).
You must evaluate the DONE, ERROR and
STATUS parameters after every block call.

Table 20.22 Parameters for SFB 16 PRINT

Parameter Declaration Data Type Contents, Description

REQ INPUT BOOL Start data exchange

ID INPUT WORD Connection ID

DONE OUTPUT BOOL Job terminated

ERROR OUTPUT BOOL Error occurred

STATUS OUTPUT WORD Job status

PRN_NR IN_OUT BYTE Printer number

FORMAT IN_OUT STRING Format description

SD_1 IN_OUT ANY First variable

SD_2 IN_OUT ANY Second variable

SD_3 IN_OUT ANY Third variable

SD_4 IN_OUT ANY Fourth variable

20.7 S7 Communication

353

Specify as PI_NAME an array variable with the
contents “P_PROGRAM” (ARRAY [1..9] OF
CHAR). If you leave the ARG parameter unas-
signed, a warm restart is triggered in the partner
controller; if ARG is assigned “C”, a cold re-
start is triggered in the partner controller if per-
missible. The IO_STATE parameter is current-
ly irrelevant, and need not be assigned a value.

SFB 19 START executes a cold or warm restart
of the partner CPU. Prerequisite is that the part-
ner CPU is at STOP and that the mode selector
is positioned to either RUN or RUN-P.

SFB 20 STOP sets the partner CPU to STOP.
Prerequisite for error-free execution of this job
request is that the partner CPU is not at STOP
when the request is submitted.

SFB 21 RESUME executes a hot restart of the
partner CPU. Prerequisite is that the partner
CPU is at STOP, that the mode selector is set to
either RUN or RUN-P, and that a hot restart is
permissible at this time.

20.7.6 Monitoring Functions

The following system blocks are available for
monitoring functions

b SFB 22 STATUS
Check partner status

b SFB 23 USTATUS
Receive partner status

b SFC 62 CONTROL
Check status of a communications instance

b FC 62 C_CNTRL
Scan status of a connection

b SFC 87 C_DIAG
Determine connection status

The parameters of these blocks are described in
Tables 20.24, 20.25 and 20.26.

The following applies for these system blocks:
an error is indicated with “1” at the ERROR
parameter. If the STATUS parameter has a
value not equal to zero, this indicates either a
warning (ERROR = “0”) or an error (ERROR =
“1”).

SFB 22 STATUS
Check the status of the partner device

SFB 22 STATUS fetches the status of the part-
ner CPU and displays it in the PHYS (physical
status), LOG (logical status) and LOCAL
(operating status if the partner is an S7 CPU)
parameters.

A positive edge at the REQ (request) parameter
starts the query. Enter as ID parameter the con-
nection ID which STEP 7 entered in the con-
nection table.

With a “1” in the NDR parameter, the block sig-
nals that the job terminated without error. You
must evaluate the NDR, ERROR and STATUS
parameters after every block call.

SFB 23 USTATUS
Receive the status of the partner device

SFB 23 USTATUS receives the status of the
partner, which it sends, unbidden, in the event
of a change. The device status is displayed in
the PHYS, LOG and LOCAL parameters.

Table 20.23 SFB Parameters for Partner Controller

Parameter Present in SFB Declaration Data Type Contents, Description

REQ 19 20 21 INPUT BOOL Start data exchange

ID 19 20 21 INPUT WORD Connection ID

DONE 19 20 21 OUTPUT BOOL Job terminated

ERROR 19 20 21 OUTPUT BOOL Error occurred

STATUS 19 20 21 OUTPUT WORD Job status

PI_NAME 19 20 21 IN_OUT ANY Program name (P_PROGRAM)

ARG 19 - 21 IN_OUT ANY In the case of value “C” a cold
start is initiated in the partner
device – if permitted

IO_STATE 19 20 21 IN_OUT BYTE Irrelevant

20 Main Program

354

Table 20.24 SFB Parameters for Querying Status

Parameter Present in SFB Declaration Data Type Contents, Description

REQ 22 - INPUT BOOL Start data exchange

EN_R - 23 INPUT BOOL Ready to receive

ID 22 23 INPUT WORD Connection ID

NDR 22 23 OUTPUT BOOL New data fetched

ERROR 22 23 OUTPUT BOOL Error occurred

STATUS 22 23 OUTPUT WORD Job status

PHYS 22 23 IN_OUT ANY Physical status

LOG 22 23 IN_OUT ANY Logical status

LOCAL 22 23 IN_OUT ANY Status of an S7 CPU as partner

Table 20.25 Parameters of the FC 62 C_CNTRL and SFC 62 CONTROL blocks

Parameter Present in Declaration Data Type Contents, Description

EN_R FC SFC INPUT BOOL Ready to receive

I_DB - SFC INPUT BLOCK_DB Instance data block

OFFSET - SFC INPUT WORD Number of the local instance

ID FC - INPUT WORD Connection ID

RET_VAL - SFC RETURN INT Error information

RETVAL FC - RETURN INT Error information

ERROR FC SFC OUTPUT BOOL Error detected

STATUS FC SFC OUTPUT WORD Status word

I_TYP - SFC OUTPUT BYTE Block type identifier

I_STATE - SFC OUTPUT BYTE Current status identifier

I_CONN - SFC OUTPUT BOOL Connection status
(“1” = connection exists)

I_STATUS - SFC OUTPUT WORD STATUS parameter for
communications instance

C_CONN FC - OUTPUT BOOL Connection status
(“1” = connection exists)

C_STATUS FC - OUTPUT WORD Connection status

Table 20.26 Parameters of the SFC 87 C_DIAG

Parameter Declaration Data Type Contents, Description

REQ INPUT BOOL Trigger request with signal status “1”

MODE INPUT BYTE Operating mode, see text

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL With “1”, the request is still busy

N_CON OUTPUT INT Index of the last structure

CON_ARR OUTPUT ANY Target area for the read connection data

20.7 S7 Communication

355

A “1” in the EN_R (enable receive) parameter
signals that the partner is ready to receive data.
Initialize the ID parameter with the connection
ID, which STEP 7 enters in the connection
table.

With a “1” in the NDR parameter, the block sig-
nals that the request terminated without error.
You must evaluate the NDR, ERROR and STA-
TUS parameters after every block call.

SFC 62 CONTROL
Check the status of a communications
instance

With S7-400, SFC 62 CONTROL determines
the status of a communications instance and the
associated connection in the local controller.
Enter the SFB's instance data block in the I_DB
parameter. If the SFB is called as local instance,
specify the number of the local instance in the
OFFSET parameter (zero when no local
instance, 1 for the first local instance, 2 for the
second, and so on).

A “1” in the EN_R (enable receive) parameter
signals that the partner is ready to receive data
specified at the I_DB parameter. You must
evaluate the NDR, ERROR and STATUS
parameters after every block call.

The parameters I_TYP, I_STATE, I_CONN
and I_STATUS provide information concern-
ing the status of the local Kommunikationsin-
stanz.

FC 62 C_CNTRL
Scan status of a connection

With S7-300, FC 62 C_CNTRL determines the
status of a connection in the local device. At the
ID parameter, enter the connection ID which
STEP 7 defines in the connection table for the
local device.

With signal status “1” at the EN_R parameter
(enable to receive), the current connection sta-
tus is displayed. The ERROR and STATUS
parameters must be evaluated following each
block call.

The C_CONN and C_STATUS parameters pro-
vide information on the current connection sta-
tus.

SFC 87 C_DIAG
Determine connection status

The system function SFC 87 C_DIAG deter-
mines the current status of connections with a
fixed configuration, i.e. all S7 connections and
all fault-tolerant S7 connections. With each
call, the SFC 87 C_DIAG reads the connection
data from the operating system and enters them
into the user memory for evaluation. The SFC
subsequently acknowledges reading of the data
in the operating system, so that a change in sta-
tus since the last read request can be recorded.
If you wish to monitor the connections perma-
nently, call the SFC at regular intervals, e.g.
every 10 seconds in a watchdog interrupt orga-
nization block.

The SFC 87 C_DIAG is an asynchronous sys-
tem function. It triggers a request with signal
status “1” at the REQ parameter. If the request
can be executed immediately, the SFC returns
the signal status “0” at the BUSY parameter
when called for the first time, otherwise the
request is still being processed if BUSY = “1”.

Table 20.26 shows the parameters of the SFC
87 C_DIAG.

The SFC 87 C_DIAG can work in various oper-
ating modes which you set at the MODE
parameter:

b MODE = B#16#00
The SFC acknowledges reading, without
copying the connection data.

b MODE = B#16#01
The SFC copies the connection data and
acknowledges reading.

b MODE = B#16#02
The SFC only copies the connection data if
they have changed, and acknowledges read-
ing even if a change has not taken place.

b MODE = B#16#03
The SFC copies the connection data without
acknowledging.

The SFC 87 C_DIAG transmits the current con-
nection data from the operating system to the
target area specified at the CON_ARR parame-
ter. The target area is an array of structures;
each array components contains the data for
one connection. The number of array elements
(structures) must correspond to the number of

20 Main Program

356

possible connections. Figure 20.33 shows how
a corresponding array variable can be struc-
tured with the connection data.

The array with the connection data is not
arranged according to the connection IDs; the
individual connections can be arbitrarily
assigned to the array elements. Frame elements
with invalid connections may even be present
in between arrays with valid connections. The
data of a connection are consistent with one
another.

20.8 IE Communication

20.8.1 Fundamentals

By means of “Open communication over
Industrial Ethernet” (abbreviated to IE commu-
nication), you can transmit data between two

devices connected to the Ethernet subnet. Com-
munication can be implemented using the TCP
native protocol in accordance with RFC 793,
the ISO-on-TCP protocol in accordance with
RFC 1006 or the UDP protocol in accordance
with RFC 768.

The communication functions are loadable
function blocks (FB) in STEP 7 present in the
Standard Library under Communication
Blocks. Also included are user-defined data
types (UDT) with the structure of the connec-
tion data and the address of the communication
partner.

Configuring IE communication

The following is necessary before data can be
transmitted with IE communication:

b With the TCP native and ISO-on-TCP pro-
tocols, a connection must be established to

DATA_BLOCK con_data //Data block with the connection data
...
STRUCT
...
con_req : BOOL; //Job start
con_busy : BOOL; //Job running
con_error : INT; //Error information of SFC
con_index : INT; //Number of field elements read from the SFC
con_status : ARRAY [1..12] OF STRUCT

CON_ID : WORD; //Connection ID
STAT_CON : BYTE; //Connection status
PROD_CON : BYTE; //Partial connection number of the productive

connection
STBY_CON : BYTE; //Partial connection number of the standby connection
DIS_PCON : BOOL; //High availability status change
DIS_CON : BOOL; //Conn. status change (without high availability)
RES0 : BYTE; //Reserve
RES1 : BYTE; //Reserve
END_STRUCT;

...
END_STRUCT
END_DATA_BLOCK

You can use your own terms for tag and component names.
The call might then appear as follows:

CALL C_DIAG (
REQ := con_data.con_req,
MODE := B#16#02,
RET_VAL := con_data.con_error,
BUSY := con_data.con_busy,
N_CON := con_data.con_index,
CON_ARR := con_data.con_status);

Figure 20.33 Programming example for the SFC 87 C_DIAG

20.8 IE Communication

357

the communication partner (“connection-
oriented protocols”) or

b With the UDP protocol, a connection must
be established to the communication layer
of the CPU operating system (“connection-
less protocol”). The partner is then
addressed when calling the corresponding
function block.

The connection is configured using a data area
(not via the connection table). The data struc-
tures required are stored in the user-defined da-
ta type UDT 65 TCON_PAR, which the func-
tion blocks use to establish and cancel the con-
nection. The data contains the connection ID
which specifies a particular connection and the
associated function block calls, as well as infor-
mation on the protocol used.

Establishment of the connection to the partner or
setting up of the communication access point is
handled by the function block FB 65 TCON that
you call in the main program of both partner de-
vices. Data can be transferred in parallel in both
directions over an established connection. Sev-
eral connections can exist on one physical line.
The function block FB 66 TDIS_CON cancels the

connection again and thus releases the resources
used (Figure 20.34).

With the function blocks FB 63 TSEND and
FB 64 TRCV, you can transfer data with the
protocols TCP native or ISO-on-TCP. Data
transfer with the UDP protocol requires the
function blocks FB 67 TUSEND and FB 68
TURCV. When calling these function blocks,
specify the address of the partner device in a
data area. The structure of this address is in
the user-defined data type UDT 66 TADD_
PAR.

Executing function blocks

The function blocks for IE communication are
executed asynchronously, i.e. the processing
of a job can extend over several program
cycles. You call the communication blocks in
the main program, and control data transmis-
sion using the parameters REQ and EN_R. The
results on the parameters BUSY, NDR, DONE,
ERROR and STATUS must be evaluated
immediately following each processing of the
communication block, since they are only valid
until the next call.

Figure 20.34 IE communication

SIMATIC S7 stationSIMATIC S7 station

Subnet
Industrial Ethernet

Establish and cancel connectionsEstablish and cancel connections

Data transmission with protocol UDPData transmission with protocol UDP

Data transmission with protocols
TCP native and ISO on TCP

Data transmission with protocols
TCP native and ISO on TCP

User program in the CPUUser program in the CPU CPU/CPCPU/CP
Operating

system
Operating

system

Re
sour
ces

Re
sour
ces

FB
65/66

FB
65/66

FB
63/64

FB
63/64

UDT
65

UDT
65

DataData

Data DataUDT
66

UDT
66

FB
67/68

FB
67/68

20 Main Program

358

20.8.2 Establishment and Cancellation
of Connections

Before data can be transmitted using IE com-
munication, it is necessary to establish a con-
nection to the partner device (with TCP native
and ISO-on-TCP) or to the communication
layer of the operating system (with UDP). The
following blocks are available for this purpose:

b FB 65 TCON
Establish connection to the communication
partner or the communication layer of the
operating system

b FB 66 TDISCON
Cancel connection

b UDT 65 TCON_PAR
Structure for the connection data

The parameters of the function blocks can be
found in Table 20.27, the data structure is
shown in Table 20.28.

FB 65 TCON
Establish connection

The function block FB 65 TCON establishes the
prerequisites for IE communication. The param-
eters required for this are located in a data area
which has the structure of the user-defined data
type UDT 65 TCON_PAR.

When using the TCP native and ISO on TCP
protocols, a connection is established to the com-
munication partner. Establishment of the con-
nection is handled by the station for which
“Active establishment of connection” is entered.
The partner station must then be identified as

“Passive”. This identification is independent of
the data transmission direction.

The connection is monitored and handled by
the CPU’s operating system. If a connection is
canceled, the active partner attempts to reestab-
lish the connection without the FB 65 TCON
having to be executed again. The connection is
canceled by the FB 66 TDISCON, in the oper-
ating state STOP of the CPU, or with POWER
OFF/ON.

When using the UDP protocol, the FB 65
TCON initializes a local communication access
point which represents the connection between
user program and the communication layer of
the operating system. A connection is not estab-
lished to the partner.

By assigning the parameter ID, you identify the
communication connection. The data must cor-
respond to the variable id in the connection
data. You specify the connection data using the
pointer at parameter CONNECT.

In the initial state, the parameters REQ, BUSY,
DONE and ERROR have the signal state “0”.
You start establishment of the connection with
a rising edge at parameter REQ.

As long as the job is being executed, BUSY
= “1”. The job has been completed successfully
if BUSY = “0”, DONE = “1” and ERROR = “0”.
If the job is executed with an error, BUSY = “0”,
DONE = “0” and ERROR = “1”. The error is
then specified at parameter STATUS. BUSY,
DONE and ERROR are set to “0” again if REQ
is returned to “0”.

Table 20.27 Parameters for FB 65 TCON and FB 66 TDISCON

Parameter With FB Declaration Data type Contents, Description

REQ 65 66 INPUT BOOL Start job (with rising edge)

ID 65 66 INPUT WORD Reference to communication connection

DONE 65 66 OUTPUT BOOL Job running (“0”) or executed without error (“1”)

BUSY 65 66 OUTPUT BOOL Job being processed (“1”) or is finished (“0”)

ERROR 65 66 OUTPUT BOOL Error occurred (with “1”)

STATUS 65 66 OUTPUT WORD Job status, error information with ERROR = “1“

CONNECT 65 - IN_OUT ANY Pointer to connection description

20.8 IE Communication

359

FB 66 TDISCON
Cancel connection

The function block FB 66 TDISCON termi-
nates the prerequisites for IE communication. It
cancels the connection to the communication
partner or cancels the communication access
point.

You identify the communication connection by
assigning the parameter ID. The data must cor-
respond to the variable id in the connection
data.

In the initial state, the parameters REQ, BUSY,
DONE and ERROR have the signal state “0”.
You start cancellation of the connection with a
rising edge at parameter REQ.

As long as the job is being executed, BUSY
= “1”. The job has been completed successfully
if BUSY = “0”, DONE = “1” and ERROR = “0”.
If the job is executed with an error, BUSY = “0”,
DONE = “0” and ERROR = “1”. The error is
then specified at parameter STATUS. BUSY,

Table 20.28 Structure of Connection Description UDT 65 TCON_PAR

Byte Parameter Data type Default value Contents, Description

0 to 1 block-length WORD W#16#0040 Length of UDT 65 (64 bytes)

2 to 3 id WORD W#16#0000 Connection reference
Range of values: W#16#0001 to W16#0FFF

4 connection_
type

BYTE B#16#01 Connection type
B#16#01: TCP/IP native

(compatibility mode)
B#16#11: TCP/IP native
B#16#12: ISO on TCP
B#16#13: UDP

5 active_est BOOL “0“ Type of establishment of connection:
“1” active; “0” passive; with UDP: always “0“

6 local_
device_id

BYTE B#16#02 Device ID: identification of communication
device (see manual)

7 local_tsap_
id_len

BYTE B#16#02 Length of parameter local_tsap_id

8 rem_sub_
net_id

BYTE B#16#00 Currently not used

9 rem_staddr_
len

BYTE B#16#00 Length of address of remote connection point;
is not used with UDP

10 rem_tsap_
id_len

BYTE B#16#00 Length of parameter rem_tsap_id;
is not used with UDP

11 next_staddr_
len

BYTE B#16#00 Length of parameter next_staddr;
is not used with UDP

12 to
27

local_tsap_
id

ARRAY [1..16]
OF BYTE

16(B#16#00) Local port number or local TSAP

28 to
33

rem_subnet_
id

ARRAY [1..6]
OF BYTE

6(B#16#00) Currently not used

34 to
39

rem_staddr ARRAY [1..6]
OF BYTE

6(B#16#00) IP address of remote connection end point;
is not used with UDP

40 to
55

rem_tsap_id ARRAY [1..16]
OF BYTE

16(B#16#00) Remote port number or remote;
is not used with UDP

56 to
61

next_staddr ARRAY [1..6]
OF BYTE

6(B#16#00) Rack and slot of local CP;
is not used with UDP

62 to
63

spare WORD W#16#0000 Must be assigned with W#16#0000

20 Main Program

360

DONE and ERROR are set to “0” again if REQ
is returned to “0”.

UDT 65 TCON_PAR
Structure of connection data

The user data type UDT 65 TCON_PAR con-
tains the structure of the connection data either
for the communication connection to the part-
ner device (TCP native and ISO-on-TCP proto-
cols) or for the connection to the communica-
tion layer of the local operating system (UDP
protocol).

You require a data block with this structure for
each connection. You can use a separate global
data block for each connection in which you
define the UDT when creating the data block,
or combine the data blocks in a common global
data block.

The assignment of the variables depends on the
protocol and the devices used (see online help
of STEP 7). UDTs with different default set-
tings are present in the library:

b UDT 651: for TCP active

b UDT 652: for TCP passive

b UDT 653: for ISO-on-TCP active

b UDT 654: for ISO-on-TCP passive

b UDT 655: for ISO-on-TCP active with CP

b UDT 656: for ISO-on-TCP passive with CP

b UDT 657: for open UDP local

20.8.3 Data Transmission with TCP Native
or ISO-on-TCP

The following function blocks are available for
the data transmission with the connection-
oriented TCP native and ISO-on-TCP proto-
cols:

b FB 63 TSEND
Send data with logic connection

b FB 64 TRCV
Receive data with logic connection

The parameters of these function blocks are
listed in Table 20.29.

Prior to transmission of the data, a connection
must be established to the partner station using
FB 65 TCON (say Chapter 20.8.2 “Establish-
ment and Cancellation of Connections”). With
FB 63 TSEND and FB 64 TRCV, data can be
exchanged in both directions simultaneously.

FB 63 TSEND
Send data with logic connection

Function block FB 63 TSEND sends data with
the TCP native or ISO on TCP protocol over an
existing communication connection.

You identify the communication connection by
assigning the parameter ID. The data must cor-
respond to the variable id in the connection
data. You specify the send mailbox using the
pointer at parameter DATA.

Table 20.29 Parameters for FB 63 TSEND and FB 64 TRCV

Parameter With FB Declaration Data type Contents, Description

REQ 63 - INPUT BOOL Start sending data (with rising edge)

EN_R - 64 INPUT BOOL FB ready to receive (with “1”)

ID 63 64 INPUT WORD Reference to communication connection

LEN 63 64 INPUT INT Number of bytes to be sent or received

DONE 63 - OUTPUT BOOL Job running (“0”) or executed without error (“1”)

NDR - 64 OUTPUT BOOL Job running (“1”) or completed (“1”)

BUSY 63 - OUTPUT BOOL Job being processed (“1”) or is finished (“0”)

ERROR 63 64 OUTPUT BOOL Error occurred (with “1”)

STATUS 63 64 OUTPUT WORD Job status, error information with ERROR = “1”

RCVD_LEN - 64 OUTPUT INT Number of bytes actually received

DATA 63 64 IN_OUT ANY Send or receive mailbox

20.8 IE Communication

361

In the initial state, the parameters REQ, BUSY,
DONE and ERROR have the signal state “0”.
You start the data transmission with a rising
edge at parameter REQ. When called for the
first time with “1”, the data is fetched from the
area specified by the parameter DATA. The
number of bytes specified at parameter LEN are
sent, with their maximum size depending on the
type of connection:

As long as the job is being executed, BUSY
= “1”. The job has been completed successfully
if BUSY = “0”, DONE = “1” and ERROR = “0”.
If the job is executed with an error, BUSY = “0”,
DONE = “0” and ERROR = “1”. The error is
then specified at the parameter STATUS. BUSY,
DONE and ERROR are set to “0” again if REQ
is returned to “0”.

The data in the send area can then be changed
again if either DONE or ERROR has the signal
state “1”.

FB 64 TRCV
Receive data with logic connection

Function block FB 64 TRCV receives data with
the TCP native or ISO on TCP protocol over an
existing communication connection.

You identify the communication connection by
assigning the parameter ID. The data must cor-
respond to the variable id in the connection
data. You specify the receive mailbox using the
pointer at parameter DATA.

If the parameter LEN is “0”, the length data in
the parameter DATA are used. Once a data
block has been received, the number of
received bytes is made available in the parame-
ter RCVD_LEN, and NDR is set to “1”.

In the case of the TCP native protocol, neither
the length of the message nor the start or end is
sent during data transmission. To ensure that the
sent number of bytes is received correctly, the
parameter LEN on the receive block must be

assigned the same value as the parameter LEN
on the send block.

If the value of LEN on the receive block is
selected larger, part of the subsequent message
(from the next job) is also received. NDR is
only set to “1” when the parameterized length
has been received.

If the value of LEN is selected smaller, NDR is
set to “1” when the parameterized length is
reached, and the parameter RCVD_LEN con-
tains the number of received bytes. A further
data block is received with each further execu-
tion.

In the case of the ISO-on-TCP protocol, infor-
mation on the length and the end of a message is
transmitted. If LEN on the receive block is
larger than on the send block, the sent data is
received, NDR is set to “1”, and the number of
received bytes written in RCVD_LEN. If LEN
is selected smaller, an error message is output:
ERROR = “1”, STATUS = W#16#8088.

The FB 64 TRCV only receives data if param-
eter EN_R has the signal state “1”.

As long as the job is running, BUSY = “1”. The
job has been successfully completed if BUSY
= “0”, NDR = “1” and ERROR = “0”. If an
error occurs when executing a job, BUSY =
“0”, NDR = “0” and ERROR = “1”. The error
is then specified in the parameter STATUS.
BUSY, NDR and ERROR are set to “0” again
when EN_R is returned to “0”.

The data in the receive mailbox is consistent if
NDR has the signal state “1”.

20.8.4 Data Transmission with UDP

The following blocks are available for data
transmission with the connectionless protocol
UDP:

b FB 67 TUSEND
Send data with UDP

b FB 68 TURCV
Receive data with UDP

b UDT 66 TADD_PAR
Data structure for the partner address

The parameters of the function blocks are listed
in Table 20.30, the structure of the UDT in Ta-
ble 20.31.

Connection type Number of bytes

B#16#01 1 to 1460

B#16#11 1 to 8192

B#16#12 1 to 1452 (with CP)
1 to 8192 (without CP)

20 Main Program

362

Prior to transmission of the data, it is necessary
to establish a connection to the communication
layer of the operating system with the FB 65
TCON (see Chapter 20.8.2 “Establishment and
Cancellation of Connections”). The address of
the communication partner is in a data area
which has the structure of the UDT 66 TADD_
PAR hat.

FB 67 TUSEND
Send data with UDP

The function block FB 67 TUSEND sends data
with the UDP protocol.

By assigning the parameter ID, you identify the
connection between user program and commu-
nication layer of the operating system. The
value must agree with the variable id in the con-
nection data. You specify the send mailbox by
the pointer on parameter DATA.

The data on the communication partner is pres-
ent in a data area indicated by the pointer on
parameter ADDR. The address, and thus the

partner, can be changed with each new send
job, without the communication access point
having to be redefined with FB 65 TCON.

In the initial state, the parameters REQ, BUSY,
DONE and ERROR have the signal state “0”.
You start the data transmission with a rising
edge at parameter REQ. When called for the
first time with “1”, the data is fetched from the
area specified by the parameter DATA. The
number of bytes specified at parameter LEN are
sent (1 to max. 1460).

As long as the job is running, BUSY = “1”. The
job has been successfully completed if BUSY
= “0”, DONE = “1” and ERROR = “0”. If an
error occurs when executing a job, BUSY =
“0”, DONE = “0” and ERROR = “1”. The error
is then specified in the parameter STATUS.
BUSY, DONE and ERROR are set to “0” again
when REQ is returned to “0”.

The data in the send area can then be changed
again if either DONE or ERROR has the signal
state “1”.

Table 20.30 Parameters for FB 67 TUSEND and FB 68 TURCV

Parameter With FB Declaration Data type Contents, Description

REQ 67 - INPUT BOOL Start sending data (with rising edge)

EN_R - 68 INPUT BOOL FB ready to receive (with “1”)

ID 67 68 INPUT WORD Reference to communication connection

LEN 67 68 INPUT INT Number of bytes to be sent or received

DONE 67 - OUTPUT BOOL Job running (“0”) or executed without error (“1”)

NDR - 68 OUTPUT BOOL Job running (“1”) or completed (“1”)

BUSY 67 - OUTPUT BOOL Job being processed (“1”) or is finished (“0”)

ERROR 67 68 OUTPUT BOOL Error occurred (with “1”)

STATUS 67 68 OUTPUT WORD Job status, error information with ERROR = “1”

RCVD_LEN - 68 OUTPUT INT Number of bytes actually received

DATA 67 68 IN_OUT ANY Send or receive mailbox

ADDR 67 68 IN_OUT ANY Pointer to address of sender or receiver

Tabelle 20.31 Structure of the Partner Address UDT 66 TADD_PAR

Byte Parameter Data type Default value Contents, Description

0 to 3 rem_ip_addr ARRAY [1..4] OF BYTE 4(B#16#00) IP address of partner

4 to 5 rem_port_nr ARRAY [1..2] OF BYTE 2(B#16#00) Port number of partner

6 to 7 spare ARRAY [1..2] OF BYTE 2(B#16#00) Must be occupied by 0000

20.9 PtP Communication with S7-300C

363

FB 68 TURCV
Receive data with UDP

The function block FB receives data with the
UDP protocol.

By assigning the parameter ID, you identify the
connection between user program and commu-
nication layer of the operating system. The
value must agree with the variable id in the con-
nection data. You specify the receive mailbox
by the pointer on parameter DATA.

The data on the communication partner is pres-
ent in a data area indicated by the pointer on pa-
rameter ADDR.

The number of bytes to be received is set in the
parameter LEN (1 to max. 1460). Once a data
block has been received, the number of
received bytes is made available in the parame-
ter RCVD_LEN, and NDR is set to “1”.

Data is only received if the parameter EN_R
has the signal state “1”.

As long as the job is running, BUSY = “1”. The
job has been successfully completed if BUSY
= “0”, NDR = “1” and ERROR = “0”. If an
error occurs when executing a job, BUSY =
“0”, NDR = “0” and ERROR = “1”. The error
is then specified in the parameter STATUS.
BUSY, NDR and ERROR are set to “0” again
when EN_R is returned to “0”.

The data in the receive area is consistent if
NDR has the signal state “1”.

UDP (User Data Protocol)

In the case of the UDP, a connection is not
established. The communication partner is
specified in the parameter ADDR of the send
block (IP address and port number). The
receive block then provides the IP address and
the port number of the sender in the parameter
ADDR.

The user-defined data type UDT 66 TADD_
PAR contains the structure of the address infor-
mation. The pointer on ADDR refers to a data
area with this structure.

In the case of the UDP, information on the
length and the end of a message is transmitted.
If LEN on the receive block is larger, the sent
data is copied into the receive mailbox, NDR is

set to “1”, and the number of received bytes
written in RCVD_LEN. If LEN has been
selected smaller, an error message is output:
ERROR = “1”, STATUS = W#16#8088.

UDT 66 TADD_PAR
Data structure of partner address

The UDT 66 contains the structure of the part-
ner address when transmitting with the UDP
protocol. The parameter ADDR on function
blocks FB 67 TUSEND and FB 68 TURCV
refers to a data area with this structure.

20.9 PtP Communication with
S7-300C

20.9.1 Fundamentals

Using point-to-point communication (PtP), you
transmit data via a serial interface to a commu-
nications partner, e.g. a printer or a SIMATIC
S5 station. An RS 422/485 interface (X.27) is
already integrated in a number of S7-300 com-
pact CPUs.

The communications connections are specified
in the interface properties by the Hardware
Configuration when parameterizing the CPU.
ASCII mode, the 3964(R) procedure and
RK512 computer link are available as transmis-
sion protocols.

The communication functions are system func-
tion blocks (SFB), which are integrated in the
S7-300C CPU operating system. The instance
data blocks for these SFBs are in user memory.
The SFBs do not perform any parameter check.
Incorrect parameterization can cause the CPU
to STOP. If you use the transmission protocol of
the computer link, a synchronization data block
is additionally used (once for all computer link
SFBs in the user memory, Figure 20.35).

Configuring PtP communication

You use the Hardware Configuration to set the
transmission protocol in the properties window
of the point-to-point interface:

b ASCII mode
The data are transmitted as ASCII charac-
ters. Transmitted data are not acknowl-

20 Main Program

364

edged. Setting of signal assignments and
transmission parameters, such as baud rate,
parity, end-of-text character.

b 3964(R) procedure
The data are sent to the communications
partner, and positively acknowledged if
received correctly. Setting of signal assign-
ments and transmission parameters, such as
baud rate, parity, block check.

b RK512 computer link
The data transmission can be coordinated
using so-called interprocessor communica-
tion flags. Data reception and the fetching of
data are acknowledged. Setting of signal
assignments and transmission parameters,
such as baud rate, parity, block check.

With the 3964(R) and RK512 transmission pro-
tocols, the communications partners must have
different priorities in order to define the
sequence if a simultaneous request to send is
present.

20.9.2 ASCII Driver and 3964(R)
Procedure

Using the point-to-point connection, you can
send and receive data with application of the
ASCII driver or the 3964(R) procedure. The
system function blocks required for this are:

b SFB 60 SEND_PTP
Send data with ASCII driver or 3964(R)
procedure

b SFB 61 RCV_PTP
Receive data with ASCII driver or 3964(R)
procedure

b SFB 62 RES_RCVB
Delete receive buffer with ASCII driver or
3964(R) procedure

Table 20.32 shows the parameters of these sys-
tem function blocks.

SFB 60 SEND_PTP
Send data with ASCII driver or
3964R procedure

The system function block SFB 60 SEND_PTP
is used to send a data area to a communications
partner. You set the transmission protocol and
the transmission parameters using the Hard-
ware Configuration. You specify the area of
data to be sent at parameter SD_1. The length
of the sent data area depends on the parameter-
ization of the interface, e.g. transmit up to
length specified at parameter LEN or transmit
up to an end-of-text character.

With the ASCII driver you can send frames up
to a length of 1024 bytes. The SFB 60 SEND_
PTP transmits the data in consistent blocks of

Figure 20.35 Point-to-point communication with S7-300C

Receiver station or server stationSender station or client station

Subnet
PtP

RK512:
an SFB call in the user program controls
the transfer. A synchronization DB is
required in addition.

RK512:
an SFB call in the user program
controls the transfer. A synchronization
DB is required in addition.

User program in the CPUUser program in the CPU CPUCPU

Operating
system

Operating
system

Re
sour
ces

Re
sour
ces

SFB
60

SFB
61

SFB
63/64

SFB
65

DataData

DataSync
DB

Sync
DB

Data

ASCII driver or 3964R:
an SFB call in the user program
controls the transfer.

ASCII driver or 3964R:
an SFB call in the user program
controls the transfer.

20.9 PtP Communication with S7-300C

365

206 bytes. You must not modify the data in the
send area while the transmission is running.

Sending is triggered by the rising signal edge at
parameter REQ. With a signal status “1” at
parameter DONE, the SFB signals that a
request has been completed successfully. In the
event of an error, the parameter ERROR is set
to “1” and the error information output at
parameter STATUS.

With a signal status “1” at parameter R you
abort a current send request and reset the call
instance to the basic state.

SFB 61 RCV_PTP
Receive data with ASCII driver or
3964R procedure

The system function block SFB 61 RCV_PTP
is used to receive a data area from a communi-
cations partner. You set the transmission proto-
col and the transmission parameters using the
Hardware Configuration. The received data are
entered in the area specified by the parameter
RD_1. The number of received bytes is in the
parameter LEN.

The SFB 61 RCV_PTP receives the data in
consistent blocks of 206 bytes. You must not
access the data in the receive area while the
transmission is running.

The CPU-internal receive buffer has a size of
2048 bytes. During parameterization of the
interface, you also define whether you use the

complete length of the receive buffer for receiv-
ing data or limit the number of received frames.

You can enable data reception by a signal status
“1” at parameter EN_R. The parameter NDR
has the signal status “1” if new data have been
received successfully. In the event of a fault, the
parameter ERROR is set to “1”, and the error
information output at parameter STATUS.

With a signal status “1” at parameter R you
abort a current receive request and reset the call
instance to the basic state.

SFB 62 RES_RCVB
Delete receive buffer with ASCII driver or
3964R procedure

The system function block SFB 62 RES_
RCVB deletes the receive buffer of the point-
to-point interface. A frame received during the
delete operation is not deleted.

Deleting is triggered by a rising signal edge at
parameter REQ. With a signal status “1” at
parameter DONE, the SFB signals that deleting
has been completed successfully. In the event
of a fault, the parameter ERROR is set to “1”
and the error information output at parameter
STATUS. DONE, ERROR and STATUS are
only set for the duration of one call.

With a signal status “1” at parameter R you
abort deleting and reset the call instance to the
basic state.

Table 20.32 SFB Parameters for Sending and Receiving Data with ASCII Driver or 3964(R) Procedure

Parameter Present in SFB Declaration Data Type Contents, Description

REQ 60 - 62 INPUT BOOL Trigger requests with signal status “1”

EN_R - 61 - INPUT BOOL Enable receive

R 60 61 62 INPUT BOOL With “1”, the request is aborted

LADDR 60 61 62 INPUT WORD Submodule address of interface

DONE 60 - 62 OUTPUT BOOL With “1”, the request is still busy

NDR - 61 - OUTPUT BOOL With “1”, the request has been finished
without fault

ERROR 60 61 62 OUTPUT BOOL With “1”, a fault has occurred

STATUS 60 61 62 OUTPUT WORD Error information

SD_1 60 - - IN_OUT ANY Send mailbox

RD_1 - 61 - IN_OUT ANY Receive mailbox

LEN 60 61 - IN_OUT INT Number of transmitted bytes

20 Main Program

366

20.9.3 RK512 Computer Link

Using the point-to-point connection, you can
also send and receive data using the RK512
computer link. The system function blocks
required are:

b SFB 63 SEND_RK
Send data with the RK512 computer link

b SFB 64 FETCH_RK
Fetch data with the RK512 computer link

b SFB 65 SERVE_RK
Receive and serve data with the RK512
computer link

Table 20.33 shows the parameters of these sys-
tem function blocks.

Specification of the transmission area

The SFB 63 SEND_RK sends from the area
specified by SD_1 and addresses a data block
area in the partner device. The SFB 64
FETCH_RK can address all address areas in
the partner device, and stores the fetched data
in the data block area specified by the parame-
ter RD_1. The SFB 65 SERVE_RK can store
received data in a data block, and serve data
from all address areas. Refer to Table 20.34 for
the permissible assignment of the parameters.
Certain values are only meaningful when using
a SIMATIC S5 station as the partner device.

Synchronization data block

In addition to the instance data block, the system
function blocks of the computer link interact

Table 20.33 SFB Parameters for Transmitting and Receiving Data with RK512 Computer Link

Parameter Present in SFB Declaration Data Type Contents, Description

SYNC_DB 63 64 65 INPUT INT Number of synchronization data block

REQ 63 64 - INPUT BOOL Trigger request with “1”

EN_R - - 65 INPUT BOOL Enable receive with “1”

R 63 64 65 INPUT BOOL Abort request with “1”

LADDR 63 64 65 INPUT WORD Logical basic address of interface

R_CPU 63 64 - INPUT INT CPU number of partner station

R_TYPE 63 64 - INPUT CHAR Type of data block in the partner CPU

R_DBNO 63 64 - INPUT INT Number of data block in the partner CPU

R_OFFSET 63 64 - INPUT INT Number of start byte in the partner CPU

R_CF_BYT 63 64 - INPUT INT Number of interprocessor communication
flag byte in the partner CPU

R_CF_BIT 63 64 - INPUT INT Number of interprocessor communication
flag bit in the partner CPU

DONE 63 64 - OUTPUT BOOL With “1”: request completed without error

NDR - - 65 OUTPUT BOOL With “1”: request completed without error

ERROR 63 64 65 OUTPUT BOOL With “1”: request completed with error

STATUS 63 64 65 OUTPUT WORD Error information

L_TYPE - - 65 OUTPUT CHAR Type of data area on local CPU

L_DBNO - - 65 OUTPUT INT Number of data block in local CPU

L_OFFSET - - 65 OUTPUT INT Number of start byte in local CPU

L_CF_BYT - - 65 OUTPUT INT Number of interprocessor communication
flag byte in local CPU

L_CF_BIT - - 65 OUTPUT INT Number of interprocessor communication
flag bit in local CPU

SD_1 63 - - IN_OUT ANY Send mailbox

RD_1 - 64 - IN_OUT ANY Receive mailbox

LEN 63 64 65 IN_OUT INT Number of data bytes

20.9 PtP Communication with S7-300C

367

with a synchronization data block which syn-
chronizes and controls the activities of all com-
puter link instances. The data block is present
once in the user memory. You initialize it as a
global data block with a minimum length of 240
bytes. You specify the number of the data block
at parameter SYNC_DB.

Coordination with interprocessor
communication flags

Data reception via the computer link can be
coordinated with interprocessor communica-
tion flags. A interprocessor communication
flag is a bit from the address area for bit mem-
ories M. Use a interprocessor communication
flag for each transmission request whose
address you specify at parameters R_CF_BYT
and R_CF_BIT or L_CF_BYT and L_CF_BIT.

If the local CPU is the client, the system func-
tion blocks SFB 63 SEND_RK are used for
transmitting data and SFB 64 FETCH_RK for
fetching data. When sending and fetching data
from the partner CPU, the address of the inter-
processor communication flag is also specified.
If this interprocessor communication flag has
the signal status “0” in the partner CPU, the lat-
ter permits importing of the data packet into the

user memory when sending, and reading of the
data packet from the user memory when fetch-
ing. The interprocessor communication flag is
then set by the communications function to
indicate that data transmission has taken place.
The data can then be processed or edited by the
user program. If the interprocessor communica-
tion flag is then reset by the user program, the
data transmission is enabled again. The inter-
processor communication flag in the partner
CPU thus permits control of the data transmis-
sion.

If the local CPU is the server, the data are
received by the system function block SFB 65
SERVE_RK if the client sends data, or made
available if the client fetches data. On the SFB
you parameterize the local interprocessor com-
munication flag (in the server) with which you
then receive or provide the data in the user pro-
gram. The SFB indicates at parameters L_CF_
BYT and L_CF_BIT which interprocessor
communication flag is being used for the cur-
rently executed request and has been set to “1”.
Following processing of the data (fetching or
providing again) you reset the interprocessor
communication flag by the program and then
enable processing of the next transmission
request.

Table 20.34 Specification of the Transmission Area

Parameter Type SFB 63
Send data

SFB 64
Fetch data

SFB 65
Receive data

SFB 65
Provide data

Description

R_CPU INT 0 to 4 0 to 4 - - 0 = single-processor operation
1..4 = number of CPU in multi-

processor operation

R_TYPE CHAR D, X D, X, M,
E, A, T, Z

- - D = data block DB
X = expanded data block DX
M = flag memory area
E = process input image
A = process output image
T = timer values
Z = counter values

L_TYPE CHAR - - D D, M, E,
A, T, Z

R_DBNO INT 0 to 255 0 to 255 - Number of data block (irrelevant
with M, E, A, T and Z)L_DBNO INT - - 1 to n 1) 1 to n 1)

R_OFFSET INT 0 to 510 0 to 510 - - First byte with data blocks
(must be an even address)

- 0 to 255 - - First byte with M, E, A, T and Z

L_OFFSET INT - - 0 to 1024 0 to 1024 Frame length

1) CPU-specific

20 Main Program

368

SFB 63 SEND_RK
Send data with RK512 computer link

The system function block SFB 63 SEND_RK
is used to send a data area to a communications
partner. You set the transmission protocol and
the transmission parameters using the Hard-
ware Configuration. You specify the area of
data to be sent at parameter SD_1. You specify
the length of the sent data area at parameter
LEN. Note that the number of bytes must be
even.

The SFB 63 SEND_RK only sends the data if
the interprocessor communication flag in the
communications partner has the signal status
“0”. A frame can have a length of up to 1024
bytes. The data are transmitted in consistent
blocks of 128 bytes. You must not modify the
data in the send area while the transmission is
running.

Sending is triggered by the rising signal edge at
parameter REQ. With a signal status “1” at
parameter DONE, the SFB signals that a
request has been completed successfully. In the
event of a fault, the parameter ERROR is set to
“1” and the error information output at parame-
ter STATUS.

With a signal status “1” at parameter R you
abort a current send request and reset the call
instance to the basic state.

SFB 64 FETCH_RK
Fetch data with the RK512 computer link

The system function block SFB 64 FETCH_
RK is used to fetch a data area from a commu-
nications partner. You set the transmission pro-
tocol and the transmission parameters using the
Hardware Configuration. The fetched data are
entered in the area specified by the parameter
RD_1. The number of received bytes is in the
parameter LEN.

The SFB 64 FETCH_RK only fetches the data
if the interprocessor communication flag in the
communications partner has the signal status
“0”. A frame can have a length of up to 1024
bytes. The data are transmitted in consistent
blocks of 128 bytes. You must not access the
data in the receive area while the transmission
is running.

You can enable data fetching by a signal status
“1” at parameter EN_R. The parameter NDR
has the signal status “1” if new data have been
fetched successfully. In the event of a fault, the
parameter ERROR is set to “1”, and the error
information output at parameter STATUS.

With a signal status “1” at parameter R you
abort a current fetch request and reset the call
instance to the basic state.

SFB 65 SERVE_RK
Receive and provide data with the RK512
computer link

The system function block SFB 65 SERVE_RK
handles the server functionality for the RK512
computer link. It accepts a data area which has
been sent by a communications partner, and
provides a data area which is fetched by a com-
munications partner. The received or provided
data are entered in the area specified by the
parameters L_TYPE, L_DBNO and L_OFF-
SET. The number of transmitted bytes is pres-
ent in the parameter LEN.

The SFB 65 SERVE_RK transmits the data in
consistent blocks of 128 bytes. You must not
access the data in the transmission area while
the transmission is running. You control coordi-
nation of the data transmission in the user pro-
gram by means of a interprocessor communica-
tion flag.

You can enable request processing by a signal
status “1” at parameter EN_R. The parameter
NDR has the signal status “1” if new data have
been received or fetched successfully. In the
event of an error, the parameter ERROR is set
to “1”, and the error information output at
parameter STATUS.

With a signal status “1” at parameter R you
abort a current request and reset the call
instance to the basic state.

20.10 Configuration in RUN

Configuration in RUN (CiR) means system
modification in running operation. This func-
tionality permits you to change the configura-
tion of the distributed I/O of an S7 station with-
out the CPU entering STOP or having to be set
to STOP.

20.10 Configuration in RUN

369

The changes comprise adding compact DP
slaves, ET 200M stations, and PA master sys-
tems to an existing DP master system; adding
modules to ET 200M stations; and adding PA
slaves (field devices) to existing PA master sys-
tems. All objects added during running opera-
tion can also be removed during running opera-
tion (Figure 20.36).

In addition to the fact that all involved devices
must be able to handle the CiR functionality,
there are further prerequisites and limitations.
For example, the PROFIBUS DP master sys-
tem must be a mono master system and must
not have any equidistant bus cycles, use of
intelligent DP slaves is not permissible in the
associated station components, and the module
parameters must be saved on the CPU.

Components with and without CiR can be
mixed; however, modifications are only possi-
ble on components with CiR capability.

During reconfiguration, process operation is
stopped for a brief period (typically 1 s, can be
parameterized). The time can be kept short by
only carrying out a few modifications at any
one time.

20.10.1 Preparation of Modifications
to Configuration

With the Hardware Configuration, you can con-
figure, for example, an S7-400 station (CPU
with firmware release V3.1 or higher) with at

Figure 20.36 CiR elements in the hardware configuration

20 Main Program

370

least one PROFIBUS DP master system. Now
add the DP slaves and – if envisaged – dummies
for subsequent plant expansion (CiR object
under PROFIBUS DP in the hardware catalog).
Set the subsequent maximum configuration in
the properties of this dummy. The Hardware
Configuration calculates 244 input bytes and
244 output bytes for each additional DP slave.
In reality, far fewer user data are usually
required. You can modify the total of all
required input and output bytes if you click the
check box “Expanded settings”.

You can also reserve space in an ET 200M sta-
tion for later expansions. Add a station with an
interface module from IM 153-2BA00-0XB0
to the DP master system and check the "Module
replacement during operation" checkbox in the
station properties in the "Special" tab. In the
lower window area, the necessary active bus
modules are shown so that you can perform the
module replacement (these are necessary for
the mechanical design, but are not configured).
It is recommended that the ET 200M station be
equipped with active bus modules up to the
planned expansion, because they must not be
removed or inserted during operation.

You can now insert modules into the ET 200M
station and – if you want to expand later – pro-
vide a dummy immediately after the last con-
figured module (the CiR Module object under
the IM 153 interface module used in the hard-
ware catalog). Set the required number of addi-
tional input and output bytes in the properties of
the CiR module.

If you wish to expand a PA master system con-
nected to the DP master system, use an inter-
face module IM 157-0AA82-0XA0 or better as
the DP/PA link. A dummy for subsequent
expansion with field devices is also provided
here (CiR object under the used IM 157 inter-
face module in the hardware catalog). Set the
required number of additional input and output
bytes in the properties of the CiR object.

With a CiR-capable DP master system selected
and EDIT MASTER SYSTEM ENABLE CIR
CAPABILITY, a CiR object is created on the DP
master system and at each subordinate CiR-ca-
pable PA master system. In each CiR-capable

ET 200M station, a CiR module is added. With
EDIT MASTER SYSTEM DISABLE CIR CA-
PABILITY, all CiR objects and CiR modules are
deleted.

20.10.2 Changing the Configuration

You can now change the configuration within
the limits defined in the CiR elements and load
them again in RUN. Possible changes include:

b Adding of compact and modular DP slaves
to an existing DP master system (the added
slaves must have a higher PROFIBUS
address than the largest previously used
address)

b Modification of partial process image
assignment with existing DP slaves

b Adding of PA slaves (field devices) to an
existing PA master system

b Adding of DP/PA couplers following an
IM 157 interface module

b Adding of DP/PA links including PA master
system to an existing DP master system

b Adding modules to an ET 200M station

b Reconfiguration of modules in an ET 200M
station (e.g. new or changed assignment to a
process image partition, activation of previ-
ously unused channels)

b Cancellation of above-mentioned modifica-
tions (starting from the highest addresses for
modules and slaves)

The total of the configured addresses (real,
immediately used) and the addresses for future
use must not be larger than the quantity frame-
work of the DP master (is checked during con-
figuring), but can be larger than the quantity
framework of the CPU (is only checked when
“converting” into specific slaves or modules).

During a CiR procedure, the configuration can
be modified on max. 4 DP master systems. In
certain cases it is recommendable or even
essential to repeatedly execute the CiR proce-
dure. For example, if modules or slaves are to
be replaced by others, the corresponding com-
ponent must first be removed and the replace-
ment added in a second CiR procedure.

20.10 Configuration in RUN

371

20.10.3 Loading the Configuration

The (initial) loading of a configuration with
CiR elements or with a modified CiR configu-
ration is carried out with the CPU in the STOP
status. In order to check whether the CiR capa-
bility is also present, you should subsequently
load the CiR configuration again in RUN.
Checking of the CiR capability using STATION

 CHECK CIR COMPATIBILITY is not 100%
possible offline. For example, the CiR synchro-
nization time could be limited by the SFC 104
CiR.

To guarantee that the CPU remains in the RUN
status during the CiR procedure, you must
make sure that interrupts from unknown com-
ponents are ignored. A corresponding program
must be present in the following organization
blocks:

b Hardware interrupts OB 40 to OB 47

b Timeout OB 80

b Diagnostics interrupt OB 82

b Hot swapping interrupt OB 83

b Program execution error OB 85

b Rack failure OB 86

b I/O access error OB 122

When adding modules or slaves, you should
first load the configuration and then the match-
ing user program. When removing modules and
slaves, first load the matched user program and
then the modified configuration. The adding or
removal of the real modules or slaves must only
be carried out following loading of the modi-
fied configuration (once the INTF LED on the
CPU has gone out).

When reparameterizing modules, you must first
load a user program which no longer addresses
the associated modules or no longer evaluates
their interrupts. Then load the modified config-
uration, change the hardware if necessary, and
subsequently load the user program matched to
the modification.

20.10.4 CiR Synchronization Time

Following loading of the new configuration
into the CPU, the new data are checked and – if
the check is positive – imported into the current
configuration. This importing requires a certain

time, the so-called CiR synchronization time.
Process execution is stopped during this period.

The CiR synchronization time is calculated
from the total of the CiR synchronization times
of all involved DP and PA master systems. The
synchronization time for a master system
depends on the CPU used and on the real and
planned I/O volumes in this master system.
This time is shown by the Hardware Configura-
tion in the properties of the CiR object in the
master system. The worst case is always calcu-
lated, so that the actual CiR synchronization
time is shorter. If modules are only reparame-
terized when changing the configuration, the
synchronization time is 100 ms.

The CPU compares the calculated CiR syn-
chronization time with the permissible upper
limit whose default setting is 1000 ms. You can
modify this upper limit using the SFC 104 CIR.
If the calculated CiR synchronization time is
greater than this upper limit, the change in the
configuration is not carried out.

20.10.5 Effects on Program Execution

Execution of the user program is stopped dur-
ing the CiR synchronization time. All process
images retain their last value. The SIMATIC
timers and the CPU clock continue. Any inter-
rupts which occur are only processed following
expiry of the CiR synchronization time. Com-
munication with a connected programming
device is limited; only the STOP command is
accepted.

At the end of synchronization, the CPU starts
the organization block OB 80 “Time error” with
the value W#16#350A in the first word of the
start information (variables OB80_EV_CLASS
and OB80_FLT_ID). The required CiR syn-
chronization time in ms is present in variable
OB80_ERROR_INFO.

If modules are to be reparameterized, the CPU
starts the organization block OB 83 “Insert/
Remove module interrupt” with the value
W#16#3367 in the first word of the start infor-
mation (variables OB83_EV_CLASS and
OB83_FLT_ID). The modules are subsequently
reparameterized. It may occur that the associ-
ated modules no longer deliver valid values.

20 Main Program

372

Following reparameterization, the CPU starts
the OB 83 again, this time with W#16#3267 in
the first word of the start information. Faulty
reparameterization is signaled by W#16#3968.
The associated modules are then considered as
not available. The described procedure takes
place in every affected master system.

20.10.6 Controlling the CiR Procedure

Using the SFC 104 CIR you can disable the
CiR procedure in the user program, limit it for

a certain time, or enable it. The SFC parameters
are shown in Table 20.35.

MODE = B#16#00 delivers the currently valid
upper limit of the CiR synchronization time.
Using MODE = B#16#01 you can set the CiR
synchronization time to the default value
1000 ms and enable processing of the CiR pro-
cedure. MODE = B#16#02 always disables the
CiR procedure, MODE = B#16#03 only if the
CiR synchronization time calculated in the
CPU is larger than that specified at parameter
FRZ_TIME.

Table 20.35 Parameters of the SFC 104 CIR

Parameter Declaration Data Type Contents, Description

MODE INPUT BYTE Request ID
B#16#00: information function
B#16#01: enable CiR procedure
B#16#02: disable CiR procedure
B#16#03: conditionally disable CiR procedure

FRZ_TIME INPUT TIME Upper limit of CiR synchronization time
Default setting: T#1000 ms
Permissible from T#200ms to T#2500ms

RET_VAL RETURN INT Error information

A_FT OUTPUT TIME Currently valid upper limit of CiR synchronization time

21 Interrupt Handling

373

21 Interrupt Handling

Interrupt handling is always event-driven.
When such an event occurs, the operating sys-
tem interrupts scanning of the main program
and calls the routine allocated to this particular
event. When this routine has executed, the
operating system resumes scanning of the main
program at the point of interruption. Such an
interruption can take place after every opera-
tion (statement).

Applicable events may be interrupts and errors.
The order in which virtually simultaneous
interrupt events are handled is regulated by a
priority scheduler. Each event has a particular
servicing priority. Several interrupt events can
be combined into priority classes.

Every routine associated with an interrupt event
is written in an organization block in which
additional blocks can be called. A higher-prior-
ity event interrupts execution of the routine in
an organization block with a lower priority. You
can affect the interruption of a program by
high-priority events using system functions.

21.1 General Remarks

SIMATIC S7 provides the following interrupt
events (interrupts):

b Time-of-day interrupt
An interrupt generated by the operating sys-
tem at a specific time of day, either once
only or periodically

b Time-delay interrupt
An interrupt generated after a specific
amount of time has passed; a system func-
tion call determines the instant at which this
time period begins

b Watchdog interrupt
An interrupt generated by the operating sys-
tem at periodic intervals

b Hardware interrupt
An Interrupt from a module, either via an
input derived from a process signal or gen-
erated on the module itself

b DPV1 interrupt
An Interrupt from a PROFIBUS DPV1
slave

b Multiprocessor interrupt
An interrupt generated by another CPU in a
multiprocessor network

b Synchronous cycle interrupt
An interrupt from the PROFIBUS DP mas-
ter during the DP cycle

Other interrupt events are the synchronous
errors which may occur in conjunction with
program scanning and the asynchronous errors,
such as diagnostic interrupts. The handling of
these events is discussed in Chapter 23 “Error
Handling”.

Priorities

An event with a higher priority interrupts a pro-
gram being processed with lower priority
because of another event. The main program
has the lowest priority (priority class 1), asyn-
chronous errors the highest (priority class 26),
apart from the start-up routine. All other events
are in the intervening priority classes. In S7-
300 systems the priorities are fixed; in S7-400
systems, you can change the priorities by
parameterizing the CPU accordingly.

An overview of all priority classes, together
with the default organization blocks for each, is
presented in Chapter 3.1.2 “Priority Classes”.

Disabling interrupts

The organization blocks for event-driven pro-
gram scanning can be disabled and enabled
with system functions SFC 39 DIS_IRT and
SFC 40 EN_IRT and delayed and enabled with
SFC 41 DIS_AIRT and SFC 42 EN_AIRT (see
Chapter 21.9 “Handling Interrupts”).

21 Interrupt Handling

374

Current signal states

In an interrupt handling routine, one of the
requirements is that you work with the current
signal states of the I/O modules (and not with
the signal states of the inputs that were updated
at the start of the main program) and write the
fetched signal states direct to the I/O (not wait-
ing until the process-image output table is
updated at the end of the main program).

In the case of a few inputs and outputs for the
interrupt handling routine, it is enough to ac-
cess the I/O modules direct with load and trans-
fer operations (STL) or with the MOVE box
(LAD, FBD). You are recommended here to
maintain a strict separation between the main
program and the interrupt handling routine with
regard to the I/O signals.

If you want to process many input and output
signals in the interrupt handling routine, the
solution on the S7-400 CPUs is to use partial
process images. When assigning addresses, you
assign each module to a partial process image.
With SFC 26 UPDAT_PI and SFC 27 UPDAT_
PO, you update the partial process images in the
user program (see also Chapter 20.2.1 “Process
Image Updating”).

On new S7-400 CPUs, you can assign an input
and an output partial process image to each
interrupt organization block (each interrupt pri-
ority class) and so cause the process images to
be updated automatically when the interrupt
occurs.

Start information, temporary local data

Each organization block delivers the start infor-
mation in the first 20 bytes of its temporary
local data. You can create the declaration of the
start information yourself using own data, or
you use the templates from the Standard
Library under Organization Blocks.

In S7-300 systems, the available temporary
local data have a fixed length of 256 bytes. In
S7-400 systems, you can specify the length per
priority class by parameterizing the CPU
accordingly (parameter block “local data”),
whereby the total may not exceed a CPU-spe-
cific maximum. Note that the minimum num-

ber of bytes for temporary local data for the pri-
ority class used must be 20 bytes so as to be
able to accommodate the start information.
Specify zero for unused priority classes.

Note that you can only directly read the start
information of an organization block in the
block itself since it is temporary local data. If
you also require values from the start informa-
tion in blocks which are present in lower call
levels, call the system function SFC 6 RD_
SINFO at the corresponding position in the pro-
gram (see Chapter 20.2.5 “Start Information”).

Current interrupt information

The interrupt organization block contains the
specific information for the triggering interrupt
in bytes 4 to 11 of the start information. In many
cases, the interrupt-triggering component pro-
vides additional information which you can
then read in the interrupt organization block
using the system function block SFB 54
RALRM (see Chapter 21.9.3 “Reading Addi-
tional Interrupt Information”).

21.2 Time-of-Day Interrupts

Time-of-day interrupts are used when you want
to run a program at a particular time, either
once only or periodically, for instance daily. In
STEP 7, organization blocks OB 10 to OB 17
are provided for servicing time-of-day inter-
rupts; which of these eight organization blocks
are actually available depends on the CPU
used.

You can configure the time-of-day interrupts in
the Hardware Configuration data or control
them at runtime via the program using system
functions. The prerequisite for proper handling
of the time-of-day interrupts is a correctly set
real-time clock on the CPU.

Table 21.1 shows you the start information for
the time-of-day interrupts. The dummy value
xx represents the number of the associated
interrupt organization block 10 to 17.

21.2 Time-of-Day Interrupts

375

21.2.1 Handling Time-of-Day Interrupts

General remarks

To start a time-of-day interrupt, you must first
set the start time, then activate the interrupt.
You can perform the two activities separately
via the Hardware Configuration data or using
SFCs. Note that when activated via the Hard-
ware Configuration data, the time-of-day inter-
rupt is started automatically following parame-
terization of the CPU.

You can start a time-of-day interrupt in two
ways:

b Single-shot: the relevant OB is called once
only at the specified time, or

b Periodically: depending on the parameter
assignments, the relevant OB is started
every minute, hourly, daily, weekly,
monthly or yearly.

Following a single-shot time-of-day interrupt
OB call, the time-of-day interrupt is canceled.
You can also cancel a time-of-day interrupt
with SFC 29 CAN_TINT.

If you want to once again use a canceled time-
of-day interrupt, you must set the start time
again, then reactivate the interrupt.

You can query the status of a time-of-day inter-
rupt with SFC 31 QRY_TINT.

Performance characteristics during startup

During a cold or warm restart, the operating
system clears all settings made with SFCs. Set-
tings made via the Hardware Configuration
data are retained. On a hot restart, the CPU
resumes servicing of the time-of-day interrupts
in the first complete scan cycle of the main pro-
gram.

You can query the status of the time-of-day
interrupts in the start-up OB by calling SFC 31,
and subsequently cancel or re-set and reactivate
the interrupts. The time-of-day interrupts are
serviced only in RUN mode.

Performance characteristics on error

If a time-of-day interrupt OB is called but was
not programmed, the operating system calls OB
85 (program execution error). If OB 85 was not
programmed, the CPU goes to STOP.

Time-of-day interrupts that were deselected
when the CPU was parameterized cannot be
serviced, even when the relevant OB is avail-
able. The CPU goes to STOP.

If you activate a time-of-day interrupt on a sin-
gle-shot basis, and if the start time has already
passed (from the real-time clock's point of
view), the operating system calls OB 80 (timing

Table 21.1 Start Information for Time-of-Day Interrupts

Byte Variable Name Data Type Description Contents

0 OBxx_EV_CLASS BYTE Event class B#16#11 = Incoming event

1 OBxx_STRT_INF BYTE Start request for the
interrupt OB

B#16#11 = OB 10

2 OBxx_PRIORITY BYTE Priority class Default value 2 for all
time-of-day interrupts

3 OBxx_OB_NUMBR BYTE OB number B#16#xx

4 OBxx_RESERVED_1 BYTE Spare -

5 OBxx_RESERVED_2 BYTE Spare -

6..7 OBxx_PERIOD_EXE WORD Interval with peri-
odically called OBs

See description of
SFC 28 SET_TINT

8..9 OBxx_RESERVED_3 INT Spare -

10..11 OBxx_RESERVED_4 INT Spare -

12..19 OBxx_DATE_TIME DATE_AND_
TIME

Start of event Call time of OB

xx represents the OB numbers 10 to 17

21 Interrupt Handling

376

error). If OB 80 is not available, the CPU goes
to STOP.

If you activate a time-of-day interrupt on a peri-
odic basis, and if the start time has already
passed (from the real-time clock's point of
view), the time-of-day interrupt OB is executed
the next time that time period comes due.

If you set the real-time clock ahead by more
than approx. 20 s, whether for the purpose of
correction or synchronization, thus skipping
over the start time for the time-of-day interrupt,
the operating system calls OB 80 (timing error).
The time-of-day interrupt OB is then executed
precisely once.

If you set the real-time clock back by more than
approx. 20 s, whether for the purpose of correc-
tion or synchronization, an activated time-of-
day interrupt OB will no longer be executed at
the instants which are already past.

If a time-of-day interrupt OB is still executing
when the next (periodic) call occurs, the operat-
ing system invokes OB 80 (timing error). When
OB 80 and the time-of-day interrupt OB have
executed, the time-of-day interrupt OB is
restarted.

Disabling, delaying and enabling

Time-of-day interrupt OB calls can be disabled
and enabled with SFC 39 DIS_IRT and SFC 40
EN_IRT, and delayed and enabled with SFC 41
DIS_AIRT and SFC 42 EN_AIRT.

21.2.2 Configuring Time-of-Day
Interrupts with STEP 7

The time-of-day interrupts are configured via
the Hardware Configuration data. Open the
selected CPU with EDIT OBJECT PROPER-
TIES and choose the “Time-of-Day” tab from
the dialog box.

In S7-300 controllers, the processing priority is
permanently set to 2. In S7-400 controllers, you
can set a priority between 2 and 24, depending
on the CPU, for each possible OB; priority 0
deselects an OB. You should not assign a prior-
ity more than once, as interrupts might be lost

when more than 12 interrupt events with the
same priority occur simultaneously.

The “Active” option activates automatic start-
ing of the time-of-day interrupt. The “Execu-
tion” option screens a list which allows you to
choose whether you want the OB to execute on
a single-shot basis or at specific intervals. The
final parameter is the start time (date and time).

When it saves the Hardware Configuration,
STEP 7 writes the compiled data to the System
Data object in the offline user program Blocks.
From here, you can load the parameter assign-
ment data into the CPU while the CPU is at
STOP; these data then go into force immediately.

21.2.3 System Functions for Time-of-Day
Interrupts

The following system functions can be used for
time-of-day interrupt control:

b SFC 28 SET_TINT
Set time-of-day interrupt

b SFC 29 CAN_TINT
Cancel time-of-day interrupt

b SFC 30 ACT_TINT
Activate time-of-day interrupt

b SFC 31 QRY_TINT
Query time-of-day interrupt

The parameters for these system functions are
listed in Table 21.2.

SFC 28 SET_TINT
Set time-of-day interrupt

You determine the start time for a time-of-day
interrupt by calling system function SFC 28
SET_TINT. SFC 28 sets only the start time; to
start the time-of-day interrupt OB, you must
activate the time-of-day interrupt with SFC 30
ACT_TINT. Specify the start time in the SDT
parameter in the format DATE_AND_TIME,
for instance DT#1997-06-30-08:30. The oper-
ating system ignores seconds and milliseconds
and sets these values to zero. Setting the start
time will overwrite the old start time value, if
any. An active time-of-day interrupt is can-
celed, that is, it must be reactivated.

21.2 Time-of-Day Interrupts

377

SFC 30 ACT_TINT
Activate time-of-day interrupt

A time-of-day interrupt is activated by calling
system function SFC 30 ACT_TINT. When a
TOD interrupt is activated, it is assumed that a
time has been set for the interrupt. If, in the case
of a single-shot interrupt, the start time is
already past, SFC 30 reports an error. In the
case of a periodic start, the operating system
calls the relevant OB at the next applicable
time. Once a single-shot time-of-day interrupt
has been serviced, it is, for all practical pur-
poses, canceled. You can re-set and reactivate it
(for a different start time) if desired.

SFC 29 CAN_TINT
Cancel time-of-day interrupt

You can delete a start time, thus deactivating
the time-of-day interrupt, with system function
SFC 29 CAN_TINT. The respective OB is no
longer called. If you want to use this same time-

of-day interrupt again, you must first set the
start time, then activate the interrupt.

SFC 31 QRY_TINT
Query time-of-day interrupt

You can query the status of a time-of-day inter-
rupt by calling system function SFC 31 QRY_
TINT. The required information is returned in
the STATUS parameter.

When the bits have signal state “1”, they have
the following meanings:

0 CPU is starting up

1 The interrupt has been disabled by the call
of SFC 39 DIS_IRT

2 Time-of-day interrupt is activated and has
not elapsed

3 (always "0")

4 An organization block with the number of
OB_NR is loaded

5 (and following: always "0")

Table 21.2 SFC Parameters for Time-of-Day Interrupts

SFC Parameter Declaration Data Type Contents, Description

28 OB_NR INPUT INT Number of the OB to be called at the specified time on a
single-shot basis or periodically

SDT INPUT DT Start date and start time in the format
DATE_AND_TIME

PERIOD INPUT WORD Period on which start time is based:
W#16#0000 = Single-shot
W#16#0201 = Every minute
W#16#0401 = Hourly
W#16#1001 = Daily
W#16#1201 = Weekly
W#16#1401 = Monthly
W#16#2001 = Last in the month
W#16#1801 = Yearly

RET_VAL RETURN INT Error information

29 OB_NR INPUT INT Number of the OB whose start time is to be deleted

RET_VAL RETURN INT Error information

30 OB_NR INPUT INT Number of the OB to be activated

RET_VAL RETURN INT Error information

31 OB_NR INPUT INT Number of the OB whose status is to be queried

RET_VAL RETURN INT Error information

STATUS OUTPUT WORD Status of the time-of-day interrupt

21 Interrupt Handling

378

21.3 Time-Delay Interrupts

A time-delay interrupt allows you to implement
a delay timer independently of the standard tim-
ers. In STEP 7, organization blocks OB 20 to
OB 23 are set aside for time-delay interrupts;
which of these four organization blocks are
actually available depends on the CPU used.

The priorities for time-delay interrupt OBs are
programmed in the Hardware Configuration
data; system functions are used for control pur-
poses.

Table 21.3 shows the start information for the
time-delay interrupts. The dummy value xx
represents the number of the associated inter-
rupt organization block 20 to 23.

21.3.1 Handling Time-Delay Interrupts

General remarks

A time-delay interrupt is started by calling SFC
32 SRT_DINT; this system function also passes
the delay interval and the number of the
selected organization block to the operating
system. When the delay interval has expired,
the OB is called.

You can cancel servicing of a time-delay inter-
rupt, in which case the associated OB will no
longer be called.

You can query the status of a time-delay inter-
rupt with SFC 34 QRY_DINT.

Performance characteristics during startup

On a cold or warm restart, the operating system
deletes all programmed settings for time-delay
interrupts. On a hot restart, the settings are
retained until processed in RUN mode,
whereby the “residual cycle” is counted as part
of the start-up routine.

You can start a time-delay interrupt in the start-
up routine by calling SFC 32. When the delay
interval has expired, the CPU must be in RUN
mode in order to be able to execute the relevant
organization block. If this is not the case, the
CPU waits to call the organization block until
the start-up routine has terminated, then calls
the time-delay interrupt OB before the first net-
work in the main program.

Performance characteristics on error

If no time-delay interrupt OB has been pro-
grammed, the operating system calls OB 85
(program execution error). If there is no OB 85
in the user program, the CPU goes to STOP.

Table 21.3 Start Information for Time-Delay Interrupts

Byte Variable Name Data Type Description Contents

0 OBxx_EV_CLASS BYTE Event class B#16#11 = Incoming event

1 OBxx_STRT_INF BYTE Start request for the
interrupt OB

B#16#21 = OB 20

2 OBxx_PRIORITY BYTE Priority class Default values 3 to 6
(OB 20 to OB 23)

3 OBxx_OB_NUMBR BYTE OB number B#16#xx

4 OBxx_RESERVED_1 BYTE Spare -

5 OBxx_RESERVED_2 BYTE Spare -

6..7 OBxx_SIGN WORD Request ID See description of
SFC 32 SRT_DINT

8..11 OBxx_DTIME TIME Expired delay time See description of
SFC 32 SRT_DINT

12..19 OBxx_DATE_TIME DATE_
AND_TIME

Start of event Call time of OB

xx represents the OB numbers 20 to 23

21.3 Time-Delay Interrupts

379

If the delay interval has expired and the associ-
ated OB is still executing, the operating system
calls OB 80 (timing error) or goes to STOP if
there is no OB 80 in the user program.

Time-delay interrupts which were deselected
during CPU parameterization cannot be ser-
viced, even when the respective OB has been
programmed. The CPU goes to STOP.

Disabling, delaying and enabling

The time-delay interrupt OBs can be disabled and
enabled with system functions SFC 39 DIS_IRT
and SFC 40 EN_IRT, and delayed and enabled
with SFC 41 DIS_AIRT and SFC 42 EN_AIRT.

21.3.2 Configuring Time-Delay Interrupts
with STEP 7

Time-delay interrupts are configured in the
Hardware Configuration data. Simply open the
selected CPU with EDIT OBJECT PROPER-
TIES and choose the “Interrupts” tab from the
dialog box.

In S7-300 controllers, the priority is perma-
nently preset to 3. In S7-400 controllers, you
can choose a priority between 2 and 24,
depending on the CPU, for each possible OB;
choose priority 0 to deselect an OB. You should
not assign a priority more than once, as inter-
rupts could be lost if more than 12 interrupt
events with the same priority occur simultane-
ously.

When it saves the Hardware Configuration,
STEP 7 writes the compiled data to the System
Data object in the offline user program Blocks.
From here, you can transfer the parameter
assignment data while the CPU is at STOP; the
data take effect immediately.

21.3.3 System Functions for Time-Delay
Interrupts

A time-delay interrupt can be controlled with
the following system functions:

b SFC 32 SRT_DINT
Start time-delay interrupt

b SFC 33 CAN_DINT
Cancel time-delay interrupt

b SFC 34 QRY_DINT
Query time-delay interrupt

The parameters for these system functions are
listed in Table 21.4.

SFC 32 SRT_DINT
Start time-delay interrupt

A time-delay interrupt is started by calling sys-
tem function SFC 32 SRT_DINT. The SFC call
is also the start time for the programmed delay
interval. When the delay interval has expired,
the CPU calls the programmed OB and passes
the time delay value and a job identifier in the
start information for this OB. The job identifier

Table 21.4 SFC Parameters for Time-Delay Interrupts

SFC Parameter Declaration Data Type Contents, Description

32 OB_NR INPUT INT Number of the OB to be called when the delay interval has
expired

DTIME INPUT TIME Delay interval; permissible: T#1ms to T#1m

SIGN INPUT WORD Job identification in the respective OB's start information
when the OB is called (arbitrary characters)

RET_VAL RETURN INT Error information

33 OB_NR INPUT INT Number of the OB to be canceled

RET_VAL RETURN INT Error information

34 OB_NR INPUT INT Number of the OB whose status is to be queried

RET_VAL RETURN INT Error information

STATUS OUTPUT WORD Status of the time-delay interrupt

21 Interrupt Handling

380

is specified in the SIGN parameter for SFC 32;
you can read the same value in bytes 6 and 7 of
the start information for the associated time-
delay interrupt OB. The time delay is set in
increments of 1 ms. The accuracy of the time
delay is also 1 ms. Note that execution of the
time-delay interrupt OB may itself be delayed
when organization blocks with higher priorities
are being processed when the time-delay inter-
rupt OB is called. You can overwrite a time
delay with a new value by recalling SFC 32.
The new time delay goes into force with the
SFC call.

SFC 33 CAN_DINT
Cancel time-delay interrupt

You can call system function SFC 33 CAN_
DINT to cancel a time-delay interrupt, in which
case the programmed organization block is not
called.

SFC 34 QRY_DINT
Query time-delay interrupt

System function SFC 34 QRY_DINT informs
you about the status of a time-delay interrupt.
You select the time-delay interrupt via the OB
number, and the status information is returned
in the STATUS parameter.

When the bits have signal state “1”, they have
the following meanings:

0 CPU is starting up

1 The interrupt has been disabled by the call
of SFC 39 DIS_IRT

2 The time-delay interrupt is activated and
has not elapsed

3 (always "0")

4 An organization block with the number of
OB_NR is loaded

5 (and following: always "0")

21.4 Watchdog Interrupts

A watchdog interrupt is an interrupt which is
generated at periodic intervals and which initi-
ates execution of a watchdog interrupt OB. A
watchdog interrupt allows you to execute a par-
ticular program periodically, independently of
the processing time of the cyclic program.

In STEP 7, organization blocks OB 30 to OB 38
have been set aside for watchdog interrupts;
which of these nine organization blocks are
actually available depends on the CPU used.

Watchdog interrupt handling is set in the Hard-
ware Configuration data when the CPU is
parameterized.

Table 21.5 Start Information for Watchdog Interrupts

Byte Tag name Data type Description Assignment

0 OBxx_EV_CLASS BYTE Event class B#16#11 = incoming event

1 OBxx_STRT_INF BYTE Start request for the
interrupt OB

B#16#31 = OB 30

2 OBxx_PRIORITY BYTE Priority class Default values 7 to 15 (OB 30 to 38)

3 OBxx_OB_NUMBR BYTE OB number B#16#xx

4 OBxx_RESERVED_1 BYTE Reserve -

5 OBxx_RESERVED_2 BYTE Reserve -

6..7 OBxx_PHS_OFFSET INT Phase offset ms, refer to Table 21.6

8..9 OBxx_RESERVED_3 INT Reserve -

10..11 OBxx_EXC_FREQ INT Interval ms, refer to Table 21.6

12..19 OBxx_DATE_TIME DATE_
AND_TIME

Event occurrence Call time of the OB

xx stands for the OB numbers 30 to 38

21.4 Watchdog Interrupts

381

Table 21.5 shows the start information for the
watchdog interrupts. The dummy value xx rep-
resents the number of the associated interrupt
organization block 30 to 38.

21.4.1 Handling Watchdog Interrupts

Triggering watchdog interrupts in an S7-300

In an S7-300, there is a limited selection of
watchdog interrupts with a fixed priority
depending on the CPU. You can set the interval
in the range from 1 millisecond to 1 minute, in
1-millisecond increments, by parameterizing
the CPU accordingly (in increments of 500 µs
for the CPU 319 from firmware release V2.6
onwards).

Triggering watchdog interrupts in an S7-400

You define a watchdog interrupt when you
parameterize the CPU. A watchdog interrupt
has three parameters: the interval, the phase
offset, and the priority. You can set all three.
Specifiable values for interval and phase offset
are from 1 millisecond to 1 minute, in 1-milli-
second increments; the priority may be set to a
value between 2 and 24 or to zero, depending
on the CPU (zero means the watchdog interrupt
is not active).

STEP 7 provides the organization blocks listed
in Table 21.6, in their maximum configurations.

Phase offset

The phase offset can be used to execute watch-
dog interrupt handling routines which have a
common time interval or a common multiple
thereof at an exact interval. This permits a
higher processing interval accuracy.

The start time of the time interval and the phase
offset is the instant of transition from
STARTUP to RUN. The call instant for a
watchdog interrupt OB is thus the time interval
plus the phase offset. Figure 21.1 shows an
example of this. No phase offset is set in the left-
hand part, therefore the start of processing of the
lower-priority organization block is shifted by
the current processing time of the higher-priority
organization block in each case.

If, on the other hand, a phase offset is config-
ured which is greater than the maximum pro-
cessing time of the high-priority organization
block, the lower-priority organization block is
processed at the exact interval.

Table 21.6 Defaults for Watchdog Interrupts

OB Time Interval Phase Priority

30 5 s 0 ms 7

31 2 s 0 ms 8

32 1 s 0 ms 9

33 500 ms 0 ms 10

34 200 ms 0 ms 11

35 100 ms 0 ms 12

36 50 ms 0 ms 13

37 20 ms 0 ms 14

38 10 ms 0 ms 15

Figure 21.1 Example of Phase Offset for Watchdog Interrupts

21 Interrupt Handling

382

Performance characteristics during startup

Watchdog interrupts cannot be serviced in the
start-up OB. The time intervals do not begin
until a transition is made to RUN mode.

Performance characteristics on error

When the same watchdog interrupt is generated
again while the associated watchdog interrupt
handling OB is still executing, the operating
system calls OB 80 (timing error). If OB 80 has
not been programmed, the CPU goes to STOP.

The operating system saves the watchdog inter-
rupt that was not serviced, servicing it at the
next opportunity. Only one unserviced watch-
dog interrupt is saved per priority class, regard-
less of how many unserviced watchdog inter-
rupts accumulate.

Watchdog interrupts that were deselected when
the CPU was parameterized cannot be serviced,
even when the corresponding OB is available.
The CPU goes to STOP in this case.

Disabling, delaying and enabling

Calling of the watchdog interrupt OBs can be
disabled and enabled with system functions
SFC 39 DIS_IRT and SFC 40 EN_IRT and
delayed and enabled with SFC 41 DIS_AIRT
and SFC 42 EN_AIRT.

21.4.2 Configuring Watchdog Interrupts
with STEP 7

Watchdog interrupts are configured via the
Hardware Configuration data. Simply open the
selected CPU with EDIT OBJECT PROPER-
TIES and choose the “Cyclic Interrupt” tab from
the dialog box.

In S7-300 controllers, the processing priority is
permanently set. In S7-400 controllers, you
may set a priority between 2 and 24 for each
possible OB (CPU-specific); priority 0 dese-
lects the OB to which it is assigned. You should
not assign a priority more than once, as inter-
rupts might be lost if more than 12 interrupt
events with the same priority occur simultane-
ously.

The interval for each OB is selected under
“Execution”, the delayed call instant under
“Phase Offset”.

When it saves the Hardware Configuration,
STEP 7 writes the compiled data to the System
Data object in the offline user program Blocks.
From here, you can load the parameter assign-
ment data into the CPU while the CPU is at
STOP; the data take effect immediately.

21.5 Hardware Interrupts

Hardware interrupts are used to enable the
immediate detection in the user program of
events in the controlled process, making it pos-
sible to respond with an appropriate interrupt
handling routine. STEP 7 provides organization
blocks OB 40 to OB 47 for servicing process
interrupts; which of these eight organization
blocks are actually available, however, depends
on the CPU.

Hardware interrupt handling is programmed in
the Hardware Configuration data. With system
functions SFC 55 WR_PARM, SFC 56 WR_
DPARM and SFC 57 PARM_MOD, you can
(re)parameterize the modules with process
interrupt capability even in RUN mode.

Table 21.7 shows the start information for the
process interrupts. The dummy value xx repre-
sents the number of the associated interrupt
organization block 40 to 47.

21.5.1 Generating a Hardware Interrupt

A process interrupt is generated on the modules
with this capability. This could, for example, be
a digital input module that detects a signal from
the process or a function module that generates
a process interrupt because of an activity taking
place on the module.

By default, process interrupts are disabled. A
parameter is used to enable servicing of a pro-
cess interrupt (static parameter), and you can
specify whether the process interrupt should be
generated for a coming event, a leaving event,
or both (dynamic parameter). Dynamic param-
eters are parameters which you can modify at
runtime using SFCs.

In an intelligent DP slave equipped for this pur-
pose, you can initiate a process interrupt in the
master CPU with SFC 7 DP_PRAL.

21.5 Hardware Interrupts

383

The process interrupt is acknowledged on the
module when the organization block containing
the service routine for that interrupt has fin-
ished executing.

Resolution on the S7-300

If an event occurs during execution of a process
interrupt OB which itself would trigger genera-
tion of the same process interrupt, that process
interrupt will be lost when the event that trig-
gered it is no longer present following acknowl-
edgment. It makes no difference whether the
event comes from the module whose process
interrupt is currently being serviced or from
another module.

A diagnostic interrupt can be generated while a
process interrupt is being serviced. If another
process interrupt occurs on the same channel
between the time the first process interrupt was
generated and the time that interrupt was
acknowledged, the loss of the latter interrupt is
reported via a diagnostic interrupt to system
diagnostics.

Resolution on the S7-400

If during execution of a process interrupt OB
an event occurs on the same channel on the
same module which would trigger the same
process interrupt, that interrupt is lost. If the
event occurs on another channel on the same
module or on another module, the operating
system restarts the OB as soon as it has fin-
ished executing.

21.5.2 Servicing Hardware Interrupts

Querying interrupt information

The starting address of the module that trig-
gered the process interrupt is in bytes 6 and 7 of
the process interrupt OB's start information. If
this address is an input address, byte 5 of the
start information contains B#16#54; otherwise
it contains B#16#55. If the module in question
is a digital input module, bytes 8 to 11 contain
the status of the inputs; for any other type of
module, these bytes contain the interrupt status
of the module.

Table 21.7 Start Information for Hardware Interrupts

Byte Variable Name Data Type Description Contents

0 OBxx_EV_CLASS BYTE Event class B#16#11 = incoming event

1 OBxx_STRT_INF BYTE Start request for the
interrupt OB

B#16#41 = OB 40

2 OBxx_PRIORITY BYTE Priority class Default values 16 to 23
(OB 40 to 47)

3 OBxx_OB_NUMBR BYTE OB number B#16#xx

4 OBxx_RESERVED_1 BYTE Spare -

5 OBxx_IO_FLAG BYTE I/O ID B#16#54 = input module,
input submodule

B#16#55 = output module,
output submodule

6..7 OBxx_MDL_ADDR WORD Module starting
address of compo-
nent triggering the
interrupt

8..11 OBxx_POINT_ADDR DWORD Interrupt informa-
tion

12..19 OBxx_DATE_TIME DATE_
AND_TIME

Start of event Call time of OB

xx represents the OB numbers 40 to 47

21 Interrupt Handling

384

Interrupt handling in the start-up routine

In the start-up routine, the modules do not gen-
erate process interrupts. Interrupt handling
begins with the transition to RUN mode. Any
process interrupts pending at the time of the
transition are lost.

Error handling

If a process interrupt is generated for which
there is no process interrupt OB in the user pro-
gram, the operating system calls OB 85 (pro-
gram execution error). The process interrupt is
acknowledged. If OB 85 has not been pro-
grammed, the CPU goes to STOP.

Hardware interrupts deselected when the CPU
was parameterized cannot be serviced, even
when the OBs for these interrupts have been
programmed. The CPU goes to STOP.

Disabling, delaying and enabling

Calling of the process interrupt OBs can be dis-
abled and enabled with system functions SFC
39 DIS_IRT and SFC 40 EN_IRT, and delayed
and enabled with SFC 41 DIS_AIRT and SFC
42 EN_AIRT.

21.5.3 Configuring Hardware Interrupts
with STEP 7

Hardware interrupts are programmed in the
Hardware Configuration data. Open the
selected CPU with EDIT OBJECT PROPER-
TIES and choose the “Interrupts” tab in the dia-
log box.

In S7-300 systems, the priority for OB 40 is
fixed and cannot be changed. In S7-400 sys-
tems, you can choose a priority between 2 and
24 for every possible OB (on a CPU-specific
basis); priority 0 deselects execution of an OB.
You should never assign the same priority twice
because interrupts can be lost when more than
12 interrupt events with the same priority occur
simultaneously.

You must also enable the triggering of process
interrupts on the respective modules. To this
purpose, these modules are parameterized
much the same as the CPU.

When it saves the Hardware Configuration,
STEP 7 writes the compiled data to the System
Data object in offline user program Blocks;
from here, you can load the parameterization
data into the CPU while the CPU is in STOP
mode. The parameterization data for the CPU
go into force immediately following loading;
the parameter assignment data for the modules
take effect after the next start-up.

21.6 DPV1 Interrupts

PROFIBUS DPV1 slaves can trigger the fol-
lowing interrupts in addition to the types previ-
ously known with SIMATIC S7:

b Status interrupt if e.g. the DPV1 slave
changes its operating status; the interrupt
organization block OB 55 is called.

b Update interrupt if e.g. the DPV1 slave was
reconfigured via the PROFIBUS or directly;
the interrupt organization block OB 56 is
called.

b Manufacturer specific interrupt if an associ-
ated event envisaged by the vendor occurs
in the DPV1 slave; the interrupt organiza-
tion block OB 57 is called. The events trig-
gering the interrupt are defined by the ven-
dor of the DPV1 slave.

The start information of the DPV1 interrupt
organization blocks includes the origin of the
interrupt, the interrupt specifier, and the length
of additionally available interrupt information
(Table 21.8). You can read the additional inter-
rupt information using the system function
block SFB 54 RALRM (Chapter 21.9.3 “Read-
ing Additional Interrupt Information”).

Response during startup

PROFIBUS DPV1 slaves can also generate
interrupts if the master CPU is at STOP. At
STOP, the master CPU cannot call an interrupt
organization block; processing of the interrupts
is not carried out subsequently either when the
CPU enters RUN mode.

However, the received interrupt events are
entered into the diagnostics buffer and into the
module status data. You can read the module
status data using the system function SFC 51
RDSYSST.

21.6 DPV1 Interrupts

385

Error handling

If a DPV1 interrupt is generated for which there
is no DPV1 interrupt OB in the user program,
the operating system calls OB 85 (priority class
error). The DPV1 interrupt is acknowledged. If

OB 85 has not been programmed, the CPU
enters the STOP mode.

Disabling, delaying and enabling

Calling of the DPV1 interrupt OBs can be dis-
abled and enabled with system functions

Table 21.8 Start Information for DPV1 Interrupts

Byte Variable Name Data Type Description Contents

0 OBxx_EV_CLASS BYTE Event class B#16#11 = Incoming event

1 OBxx_STRT_INF BYTE Start request for
the OB xx

B#16#xx

2 OBxx_PRIORITY BYTE Priority class B#16#02 = default value

3 OBxx_OB_NUMBR BYTE OB number B#16#xx

4 OBxx_RESERVED_1 BYTE Spare -

5 OBxx_IO_FLAG BYTE I/O ID B#16#54 = input module,
input submodule

B#16#55 = output module,
output submodule

6..7 OBxx_MDL_ADDR WORD Module starting
address of component
triggering the interrupt

-

8 OBxx_LEN BYTE Length of interrupt
data record

-

9 OBxx_TYPE BYTE ID for type of
interrupt

B#16#00 = spare
B#16#01 = diagnostics interrupt
B#16#02 = process interrupt
B#16#03 = removal interrupt
B#16#04 = insertion interrupt
B#16#05 = status interrupt
B#16#06 = update interrupt
B#16#07..1F = spare
B#16#20..7E = manufacturer

specific interrupt
B#16#7F = spare

10 OBxx_SLOT BYTE Slot number of
component triggering
the interrupt

-

11 OBxx_SPEC BYTE Specifier Bits 1 and 0:
0 0 spare
0 1 Incoming event
1 0 Outgoing event with error
1 1 Outgoing event with further

errors
Bit 2:
0 no additional acknowledgment

required
1 additional acknowledgment

required
Bits 3 to 7: spare

12..19 OBxx_DATE_TIME DATE_
AND_TIME

Start of event Call time of OB

xx represents the OB number 55, 56 or 57

21 Interrupt Handling

386

SFC 39 DIS_IRT and SFC 40 EN_IRT, and
delayed and enabled with SFC 41 DIS_AIRT
and SFC 42 EN_AIRT.

Configuring DPV1 interrupts with STEP 7

DPV1 interrupts are programmed in the Hard-
ware Configuration data. Open the selected
CPU with EDIT OBJECT PROPERTIES and
choose the “Interrupts” tab in the properties
window.

The default priority is 2.You can set the priority
in the range from 2 to 24. Priority 0 deselects
the interrupt. DPV1 interrupts which had been
deselected cannot be executed, even if the cor-
responding OB exists. The CPU then goes to
STOP.

In addition, you must program the interrupt
triggering on the corresponding DPV1 slaves.

When saving the Hardware Configuration,
STEP 7 writes the compiled data into the sys-
tem data object in the offline user program
blocks; from here, you can load the program-
ming data into the CPU in the STOP status.
The programming data for the CPU become
immediately effective following loading, those
for the DPV1 slaves following the next startup.

21.7 Multiprocessor Interrupt

The multiprocessor interrupt allows a synchro-
nous response to an event in all CPUs in multi-
processor mode. A multiprocessor interrupt is
triggered using SFC 35 MP_ALM. Organiza-
tion block OB 60, which has a fixed priority of
25, is the OB used to service a multiprocessor
interrupt.

Table 21.9 shows you the assignment of the
start information for the multiprocessor inter-
rupt.

General remarks

An SFC 35 MP_ALM call initiates execution of
the multiprocessor interrupt OB. If the CPU is
in single-processor mode, OB 60 is started
immediately. In multiprocessor mode, OB 60 is
started simultaneously on all participating
CPUs, that is to say, even the CPU in which
SFC 35 was called waits before calling OB 60
until all the other CPUs have indicated that they
are ready.

The multiprocessor interrupt is not pro-
grammed in the Hardware Configuration data;
it is already present in every CPU with multi-
computing capability. Despite this fact, how-
ever, a sufficient number of local data bytes (at

Table 21.9 Start Information for the Multiprocessor Interrupt

Byte Variable Name Data Type Description Contents

0 OB60_EV_CLASS BYTE Event class B#16#11 = Incoming event

1 OB60_STRT_INF BYTE Start request for the
OB 60

B#16#61: multiprocessor interrupt
triggered by own CPU
B#16#62: multiprocessor interrupt
triggered by a different CPU

2 OB60_PRIORITY BYTE Priority class B#16#19 = default value (25dec)

3 OB60_OB_NUMBR BYTE OB number B#16#3C (60dec)

4 OB60_RESERVED_1 BYTE Spare -

5 OB60_RESERVED_2 BYTE Spare -

6..7 OB60_JOB INT Job ID Input variable JOB of
SFC 35 MP_ALM

8..9 OB60_RESERVED_3 INT Spare -

10..11 OB60_RESERVED_4 INT Spare -

12..19 OB60_DATE_TIME DATE_
AND_TIME

Start of event Call time of OB

21.8 Synchronous Cycle Interrupts

387

least 20) must still be reserved in the CPU's
“Local Data” tab under priority class 25.

Performance characteristics
during startup

The multiprocessor interrupt is triggered only
in RUN mode. An SFC 35 call in the start-up
routine terminates after returning error 32 929
(W#16#80A1) as function value.

Performance characteristics on error

If OB 60 is still in progress when SFC 35 is
recalled, the system function returns error code
32 928 (W#16#80A0) as function value. OB 60
is not started in any of the CPUs.

The unavailability of OB 60 in one of the CPUs
at the time it is called or the disabling or delay-
ing of its execution by system functions has no
effect, nor does SFC 35 report an error.

Disabling, delaying and enabling

The multiprocessor OB can be disabled and
enabled with system functions SFC 39 DIS_
IRT and SFC 40 EN_IRT, and delayed and
enabled with SFC 41 DIS_AIRT and SFC 42
EN_AIRT.

SFC 35 MP_ALM
Multiprocessor interrupt

A multiprocessor interrupt is triggered with
system function SFC 35 MP_ALM. Its param-
eters are listed in Table 21.10.

The JOB parameter allows you to forward a job
identifier. The same value can be read in bytes
6 and 7 of OB 60's start information in all
CPUs.

21.8 Synchronous Cycle Interrupts

Isochronous mode is when the reading, pro-
cessing, and output of I/O signals occurs syn-
chronously and at fixed (equidistant) time inter-
vals. For PROFIBUS DP the time interval is the
DP cycle, with which the I/O signals of the DP
slaves are updated; for PROFINET IO it is the
data cycle with which the signals of the I/O de-
vices are updated, multiplied by a whole-num-
ber factor.

The user program executed in isochronous
mode is present in organization blocks OB 61 to
OB 64. For isochronous process image updat-
ing, there are the system functions SFC 126
SYNC_PI and SFC 127 SYNC_PO. Table
21.11 shows the start information for the syn-
chronous cycle interrupts. The placeholder xx
stands for the number of the affected interrupt
organization block, 61 to 64.

21.8.1 Processing Synchronous Cycle
Interrupts

Synchronous cycle interrupts are only pro-
cessed in the RUN status. An synchronous
cycle interrupt in the STARTUP, STOP or
HOLD mode is rejected. The start information
of the isochronous mode OB called for the first
time during RUN contains the number of OB
calls which have not been executed.

Error handling

If an synchronous cycle interrupt arrives before
the associated synchronous cycle interrupt OB
has been completed, a timing error is signaled.
This can occur if the user program takes too
long in an synchronous cycle interrupt OB or if
the processing has been interrupted for too long
because of program components of higher pri-
ority. The OB called by the “too early” interrupt
is rejected, and the OB 80 “Timing error” is
called. It is possible here to react to the timing
error. In the next synchronous cycle interrupt

Table 21.10 Parameters for SFC 35 MP_ALM

Parameter Declaration Data Type Contents, Description

JOB INPUT BYTE Job identification in the range B#16#00 to B#16#0F

RET_VAL RETURN INT Error information

21 Interrupt Handling

388

OB processed, the start information contains
the number of omitted synchronous cycle inter-
rupts.

In the event of an error, the DP master can omit
the Global_Control (GC) command or send it
offset. This "GC violation" is shown in the start
information of the next synchronous cycle
interrupt OB which is called correctly.

Disabling, delaying and enabling

Calling of the synchronous cycle interrupt OB
can be disabled and enabled with system func-
tions SFC 39 DIS_IRT and SFC 40 EN_IRT,
and delayed and enabled with SFC 41 DIS_
AIRT and SFC 42 EN_AIRT.

21.8.2 Isochronous Updating of Process
Image

Hardware Configuration can be used to assign
process image partitions to a synchronous cycle
interrupt OB. These are not updated automati-
cally. The system function SFC 126 SYNC_PI
should be used to update inputs and SFC 127

SYNC_PO should be used to update outputs.
Updating is carried out isochronously and data-
consistent. The two SFCs must only be called in
an synchronous cycle interrupt OB. Direct
access to the peripheral inputs and outputs of
these process image partitions should be
avoided.

Table 21.12 shows the parameters of the SFC
126 SYNC_PI and SFC 127 SYNC_PO.

If an error is detected, the partial process
images are not updated. Exceptions:

b If an access error occurs during updating of
the input partial process image, the inputs of
faulty modules are set to signal status “0”;
the OB 85 “Priority class error” is not
called.

b If the complete data could not be transmit-
ted consistently to the outputs, a consistency
warning is generated. However, the data of
individual slaves are consistent.

b If an access error occurs during updating of
the output partial process image, the data of
faulty modules are not transmitted; they
remain unchanged in the partial process

Table 21.11 Start information for synchronous cycle interrupts

Byte Tag name Data type Description, remark

0 OBxx_EV_CLASS BYTE Event class B#16#11 = incoming event

1 OBxx_STRT_INF BYTE Start request for the
OB xx

B#16#36: OB 61, … ,
B#16#67: OB 64

2 OBxx_PRIORITY BYTE Priority class B#16#19 = default value (25dez)

3 OBxx_OB_NUMBR BYTE OB number B#16#xx

4 OBxx_RESERVED_1 BYTE Reserve -

5 OBxx_RESERVED_2 BYTE Reserve -

6.0 OBxx_GC_VIOL BOOL GC violation With PROFIBUS DP

6.1 OBxx_FIRST BOOL First execution follow-
ing STARTUP or
HOLD

For "1"

7 OBxx_MISSED_EXEC BYTE Number of discarded
OB calls

since the last OB xx call

8 OBxx_DP_ID BYTE DP master system ID
of the synchronous DP
master system

is configured in the hardware
configuration

9 OBxx_RESERVED_3 BYTE Reserved -

10..11 OBxx_RESERVED_4 WORD Reserved -

12..19 OBxx_DATE_TIME DT Event occurrence Call time of the OB

21.9 Handling Interrupts

389

image. Updating of non-affected modules is
divided between two DP cycles (consis-
tency warning).

21.8.3 Programming of Synchronous
Cycle Interrupts with STEP 7

Programming of the synchronous cycle inter-
rupts is carried out using the Hardware Config-
uration. Open the selected CPU with EDIT
OBJECT PROPERTIES, and select the “Synchro-
nous cycle interrupts” in the properties window.

The default priority is 25. You can set the priority
in the range from 2 to 26. Priority 0 deselects the
interrupt. Synchronous cycle interrupts which
have been deselected are not executed, even if
the corresponding OB is present. Furthermore,
you assign the isochronous DP master system
and the involved partial process images to the
interrupt OB.

In addition, you assign the isochronous DP mas-
ter system or the isochronous PROFINET IO
system and the involved process image parti-
tions to the interrupt OB (see sections “Config-
uring constant bus cycle time and isochrone
mode” in Chapter 20.4.3 “Special Functions for
PROFIBUS DP” or “Isochronous mode” in
Chapter 20.4.6 “Special functions for PROFI-
NET IO”).

By saving the Hardware Configuration, STEP 7
writes the compiled data into the object System
data in the offline user program Blocks; you can
load the parameterization data to the CPU from
here in the STOP status. The parameterization
data for the CPU become effective immediately
following loading, and those for the DP compo-
nents following the next startup.

21.9 Handling Interrupts

The system functions for disabling, delaying
and enabling influence all interrupts and all
asynchronous errors. The system functions
SFC 36 to SFC 38 are available for handling
synchronous errors.

21.9.1 Disabling and Enabling
Interrupts

The following system functions are available
for disabling and enabling interrupts and asyn-
chronous errors:

b SFC 39 DIS_IRT
Disable interrupts

b SFC 40 EN_IRT
Enable disabled interrupts

Table 21.13 lists the parameters for these sys-
tem functions.

SFC 39 DIS_IRT
Disabling interrupts

System function SFC 39 DIS_IRT disables ser-
vicing of new interrupts and asynchronous
errors. All new interrupts and asynchronous
errors are rejected. If an interrupt or asynchro-
nous error occurs following a Disable, the orga-
nization block is not executed; if the OB does
not exist, the CPU does not go to STOP.

The Disable remains in force for all priority
classes until it is revoked with SFC 40 EN_IRT.
After a cold or warm restart, all interrupts and
asynchronous errors are enabled.

The MODE and OB_NR parameters are used to
specify which interrupts and asynchronous
errors are to be disabled. MODE = B#16#00
disables all interrupts and asynchronous errors.

Table 21.12 Parameters of the SFCs for isochronous Mode Updating of the Process Image

With SFC Parameter
Name

Declaration Data Type Contents, Description

126 127 PART INPUT BYTE Number of partial process image
B#16#01 to B#16#1E

126 127 RET_VAL RETURN INT Error information

126 127 FLADDR OUTPUT WORD In the case of an access error, the address of the
first byte causing the error

21 Interrupt Handling

390

MODE = B#16#01 disables an interrupt class
whose first OB number is specified in the OB_
NR parameter.

For example, MODE = B#16#01 and OB_NR =
40 disables all process interrupts; OB = 80
would disable all asynchronous errors. MODE
= B#16#02 disables the interrupt or asynchro-
nous error whose OB number you entered in the
OB_NR parameter.

Regardless of a Disable, the operating system
enters each new interrupt or asynchronous error
in the diagnostic buffer.

SFC 40 EN_IRT
Enabling disabled interrupts

System function SFC 40 EN_IRT enables the
interrupts and asynchronous errors disabled
with SFC 39 DIS_IRT. An interrupt or asyn-
chronous error occurring after the Enable will
be serviced by the associated organization
block; if that organization block is not in the
user program, the CPU goes to STOP (except in
the case of OB 81, the organization block for
power supply errors).

The MODE and OB_NR parameters specify
which interrupts and asynchronous errors are to
be enabled. MODE = B#16#00 enables all inter-
rupts and asynchronous errors. MODE =
B#16#01 enables an interrupt class whose first
OB number is specified in the OB_NR parame-
ter. MODE = B#16#02 enables the interrupt or
asynchronous error whose OB number you
entered in the OB_NR parameter.

21.9.2 Delaying and Enabling
Delayed Interrupts

The following system functions are available
for delaying and enabling interrupts and asyn-
chronous errors:

b SFC 41 DIS_AIRT
Delay interrupts

b SFC 42 EN_AIRT
Enable delayed interrupts

Table 21.13 lists the parameters for these sys-
tem functions.

SFC 41 DIS_AIRT
Delaying interrupts

System function SFC 41 DIS_AIRT delays the
servicing of higher-priority new interrupts and
asynchronous errors. Delay means that the
operating system saves the interrupts and asyn-
chronous errors which occurred during the
delay and services them when the delay interval
has expired. Once SFC 41 has been called, the
program in the current organization block (in
the current priority class) will not be interrupted
by a higher-priority interrupt; no interrupts or
asynchronous errors are lost.

A delay remains in force until the current OB
has terminated its execution or until SFC 42
EN_AIRT is called.

You can call SFC 41 several times in succes-
sion. The RET_VAL parameter shows the num-
ber of calls. You must call SFC 42 precisely the
same number of times as SFC 41 in order to
reenable the interrupts and asynchronous
errors.

Table 21.13 Parameters of the System Functions for Interrupt Handling

SFC Parameter Name Declaration Data Type Contents, Description

39 MODE INPUT BYTE Disable mode (see text)

OB_NR INPUT INT OB number (see text)

RET_VAL RETURN INT Error information

40 MODE INPUT BYTE Enable mode (see text)

OB_NR INPUT INT OB number (see text)

RET_VAL RETURN INT Error information

41 RET_VAL RETURN INT (New) number of delays

42 RET_VAL RETURN INT Number of delays remaining

21.9 Handling Interrupts

391

SFC 42 EN_AIRT
Enabling delayed interrupts

System function SFC 42 EN_AIRT reenables
the interrupts and asynchronous errors delayed
with SFC 41. You must call SFC 42 precisely
the same number of times as you called SFC 41
(in the current OB). The RET_VAL parameter
shows the number of delays still in force; if
RET_VAL is = 0, the interrupts and asynchro-
nous errors have been reenabled.

If you call SFC 42 without having first called
SFC 41, RET_VAL contains the value 32896
(W#16#8080).

21.9.3 Reading Additional Interrupt
Information

The system function block SFB 54 RALRM
reads additional interrupt information – if pres-
ent – from the components (modules or sub-
modules) triggering the interrupt. It is called in
an interrupt organization block or in a block
called within this. Processing of the SFB 54
RALRM is synchronous, i.e. the requested data
are available at the output parameters immedi-
ately following the call. Table 21.14 shows the
block parameters of the SFB 54 RALRM.

The SFB 54 RALRM can be basically called in
all organization blocks or execution levels for
all events. If you call it in an organization block

whose start event is not an interrupt from the I/
O, correspondingly less information is avail-
able. Depending on the respective organization
block and the components triggering the inter-
rupt, different information is entered in the tar-
get areas specified by the parameters TINFO
and AINFO (Table 21.15).

The target area TINFO (task information) con-
tains the complete status information in bytes
0 to 19 of the organization blocks in which the
SFB 54 RALRM was called, independent of the
nesting depth in which it was called. The
SFB 54 RALRM therefore partially replaces
the system function SFC 6 RD_SINFO. Bytes
20 to 27 contain administration information,
e.g. from which component the interrupt has
been triggered.

The target area AINFO (alarm information)
contains the header information in bytes 0 to 3
(e.g. number of received bytes of additional
interrupt information or interrupt type) and in
bytes 4 to 223 the component-specific addi-
tional interrupt information itself.

The assignment of the MODE parameter deter-
mines the operating mode of SFB 54 RALRM.
With MODE = 0, the SFB shows you the com-
ponent triggering of the interrupt in the ID
parameter; NEW is occupied by TRUE. With
MODE = 1, all output parameters are written.
With MODE = 2, you can check whether the

Table 21.14 Parameters of the System Function Block SFB 54 RALRM

Parameter Declaration Data type Assignment, description

MODE INPUT INT Mode: 0 = Shows the component triggering the interrupt
1 = Describes all output parameters
2 = Checks whether the selected component triggered

the interrupt

F_ID INPUT DWORD Module starting address of the components to be queried

MLEN INPUT INT Maximum number of bytes of the additional interrupt information to
be requested

NEW INPUT BOOL TRUE = A new interrupt was received

STATUS OUTPUT DWORD Error ID

ID OUTPUT DWORD Module starting address of interrupt-triggering component

LEN OUTPUT INT Number of bytes of additional interrupt information received

TINFO IN_OUT ANY Destination area for OB start and management information

AINFO IN_OUT ANY Destination area for header information and additional interrupt in-
formation

21 Interrupt Handling

392

component specified by the F_ID parameter
triggered the interrupt. If this is the case, the
NEW parameter is TRUE, and all other output
parameters are written.

In order to work correctly, the SFB 54 RALRM
requires separate instance data for each call in
the various organization blocks, e.g. a separate
instance data block in each case.

Table 21.15 Assignment of Parameters TINFO and AINFO

Interrupt Type OB No. TINFO AIFO

OB start
information

Administration
information

Header
information

Additional
interrupt
information

Bytes 0 to 19 Bytes 20 to 27 Bytes 0 to 3 1) Bytes 4 to 223 2)

Central process interrupt 40 to 47 yes yes yes no

Decentral process interrupt 40 to 47 yes yes yes As delivered
by the station

Status interrupt 55 yes yes yes yes

Update interrupt 56 yes yes yes yes

Vendor interrupt 57 yes yes yes yes

I/O redundancy error 70 yes yes no no

Central diagnostics interrupt 82 yes yes yes Diagnostics
data record 1

Decentral diagnostics
interrupt

82 yes yes yes As delivered
by DP slave

Central hot swapping
interrupt

83 yes yes yes no

Decentral hot swapping
interrupt

83 yes yes yes As delivered
by DP slave

Rack, station failure 86 yes yes no no

All other events yes no no no

with PROFINET IO:
1) 0 to 25
2) 26 to 1431

22 Restart Characteristics

393

22 Restart Characteristics

22.1 General Remarks

22.1.1 Operating Modes

Before the CPU begins processing the main
program following power-up, it executes a
restart routine. START-UP is one of the CPU's
operating modes, as is STOP or RUN. This
chapter describes the CPU's activities on a tran-
sition from and to START-UP and in the restart
routine itself.

Following power-up a, the CPU is in the
STOP mode (Figure 22.1). If the keyswitch on
the CPU's front panel is at RUN or RUN-P, the
CPU switches to START-UP mode s, then to
RUN mode d. If an “unrecoverable” error
occurs while the CPU is in START-UP or RUN
mode or if you position the keyswitch to STOP,
the CPU returns to the STOP mode f g.

The user program is tested with breakpoints in
single-step operation in the HOLD mode. You
can switch to this mode from both RUN and
START-UP, and return to the original mode
when you abort the test h j. You can also set
the CPU to the STOP mode from the HOLD
mode k.

When you parameterize the CPU, you can
define restart characteristics with the “Restart”
tab such as the maximum permissible amount
of time for the Ready signals from the modules
following power-up or whether the CPU is to
start up when the configuration data do not
coincide with the actual configuration or in
what mode the CPU restart is to be in.

SIMATIC S7 has three restart modes, namely
cold restart, warm restart and hot restart. On a
cold restart or warm restart, the main program
is always processed from the beginning. A hot
restart resumes the main program at the point of
interruption, and “finishes” the cycle.

S7 CPUs supplied before 10/98 have warm
restart and hot restart. The warm restart corre-
sponds in functionality to the hot restart.

You can scan a program on a single-shot basis
in START-UP mode. STEP 7 provides organi-
zation blocks OB 102 (cold restart), OB 100
(warm restart) and OB 101 (hot restart)
expressly for this purpose. Sample applications
are the parameterization of modules unless this
was already taken care of by the CPU, and the
programming of defaults for your main pro-
gram.

Figure 22.1 CPU Operating Modes

22 Restart Characteristics

394

22.1.2 HOLD Mode

The CPU changes to the HOLD mode when
you test the program with breakpoints (in “sin-
gle-step mode”). The STOP LED then lights up
and the RUN LED blinks.

In HOLD mode, the output modules are dis-
abled. Writing to the modules affects the mod-
ule memory, but does not switch the signal
states “out” to the module outputs. The mod-
ules are not reenabled until you exit the HOLD
mode.

In HOLD mode, everything having to do with
timing is discontinued. This includes, for exam-
ple, the processing of timers, clock memory and
run-time meters, cycle time monitoring and
minimum scan cycle time, and the servicing of
time-of-day and time-delay interrupts. Excep-
tion: the real-time clock continues to function
normally.

Every time the progression is made to the next
statement in test mode, the timers for the dura-
tion of the single step run a little further, thus
simulating a dynamic behavior similar to “nor-
mal” program scanning.

In HOLD mode, the CPU is capable of passive
communication, that is, it can receive global
data or take part in the unilateral exchange of
data.

If the power fails while the CPU is in HOLD
mode, battery-backed CPUs go to STOP on
power recovery. CPUs without backup batteries
execute an automatic warm restart.

22.1.3 Disabling the Output Modules

In the STOP and HOLD modes, modules are
disabled (output disable, OD signal). Disabled
output modules output a zero signal or, if they
have the capability, the replacement value. Via
a variable table, you can control outputs on the
modules with the “Enable Peripheral Outputs”
function, even in STOP mode.

During restart, the output modules remain dis-
abled. Only when the cyclic scan begins are the
output modules enabled.

On a cold restart (OB 102) and warm restart
(OB 100), the process images and the module
memory are cleared. If you want to scan inputs

in OB 102 or in OB 100, you must load the sig-
nal states from the module using direct access.
You can then set the inputs (transfer them, for
instance, with load statements or with the
MOVE box from address area PI to address
area I), then work with the inputs.

On a hot restart, the “old” process-image input
and process-image output tables, which were
valid prior to power-down or STOP, are used in
OB 101 and in the remainder of the cycle. At
the end of that cycle, the process-image output
table is transferred to module memory (but not
yet switched through to the external outputs,
since the output modules are still disabled).

You now have the option of parameterizing the
CPU to clear the process-image output table
and the module memory at the end of the hot
restart. Before switching to OB 1, the CPU
revokes the Disable signal so that the signal
states in the module memory are applied to the
external outputs.

22.1.4 Restart Organization Blocks

On a cold restart, the CPU calls organization
block OB 102; on a warm restart, it calls orga-
nization block OB 100. In the absence of OB
100 or OB 102, the CPU begins cyclic program
execution immediately.

On a hot restart, the CPU calls organization
block OB 101 on a single-shot basis before pro-
cessing the main program. If there is no OB
101, the CPU begins scanning at the point of
interruption.

The start information in the temporary local
data has the same format for the restart organi-
zation blocks; Table 22.1 shows the start infor-
mation for OB 100. The reason for the restart is
shown in the restart request (Byte 1):

B#16#81 Manual warm restart (OB 100)

B#16#82 Automatic warm restart (OB 100)

B#16#83 Manual hot restart (OB 101)

B#16#84 Automatic hot restart
(OB 101)

B#16#85 Manual cold restart (OB 102)

B#16#86 Automatic cold restart (OB 102)

22.2 Power-Up

395

The number of the stop event and the additional
information define the restart more precisely
(tells you, for example, whether a manual warm
restart was initiated via the mode selector).
With this information, you can develop an
appropriate event-related restart routine.

Note that no asynchronous system blocks can be
executed in the startup program of an S7-300
CPU. You can set and reset outputs in the process
image in the startup program, but transmission to
the output modules only takes place when trans-
ferring to RUN mode.

22.2 Power-Up

22.2.1 STOP Mode

The CPU goes to STOP in the following
instances

b When the CPU is switched on

b When the mode selector is set from RUN to
STOP

b When an “unrecoverable” error occurs dur-
ing program scanning

b When system function SFC 46 STP is exe-
cuted

b When requested by a communication func-
tion (stop request from the programming
device or via communication function
blocks from another CPU)

The CPU enters the reason for the STOP in the
diagnostic buffer. In this mode, you can also
read the CPU information with a programming
device in order to localize the problem.

In STOP mode, the user program is not
scanned. The CPU retrieves the settings – either
the values which you entered in the Hardware
Configuration data when you parameterized the
CPU or the defaults – and sets the modules to
the specified initial state.

In STOP mode, the CPU can receive global
data via GD communication and carry out pas-
sive unilateral communication functions. The
real-time clock keeps running.

You can parameterize the CPU in STOP mode,
for instance you can also set the MPI address,
transfer or modify the user program, and exe-
cute a CPU memory reset.

22.2.2 Memory Reset

A memory reset sets the CPU to the “initial
state”. You can initiate a memory reset with a
programming device only in STOP mode or with
the mode selector: hold the switch in the MRES
MRES position for at least 3 seconds then
release, and after a maximum of 3 seconds hold
it the MRES position again for at least 3 seconds.

The CPU erases the entire user program both in
work memory and in RAM load memory. Sys-
tem memory (for instance bit memory, timers
and counters) is also erased, regardless of reten-
tivity settings. With a micro memory card, the
contents of the load memory are retained fol-
lowing an overall reset.

Tabelle 22.1 Start Information for the Restart OBs (example of OB 100)

Byte Variable Name Data Type Description Contents

0 OB100_EV_CLASS BYTE Event class B#16#13

1 OB100_STRTUP BYTE Restart request B#16#8x (see text)

2 OB100_PRIORITY BYTE Priority class Default value 27

3 OB100_OB_NUMBR BYTE OB number 100, 101 or 102

4 OB100_RESERVED_1 BYTE Spare -

5 OB100_RESERVED_2 BYTE Spare -

6..7 OB100_STOP WORD Number of the stop event (see Instruction Manual)

8..11 OB100_STRT_INFO DWORD Additional information on the
current restart

(see Instruction Manual)

12..19 OB100_DATE_TIME DT Occurrence of event Call time of OB

22 Restart Characteristics

396

The CPU sets the parameters for all modules,
including its own, to their default values. The
MPI parameters are an exception. They are not
changed so that a CPU whose memory has been
reset can still be addressed on the MPI bus. A
memory reset also does not affect the diagnos-
tic buffer, the real-time clock, or the run-time
meters.

If a micro memory card or a memory card with
Flash EPROM is inserted, the CPU copies the
user program from the memory card to work
memory. The CPU also copies any configura-
tion data it finds on the memory card.

22.2.3 Restoration of Delivery State

In the case of newer CPUs, you can restore the
factory settings with "Reset to factory settings".
Proceed as follows:

b Switch the power supply off, and remove
the memory card or micro memory card.

b Hold the mode selector in the MRES posi-
tion, and switch the power supply on again.

b When the SF (S7-300) or INTF (S7-400),
FRCE, RUN and STOP LEDs flash slowly,
release the mode selector, return it to MRES
again within 3 s, and hold in this position.

b Wait until only the SF or INTF LED flashes.
During this time (approx. 5 s), you can abort
the reset process by releasing the mode
selector.

b When the SF or INTF LED lights up contin-
uously, release the mode selector.

The CPU starts up without backup, and all
LEDs light up. It carries out an overall reset and
subsequently sets the MPI address to 2 and the
MPI baud rate to 187.5 Kbit/s. In addition to the
overall reset, the real-time clock is set to the
starting date, and the runtime meter and the di-
agnostics buffer are deleted. The CPU then en-
ters the event “Reset to factory settings” into
the diagnostics buffer, and enters the STOP
state.

22.2.4 Retentivity

A memory area is retentive when its contents
are retained even when the mains power is
switched off as well as on a transition from

STOP to RUN following power-up. With the
current S7-300 CPUs, the retentivity is
achieved using a micro memory card. With the
S7-400 CPUs, a battery backup is a prerequisite
for retentivity.

Retentive memory areas may be those for bit
memories, timers, counters and also data areas.
The number of data in which areas can be made
retentive depends on the CPU. You can specify
the number of retentive memory bytes, timers
and counters via the “Retentivity” tab when you
parameterize the CPU.

The contents of data blocks in the work mem-
ory can also be retentive. The retentive area
available is specific to the CPU. You define the
retentivity of a data block using the block prop-
erty Non-Retain (see Chapter 3.2.3 “Block
Properties”).

In the case of the S7-300 with micro memory
card, the bit memories, timers and counters set
as retentive as well as the user program and user
data are saved on the micro memory card where
they are retentive even without a battery
backup. When a warm restart is carried out, the
non-retentive bit memories, timers and coun-
ters are deleted. The contents of the data blocks
declared as “non-retentive” are initialized dur-
ing a warm restart (loaded with the initial val-
ues from the load memory) or set to zero if a
load memory object is not present.

With S7-400, a battery backup is required for
retentivity. A cold restart deletes all address
areas, and loads the user program and the (con-
figured) user data from the load memory into
the work memory. With a hot restart or warm
restart, the values of the bit memories, timers
and counters set as retentive are retained; the
user program and the user data are not changed.

22.2.5 Restart Parameterization

On the “Startup” tab of the CPUs, you can
affect a restart with the following settings:

b Restart when the set configuration is not
the same as the actual configuration
A restart is executed even if the parameter-
ized hardware configuration does not agree
with the actual configuration. Exception:

22.3 Types of Restart

397

the configured PROFIBUS DP interface
modules must always be present and ready
for operation.

b Reset outputs with hot restart
The S7-400 CPUs delete all process output
images and all peripheral outputs with a hot
restart.

b Disable hot restart at manual restart
Manual hot restart not permissible through
manual operation or communications
request.

b Restart following POWER UP
Definition of the type of restart following
power up

b Monitoring time for ready signal of the
modules
If the monitoring time for a module is
exceeded, it is considered as non-existent.
The CPU response is then determined by the
setting “Startup with preset configuration
not equal to actual configuration”. The
result is entered in the diagnostics buffer.
This timeout is important for switching on
the power on expansion racks or distributed
I/Os.

b Monitoring time for transferring the param-
eters to the modules
When the monitoring time has elapsed, it is
considered as non-existent. The CPU
response is then determined by the setting
“Startup with preset configuration not equal
to actual configuration”. The event is
entered in the diagnostics buffer. (In the
event of this error, you can only parameter-
ize the CPU with a higher monitoring time –
without memory reset – if you transfer the
system data of an “empty” project in which
the new value of the monitoring time is
entered, so that the module parameterization
is completed within the “old” monitoring
time.)

b Monitoring time for hot restart
If the time between power off and power on
or the time between STOP and RUN is
greater than the monitoring time, no restart is
carried out. The specification 0 ms switches
the monitor off.

22.3 Types of Restart

22.3.1 START-UP Mode

The CPU executes a restart in the following
cases

b When the mains power is switched on

b When switching on with the mode selector
(key switch: rotate the mode selector from
STOP to RUN or RUN-P, or set the toggle
switch from STOP to RUN)

b On the request from a communication func-
tion (initiated from a programming device
or via communication function blocks from
another CPU)

A manual restart is initiated via the keyswitch
or a communication function, an automatic
restart by switching on the mains power.

The restart routine may be as long as required,
and there is no time limit on its execution; the
scan cycle monitor is not active.

During the execution of the restart routine, no
interrupts will be serviced. Exceptions are
errors that are handled as in RUN (call of the
relevant error organization blocks).

In the restart routine, the CPU updates the tim-
ers, the run-time meters and the real-time clock.

During restart, the output modules are disabled,
i.e., output signals cannot be transmitted. The
output disable is only revoked at the end of the
restart and prior to starting the cyclic program.

A restart routine can be aborted, for instance
when the mode selector is actuated or when
there is a power failure. The aborted restart rou-
tine is then executed from the beginning when
the power is switched on. If a cold or warm
restart is aborted, it must be executed again. If
a hot restart is aborted, all restart types are pos-
sible.

Figure 22.2 shows the activities carried out by
the S7-400 CPU during a restart.

22.3.2 Cold Restart

On a cold restart, the CPU sets both itself and the
modules to the programmed initial state, deletes
all data in the system memory (including the

22 Restart Characteristics

398

Figure 22.2 CPU Activities During Restart (S7-400)

22.3 Types of Restart

399

retentive data), calls OB 102, and then executes
the main program in OB 1 from the beginning.

The current program and the current data in work
memory are deleted and with them also the data
blocks generated by a system function; the pro-
gram from load memory is reloaded. (In contrast
to memory reset, a RAM load memory is not
deleted.)

Manual cold restart

With newer CPUs, a cold restart can no longer
be triggered manually using the mode selector.
With older CPUs, a manual cold restart is trig-
gered using the mode selector if the switch was
held in the MRES position for at least 3 seconds
on the transition from STOP to RUN or RUN-P.

A manual cold restart can also be triggered by a
communication function from a PG or with a
system function block (SFB) from another
CPU. The mode selector must be in the RUN or
RUN-P position.

A manual cold restart can always be initiated
unless the CPU requests a memory reset.

Automatic cold restart

An automatic cold restart is initiated by switch-
ing on the mains power. The cold restart is exe-
cuted if

b the CPU was not at STOP when the power
was switched off

b the mode selector is at RUN or RUN-P

b the CPU was interrupted by a power outage
while executing a cold restart

b “Cold restart” is parameterized as “Restart
on POWER UP”

When operated without a backup battery, the
CPU executes an automatic non-retentive
warm restart. The CPU starts the memory reset
automatically, then copies the user program
from the memory card to work memory. The
memory card must be a Flash EPROM.

22.3.3 Warm Restart

On a warm restart, the CPU sets both itself and
the modules to the programmed initial state,

erases the non-retentive data in the system
memory, calls OB 100, and then executes the
main program in OB 1 from the beginning.

The current program and the data set as reten-
tive in work memory are retained, as are the da-
ta blocks created by SFC.

Manual warm restart

A manual warm restart is initiated in the fol-
lowing instances

b Via the mode selector on the CPU on a tran-
sition from STOP to RUN or RUN-P (on
S7-400 CPUs with restart type switch, this
is in the CRST position)

b Via a communication function from a PG or
with a system function block (SFB) from
another CPU; the mode selector must be in
the RUN or RUN-P position.

A manual warm restart can always be initiated
unless the CPU requests a memory reset.

Automatic warm restart

An automatic warm restart is initiated by
switching on the mains power. The restart is
executed if

b the CPU was not at STOP when the power
was switched off

b the mode selector is at RUN or RUN-P

b the CPU was interrupted by a power outage
while executing a warm restart

b “Warm restart” is parameterized as “Restart
on POWER UP”

If there is a restart type switch, it remains with-
out effect in the case of automatic warm restart.

If the CPU contains a micro memory card, it
responds exactly like a CPU with backup bat-
tery. When operated without a micro memory
card and without a backup battery, the CPU
executes an automatic non-retentive warm
restart. The CPU starts the memory reset auto-
matically, then copies the user program from
the memory card to work memory. The mem-
ory card must be a flash EPROM.

22 Restart Characteristics

400

22.3.4 Hot Restart

A hot restart is possible only on an S7-400.

On a STOP or power outage, the CPU saves all
interrupts as well as the internal CPU registers
that are important to the processing of the user
program. On a hot restart, it can therefore
resume at the location in the program at which
the interruption occurred. This may be the main
program, or it may be an interrupt or error han-
dling routine. All (“old”) interrupts are saved
and will be serviced.

The so-called “residual cycle”, which extends
from the point at which the CPU resumes the
program following a hot restart to the end of the
main program, counts as part of the restart. No
(new) interrupts are serviced. The output mod-
ules are disabled, and are in their initial state.

A hot restart is permitted only when there have
been no changes in the user program while the
CPU was at STOP, such as modification of a
block.

By parameterizing the CPU accordingly, you
can specify how long the interruption may be
for the CPU to still be able to execute a hot
restart (from 100 milliseconds to 1 hour). If the
interruption is longer, only a cold or warm
restart is allowed. The length of the interruption
is the amount of time between exiting of the
RUN mode (STOP or power-down) and reentry
into the RUN mode (following execution of OB
101 and the residual cycle).

Manual hot restart

A manual hot restart is initiated

b If the mode selector was at RUN or RUN-P
when the CPU was switched on By moving
the mode selector from STOP to RUN or
RUN-P when the restart switch is at WRST
(only on CPUs with restart type switch)

b Via a communication function from a PG or
with a system function block (SFB) from
another CPU; the mode selector must be at
RUN or RUN-P.

A manual hot restart is possible only when the
hot restart disable was revoked in the “Restart”
tab when the CPU was parameterized. The

cause of the STOP must have been a manual
activity, either via the mode selector or through
a communication function; only then can a
manual hot restart be executed while the CPU is
at STOP.

Automatic hot restart

An automatic hot restart is initiated by switch-
ing on the mains power. The CPU executes an
automatic hot restart only in the following
instances,

b If it was not at STOP when switched off

b If the mode selector was at RUN or RUN-P
when the CPU was switched on

b “Hot restart” is parameterized as “Restart
following POWER UP”

b If the backup battery is inserted and in
working order

The position of the restart switch is irrelevant to
an automatic hot restart.

22.4 Ascertaining a Module Address

Signal modules – or to be more exact, the user
data on input/output modules – are addressed in
two manners: you use the logical address in the
user program in order to address the inputs and
outputs. This corresponds to the absolute ad-
dress, and can be made easier to read by using
symbols. The smallest logical address is the
base address or the module starting address.
The CPU addresses the modules using the geo-
graphical address. You need the geographical
address if you wish to ascertain the module slot.
The same applies to the user data on stations of
the distributed I/O.

With the following system blocks you can
ascertain the geographical address from the
logical address and vice versa:

b SFC 70 GEO_LOG
Ascertain the logical base address

b SFC 5 GADR_LGC
Ascertain the logical address of a module
channel

22.4 Ascertaining a Module Address

401

b SFC 50 RD_LGADR
Ascertain all logical addresses of a module

b SFC 71 LOG_GEO
Ascertain the geographical address

b SFC 49 LGC_GADR
Ascertain the slot address of a module

Table 22.2 shows the parameters for these
SFCs.

The SFCs 5 GADR_LGC, 49 LGC_GADR and
50 RD_LGADR have IOID and LADDR as
common parameters for the logical address (=
address in the I/O area). IOID is either
B#16#54, which stands for the peripheral in-
puts (PIs) or B#16#55, which stands for the pe-
ripheral outputs (PQs). LADDR contains an I/
O address in the PI or PQ area which corre-
sponds to the specified channel. If the channel
is 0, it is the module starting address.

With the SFCs 70 GEO_LOG and 71 LOG_
GEO, the logical address is only in the LADDR
parameter. Bit 15 is used to distinguish whether
the address is assigned to an input (= 0) or an
output (= 1).

The hardware configuration data must specify
an allocation between logical address (module
starting address) and slot address (location of
the module in a rack or a station for distributed
I/O) for the addresses ascertained with these
system blocks.

SFC 70 LOG_GEO
Ascertain the logical base address

System function SFC 70 LOG_GEO returns the
logical base address of a module or station. The
value of the MASTER parameter indicates
whether the station or module is inserted in a
rack (central design) or whether the station is
operated in a PROFIBUS or PROFINET sys-
tem. Specify the slot number in the rack or sta-
tion in the SLOT parameter, and the number of
the submodule in the SUBSLOT parameter.
The LADDR parameter then delivers the base
address of the submodule. SUBSLOT = 0 de-
livers the diagnostics address of the module or
station.

SFC 70 GEO_LOG replaces the SFC 5 GADR_
LGC, and can also be used in association with
PROFINET IO.

SFC 5 GADR_LGC
Ascertain the logical address of a module
channel

System function SFC 5 GADR_LGC returns
the logical address of a channel when you spec-
ify the slot address (“geographical” address).
Enter the DP master system ID in the SUB-
NETID parameter if the module belongs to the
distributed I/O or B#16#00 if the module is
plugged into a controller rack or expansion
rack. The RACK parameter specifies the num-
ber of the rack or, in the case of distributed I/O,
the number of the station. If the module has no
submodule slot, enter B#16#00 in the SUB-
SLOT parameter. SUBADDR contains the ad-
dress offset in the module's user data
(W#16#0000, for example, stands for the mod-
ule starting address)

SFC 71 GEO_ LOG
Ascertain the geographical address

SFC 71 GEO_LOG returns the geographical
address of a module or station when you speci-
fy the logical base address for it. The value of
the AREA parameter indicates the system in
which the module is used (Table 22.3).

SFC 71 GEO_LOG replaces the SFC 49 LGC_
GADR and can also be used in association with
PROFINET IO.

SFC 49 LGC_GADR
Ascertain the slot address of a module

SFC 49 LGC_GADR returns the slot address of
a module when you specify an arbitrary logical
module address. Subtracting the address offset
(parameter SUBADDR) from the specified us-
er data address gives you the module starting
address. The value in the AREA parameter
specifies the system in which the module is op-
erated (Table 22.3).

SFC 50 RD_LGADR
Ascertain all logical addresses for a module

SFC 50 RD_LGADR returns all logical
addresses for a module when you specify an
arbitrary address from the user data area.

Use the PEADDR and PAADDR parameters to
define an area of WORD components (a word-
based ANY pointer, for example
P#DBzDBXy.x WORD nnn).

22 Restart Characteristics

402

Table 22.2 Parameters of the System Blocks Used to Ascertain the Module Address

SFC Parameter Declaration Data Type Contents, Description

5 SUBNETID INPUT BYTE Area identifier

RACK INPUT WORD Number of the rack

SLOT INPUT WORD Number of the slot

SUBSLOT INPUT BYTE Number of the submodule

SUBADDR INPUT WORD Offset in the module’s user data address area

RET_VAL RETURN INT Error information

IOID OUTPUT BYTE Area identifier

LADDR OUTPUT WORD Logical address of the channel

50 IOID INPUT BYTE Area identifier

LADDR INPUT WORD A logical module address

RET_VAL RETURN INT Error information

PEADDR OUTPUT ANY WORD field for the PI addresses

PECOUNT OUTPUT INT Number of PI addresses returned

PAADDR OUTPUT ANY WORD field for the PQ addresses

PACOUNT OUTPUT INT Number of PQ addresses returned

49 IOID INPUT BYTE Area identifier

LADDR INPUT WORD A logical module address

RET_VAL RETURN INT Error information

AREA OUTPUT BYTE Area identifier

RACK OUTPUT WORD Number of the rack

SLOT OUTPUT WORD Number of the slot

SUBADDR OUTPUT WORD Offset in the module’s user data address area

70 MASTER INPUT INT Master system ID
0 = central I/O
1 to 31 = PROFIBUS DP
100 to 115 = PROFINET IO

STATION INPUT INT Station number, with central I/O: number of the
rack

SLOT INPUT INT Number of the slot

SUBSLOT INPUT INT Number of the submodule

RET_VAL RETURN INT Error information

LADDR OUTPUT WORD Base address of station or module

71 LADDR INPUT WORD Base address of station or module

RET_VAL RETURN INT Error information

AREA OUTPUT INT Area identifier (see Table 22.3)

MASTER OUTPUT INT Master system ID
0 = central I/O
1 to 31 = PROFIBUS DP
100 to 115 = PROFINET IO

STATION OUTPUT INT Station number, with central I/O: number of the
rack

SLOT OUTPUT INT Number of the slot

SUBSLOT OUTPUT INT Number of the submodule

OFFSET OUTPUT INT Offset in the module’s/submodule’s address area

22.5 Parameterizing Modules

403

SFC 50 then shows the number of entries
returned in these areas in the PECOUNT and
PACOUNT parameters.

22.5 Parameterizing Modules

22.5.1 General Remarks on
Parameterizing Modules

Most S7 modules can be parameterized, that is
to say, values may be set on the module which
deviate from the default. To specify parameters,
open the module in the Hardware Configura-
tion and fill in the tabs in the dialog box. When
you transfer the System Data object in the
Blocks container to the PLC, you are also trans-
ferring the module parameters.

The CPU transfers the module parameters to
the module automatically in the following cases

b On restart

b When a module has been plugged into a
configured slot (S7-400)

b Following the “return” of a rack or a distrib-
uted I/O station.

Static and dynamic module parameters

The module parameters are divided into static
parameters and dynamic parameters. You can
set both parameter types offline in the Hard-
ware Configuration. You can also modify the
dynamic parameters at runtime by calling a sys-
tem block. In the restart routine, the parameters
set on the modules using the system blocks are
overwritten by the parameters set (and stored
on the CPU) via the Hardware Configuration).

The parameters for the signal modules are in two
data records: the static parameters in data record
0 and the dynamic parameters in data record 1.
You can transfer both data records to the module
with system function SFC 57 PARM_MOD,
data record 0 or 1 with system function SFC 56
WR_DPARM, and only data record 1 with sys-
tem function SFC 55 WR_PARM. The data
records must be in the system data blocks on the
CPU.

Table 22.3 Description of the Output Parameters of SFCs 49 LGC_GADR and 71 LOG_GEO

AREA System Meaning of output parameters with SFC
49 LGC_GADR

Meaning of output parameters with SFC
71 LOG_GEO

0 S7-400 RACK = rack number
SLOT = slot number
SUBADDR = address offset from base
address

MASTER = 0
STATION = rack number
SLOT = slot number
SUBSLOT = 0
OFFSET = address offset from base address

1 S7-300

2 Distributed
I/O

RACK
Low Byte = station number
High Byte = DP master system ID

SLOT = slot number
SUBADDR = address offset from base
address

With PROFIBUS DP:

MASTER = DP master system ID
STATION = station number
SLOT = slot number
SUBSLOT = 0
OFFSET = address offset from base address

With PROFINET IO:

MASTER = PROFINET IO system ID
STATION = station number
SLOT = slot number
SUBSLOT = submodule number
OFFSET = address offset from base address

3 S5 P area RACK = rack number
SLOT = slot number of adapter casing
SUBADDR = address in the S5 area

MASTER = 0
STATION = rack number
SLOT = slot number of adapter casing
SUBSLOT = 0
OFFSET = address in the S5 area

4 S5 Q area

5 S5 IM3 area

6 S5 IM4 area

22 Restart Characteristics

404

After parameterization of an S7-400 module,
the specified values do not go into force until
bit 2 (“Operating mode”) in byte 2 of the diag-
nostic data record has assumed the value
“RUN”. The diagnostics data record can be
read with system function SFC 59 RD_REC or
system function block SFB 52 RDREC.

Asynchronous processing of system blocks

Apart from the system function SFC 54 RD_
DPARM, the system blocks for module param-
eterization and data record transfer work asyn-
chronously. Execution of the function extends
over several calls, and is triggered by the block
parameter REQ = “1”. During processing of the
job, the BUSY parameter has a signal status “1”
and the error information the value W#16#7001
(job being processed). The error information
for the system functions is in the RET_VAL pa-
rameter, and for the system function blocks in
bytes 2 and 3 of the STATUS parameter.

A specific job for a module is specified by the
module starting address and the data record
number. As long as BUSY = “1”, a new call for
the same job with REQ = “1” has no effect; the
error information is set to W#16#7002.

If an error occurs when triggering a job, this is
signaled by the error information, and BUSY
remains “0”.

If the job has been completed, BUSY has the
signal status “0”. If the termination is faulty, the
error information has the value W#16#0000;
with the system function SFC 59 RD_REC, the
number of transferred bytes is present in RET_
VAL. In the event of an error, the error informa-
tion contains the error code.

Module and data record addressing

As far as addressing for data transfer is con-
cerned, use the module starting address. With
mixed modules having input and output areas,
use the lower area starting address. If the input
and output areas have the same starting address,
use the identifier for an input address. Use the I/
O identifier regardless of whether you want to
execute a Read or a Write operation.

The module starting address is parameterized
either using the IOID and LADDR parameters
or – with newer system blocks – using the
LADDR parameter on its own. In this case, bit

15 then defines whether it is an input (“0”) or
output (“1”). (With the system function blocks
SFB 52 RDREC and SFB 53 WRREC, this is
the ID parameter.)

Specify the data record number using the REC-
NUM or INDEX parameter.

Use the RECORD parameter with the data type
ANY to define an area of BYTE components.
This may be a variable of type ARRAY,
STRUCT or UDT, or an ANY pointer of type
BYTE (for example P#DBzDBXy.x BYTE
nnn). If you use a variable, it must be a “com-
plete” variable; individual array or structure
components are not permissible.

Permissible data record numbers

Data records with the numbers 1 to 240 are per-
missible for the system functions for module
parameterization. With the system blocks SFC
54 RD_DPARM, SFC 56 WR_DPARM and
SFB 81 RD_DPAR, the specified data records
must be present in the system data.

The system function SFC 58 WR_REC can
process data records in the range from 2 to 240,
the SFC 59 RD_REC in the range from 0 to
240. The system function blocks SFB 52
RDREC and SFB 53 WRREC transfer data
records with the numbers 0 to 255.

The data records 0 and 1 have a special signifi-
cance with SIMATIC S7:

b Data record 0: read diagnostics data
(4 bytes) and write static module parameters

b Data record 1: read diagnostics data (data
record 0 and further data) and write
dynamic module parameters

A data record can be up to 240 bytes long.

Module parameterization with
PROFINET IO

Connection of distributed I/O over PROFINET
IO requires an extended quantity framework for
the module parameterization compared to
PROFIBUS DP, and there are new system
blocks for this. These new system blocks can
replace the previous ones. Figure 22.3 provides
an overview of the system blocks for module
parameterization.

22.5 Parameterizing Modules

405

22.5.2 System Blocks for Module
Parameterization

The following system blocks are available for
parameterizing modules:

b SFB 81 RD_DPAR
Read predefined parameters

b SFC 54 RD_DPARM
Read predefined parameters

b SFC 55 WR_PARM
Write dynamic parameters

b SFC 56 WR_DPARM
Write predefined parameters

b SFC 57 PARM_MOD
Parameterize module

b SFC 102 RD_DPARA
Read predefined parameters

The parameters for these system functions are
listed in Table 22.4.

SFB 81 RD_DPAR
Reading predefined parameters

System function block SFB 81 RD_DPAR
transfers the data record with the number spec-
ified in the INDEX parameter from the corre-
sponding SDB system data block to the target
area specified in the RECORD parameter.

The transfer is asynchronous and can be distrib-
uted over several programs cycles; the BUSY
parameter has a signal status “1” during the
transfer. Following successful transfer, the
VALID parameter has a signal status “1”, and

the number of data bytes transferred is present
in the LEN parameter.

The read data record can then be e.g. evaluated
or modified and written to the module with SFB
53 WRREC.

The SFB 81 RD_DPAR replaces the SFC 102
RD_DPARA and the SFC 54 RD_PARM.

SFC 102 RD_DPARA
Reading predefined parameters

System function SFC 102 RD_DPARA trans-
fers the data record with the number specified
in the RECNUM parameter from the relevant
SDB system data block to the target area speci-
fied in the RECORD parameter.

The transmission is carried out asynchronously
and may be distributed over several program
cycles; the BUSY parameter is “1” during the
transfer.

The SFC 102 replaces the synchronous SFC 54
RD_DPARM.

SFC 54 RD_DPARM
Reading predefined parameters

System function SFC 54 RD_DPARM transfers
the data record with the number specified in the
RECNUM parameter from the corresponding
SDB system data block to the target area speci-
fied in the RECORD parameter.

The transfer is synchronous; the system func-
tion is executed until the data record has been

Figure 22.3 System Blocks for Module Parameterization

22 Restart Characteristics

406

transferred. Since the load memory is read, the
relatively long processing time with compre-
hensive data records may be disturbing,
depending on the application. In this case, use
the SFB 81 RD_DPAR or SFC 102 RD_
DPARA which execute this function asynchro-
nously.

The read data record can then be e.g. evaluated
or modified and written to the module with SFB
53 WRREC or SFC 58 WR_REC.

SFC 55 WR_PARM
Writing dynamic parameters

System function SFC 55 WR_PARM transfers
the data record addressed by RECORD to the
module specified by the IOID and LADDR
parameters. Specify the number of the data
record in the RECNUM parameter. The data

record must only contain the dynamic module
parameters, and must not be data record 0. If the
module parameters are present in the associated
system data block SDB, they must not be iden-
tified as static.

When the job is initiated, the SFC reads the en-
tire data record; the transfer may be distributed
over several program scan cycles. The BUSY
parameter is “1” during the transfer.

SFC 56 WR_DPARM
Writing predefined parameters

System function SFC 56 WR_DPARM trans-
fers the data record with the number specified
in the RECNUM parameter from the relevant
SDB system data block to the module identified
by the IOID and LADDR parameters.

Table 22.4 Parameters of the System Blocks for Module Parameterization

Present in SFC Parameter Declaration Data Type Contents, Description

- 55 56 57 REQ INPUT BOOL “1” = Write request

54 55 56 57 IOID INPUT BYTE B#16#54 = Peripheral inputs (PIs)
B#16#55 = Peripheral outputs (PQ)

54 55 56 57 LADDR INPUT WORD Module starting address

54 55 56 - RECNUM INPUT BYTE Data record number

- 55 - - RECORD INPUT ANY Source area for the data record

54 55 56 57 RET_VAL RETURN INT Error information

- 55 56 57 BUSY OUTPUT BOOL Transfer still in progress if “1”

54 - - - RECORD OUTPUT ANY Target area for data record

Present in Parameter Declaration Data Type Contents, Description

SFC 102 SFB 81 REQ INPUT BOOL “1” = Write request

SFC 102 SFB 81 LADDR INPUT WORD Module starting address

SFC 102 - RECNUM INPUT BYTE Data record number

- SFB 81 INDEX INPUT INT Data record number

SFC 102 - RET_VAL RETURN INT Error information

- SFB 81 VALID OUTPUT BOOL New data record received and is valid

SFC 102 SFB 81 BUSY OUTPUT BOOL Transfer still in progress if “1”

- SFB 81 ERROR OUTPUT BOOL Error has occurred if “1”

- SFB 81 STATUS OUTPUT DWORD Call identifier or error information
(bytes 2 and 3)

- SFB 81 LEN OUTPUT INT Length of read data

SFC 102 - RECORD OUTPUT ANY Target area for data record

- SFB 81 RECORD IN_OUT ANY Target area for data record

22.5 Parameterizing Modules

407

The transfer may be distributed over several
program scan cycles; the BUSY parameter is
“1” during the transfer.

SFC 57 PARM_MOD
Parameterizing a module

System function SFC 57 PARM_MOD trans-
fers all the data records programmed when the
module was parameterized via the Hardware
Configuration.

The transfer may be distributed over several
program scan cycles; the BUSY parameter is
“1” during the transfer.

22.5.3 Blocks for Data Record Transfer

The following system blocks are available for
transferring data records:

b SFB 52 RDREC
Read data record

b SFC 59 RD_REC
Read data record

b SFB 53 WRREC
Write data record

b SFC 58 WR_REC
Write data record

The parameters of the listed system functions
are described in Table 22.5, and those of the
system function blocks in Table 22.6.

With a S7-300 CPU, you can process up to four
write jobs and four read jobs simultaneously
per DP line. With an S7-400 CPU, up to eight
write jobs and eight read jobs can be simultane-
ously active per DP line. A maximum total of
32 write jobs and 32 read jobs may be pro-
cessed simultaneously on external DP lines.

SFB 52 RDREC
Reading a data record

When the REQ parameter is “1”, SFB 52
RDREC reads the data record INDEX from the
module and places it in target area RECORD.
The target area must be longer than or at least
as long as the data record. Use the MLEN
parameter to specify how many bytes you wish
to read.

The transfer may be distributed over several
program cycles; the BUSY parameter is “1”
during the transfer.

A “1” at the VALID parameter signals that the
data record has been read without errors. The
LEN parameter then indicates the number of
transferred bytes.

In the event of an error, ERROR is set to “1”.
The STATUS parameter then contains the error
information.

The system function block SFB 52 RDREC
contains the functionality of the system func-
tion SFC 59 RD_REC, and can replace the lat-
ter.

Table 22.5 Parameters for System Functions Used for Data Transfer

Present in Parameter Declaration Data Type Contents, Description

SFC 58 SFC 59 REQ INPUT BOOL “1” = write request

SFC 58 SFC 59 IOID INPUT BYTE B#16#54 = input module
B#16#55 = output module

SFC 58 SFC 59 LADDR INPUT WORD Module starting address

SFC 58 SFC 59 RECNUM INPUT BYTE Data record number

SFC 58 - RECORD INPUT ANY Data record

SFC 58 SFC 59 RET_VAL RETURN INT Error information

SFC 58 SFC 59 BUSY OUTPUT BOOL Transfer still in progress if “1”

- SFC 59 RECORD OUTPUT ANY Data record

22 Restart Characteristics

408

SFC 59 RD_REC
Reading a data record

When the REQ parameter is “1”, SFC 59 RD_
REC reads the data record addressed by the
RECNUM parameter from the module and
places it in target area RECORD. The target
area must be longer than or at least as long as
the data record. If the transfer is completed
without error, the RET_VAL parameter con-
tains the number of bytes transferred.

The transfer may be distributed over several
program scan cycles; the BUSY parameter is
“1” during the transfer.

S7-300s delivered prior to February 1997: the
SFC reads as much data from the specified data
record as the target area can accommodate. The
size of the target area may not exceed that of the
data record.

SFB 53 WRREC
Writing a data record

When the REQ parameter is “1”, SFB 53
WRREC writes the data record INDEX from
the source area RECORD to the module. Use
the LEN parameter to specify how many bytes
you wish to write.

The transfer may be distributed over several
program cycles; the BUSY parameter is “1”
during the transfer.

A “1” at the DONE parameter signals that the
data record has been written without errors. In
the event of an error, ERROR is set to “1”. The
STATUS parameter then contains the error
information.

The system function block SFB 53 WRREC
contains the functionality of the system function
SFC 58 WR_REC, and can replace the latter.

SFC 58 WR_REC
Writing a data record

SFC 58 WR_REC transfers the data record
addressed by the RECORD parameter and the
number RECNUM to the module defined by
the IOID and LADDR parameters. A “1” in the
REQ parameter starts the transfer. When the job
is initiated, the SFC reads the complete data
record.

The transfer may be distributed over several
program cycles; the BUSY parameter is “1”
during the transfer.

Table 22.6 Parameters of the System Function Blocks for Data Record Transfer

Present in Parameter Declaration Data Type Contents, Description

SFB 52 SFB 53 REQ INPUT BOOL With “1”, request to write

SFB 52 SFB 53 ID INPUT DWORD Module starting address
Bit 15 = “0”: input address
Bit 15 = “1”: output address

SFB 52 SFB 53 INDEX INPUT INT Data record number

SFB 52 - MLEN INPUT INT Maximum number of bytes of data record
to be read

- SFB 53 LEN INPUT INT Maximum number of bytes of data record
to be transferred

SFB 52 - VALID OUTPUT BOOL “1” = new data record was received and is
valid

- SFB 53 DONE OUTPUT BOOL Data record was transferred

SFB 52 SFB 53 BUSY OUTPUT BOOL With “1”, transfer still in progress

SFB 52 SFB 53 ERROR OUTPUT BOOL With “1”, an error occurred

SFB 52 SFB 53 STATUS OUTPUT DWORD Status codes

SFB 52 - LEN OUTPUT INT Number of bytes of read data

SFB 52 SFB 53 RECORD OUTPUT ANY Data record

23 Error Handling

409

23 Error Handling

The CPU reports errors or faults detected by the
modules or by the CPU itself in different ways:

b Errors in arithmetic operations (overflow,
invalid REAL number) by setting status bits
(status bit OV, for example, for a numerical
overflow)

b Errors detected while executing the user
program (synchronous errors) by calling
organization blocks OB 121 and OB 122

b Errors in the programmable controller
which do not relate to program scanning
(asynchronous errors) by calling organiza-
tion blocks OB 80 to OB 87

The CPU signals the occurrence of an error or
fault, and in some cases the cause, by setting
error LEDs on the front panel. In the case of
unrecoverable errors (such as invalid OP code),
the CPU goes directly to STOP.

With the CPU in STOP mode, you can use a
programming device and the CPU information
functions to read out the contents of the block
stack (B stack), the interrupt stack (I stack) and
the local data stack (L stack) and then draw
conclusions as to the cause of error.

The system diagnostics can detect errors/faults
on the modules, and enters these errors in a
diagnostic buffer. Information on CPU mode
transitions (such as the reasons for a STOP) are
also placed in the diagnostic buffer.

The contents of this buffer are retained on
STOP, on a memory reset, and on power failure,
and can be read out following power recovery
and execution of a start-up routine using a pro-
gramming device.

On the new CPUs, you can use CPU parameter-
ization to set the number of entries the diagnos-
tics buffer is to hold.

23.1 Synchronous Errors

The CPU's operating system generates a syn-
chronous error when an error occurs in immedi-

ate conjunction with program scanning. A dis-
tinction is made between two error types:

A programming error is the case if program
execution is faulty. Such errors include BCD
conversion errors, errors with indirect address-
ing, addressing of missing timers, counters or
blocks. In the event of a programming error, the
organization block OB 121 is called.

An I/O access error is present if an attempt is
made to access a faulty or non-existent module
or an I/O address not known to the CPU. The
operating system responds differently depend-
ing on the type of access:

b The I/O access is carried out by the user pro-
gram. In this case, the I/O access error orga-
nization block OB 122 is called.

b The I/O access error occurs during auto-
matic updating of a (sub)process image. The
default response is that there is no entry in
the diagnostics buffer and no OB is called in
the case of S7-300 CPUs; S7-400 CPUs
enter each access error into the diagnostics
buffer and start the organization block OB
85. The response to a access error can be
parameterized with newer CPUs (see “Pro-
gram execution errors OB 85” in Chapter
23.3 “Asynchronous Errors”).

b The I/O access error occurs if a partial pro-
cess image is updated by a system function.
In this case, the error and the address of the
first byte signaling the error are returned by
their parameters (system functions SFC 26
UPDAT_PI, SFC 27 UPDAT_PO, SFC 126
SYNC_PI and SFC 127 SYNC_PO).

If the corresponding organization block
OB 121 or OB 122 is not present when a syn-
chronous error occurs, the CPU enters the
STOP status.

Table 23.1 shows the start information for both
synchronous error organization blocks.

23 Error Handling

410

The S7-400 CPUs differentiate between two
types of I/O access errors: access to a non-exis-
tent module, and faulty access to a module
entered as being present (acknowledgment
delay QVZ). If a module fails during operation,
this module is entered as “non-existent” after an
access time of approx. 150 ms, so that the I/O
access error is signaled with each further
access. The CPU also signals access error if a
non-existent module is accessed, either directly
via the I/O area or indirectly via the process
image.

If an I/O access error occurs during a write
access to the I/O outputs, an S7-400 CPU
updates the process output image, an S7-300
CPU does not.

A synchronous error OB has the same priority
(class) as the block in which the error was
caused. The values present in the block causing
the error at the time of the abort are present in

the synchronous error OB in the accumulators
and address registers. The data block registers
are deleted; the condition code word has an
undefined assignment.

Note that when a synchronous error OB is
called, its 20 bytes of start information are also
pushed onto the L stack for the priority class
that caused the error, as are the other temporary
local data for the synchronous error OB and for
all blocks called in this OB. The area reserved
for the temporary local data must be designed
for this in every affected priority class (program
execution level) (fixed definition with S7-300
CPUs, adjustable during parameterization of the
CPU in the “Memory” tab for S7-400 CPUs).

This applies similarly to the block nesting
depth. The nesting depth permissible for a CPU
depending on the priority class is the total of the
nesting depth of the “normal” processing and

Table 23.1 Start Information for the Synchronous Error OBs 121 and 122

Byte Variable Name Data Type Description, Contents

0 OB12x_EV_CLASS BYTE B#16#25 = Call programming error OB 121
B#16#29 = Call access error OB 122

1 OB12x_SW_FLT BYTE Error code (see Chapter 23.2.1 “Error Filters”)

2 OB12x_PRIORITY BYTE Priority class in which the error occurred

3 OB12x_OB_NUMBR BYTE OB number (B#16#79 or B#16#80)

4 OB12x_BLK_TYPE BYTE Type of block interrupted (S7-400 only)
OB: B#16#88, DB: B#16#8A, FB: B#16#8E, FC: B#16#8C

5 OB121_RESERVED_1
OB122_MEM_AREA

BYTE Byte assignments (B#16#xy):

6..7 OB121_FLT_REG

OB122_MEM_ADDR

WORD OB 121: Error source:
b Errored address (at read/write access)
b Errored area (in the case of area error)
b Incorrect number of the block, timer/counter function

OB 122: Address at which the error occurred

8..9 OB12x_BLK_NUM WORD Number of the block in which the error occurred (S7-400
only)

10..11 OB12x_PRG_ADDR WORD Error address in the block that caused the error (S7-400 only)

12..19 OB12x_DATE_TIME DT Time at which programming error was detected

7... (x) ... 4 3 ... (y) ... 0

1 Bit access
2 Byte access
3 Word access
4 Doubleword access

0 I/O area PI or PQ
1 Process-image input table I
2 Process-image output table Q

23.2 Synchronous Error Handling

411

the nesting depth of the synchronous error pro-
cessing.

In the case of S7-400, another synchronous
error OB can be called in an error OB. The
block nesting depth for a synchronous error OB
is 3 for S7-400 CPUs and 4 for S7-300 CPUs.

You can disable and enable a synchronous error
OB call with system functions SFC 36 MSK_
FLT, SFC 37 DMSK_FLT and SFC 38 READ_
ERR.

23.2 Synchronous Error Handling

The following system functions are provided
for handling synchronous errors:

b SFC 36 MSK_FLT
Mask synchronous errors (disable OB call)

b SFC 37 DMSK_FLT
Unmask synchronous error (re-enable OB
call)

b SFC 38 READ_ERR
Read error register

Independent of the use of the system functions
SFC 36 to SFC 38, the operating system enters
the synchronous error event in the diagnostics
buffer. The parameters for these system func-
tions are listed in Table 23.2.

23.2.1 Error Filters

The error filters are used to control the system
functions for synchronous error handling. In the
programming error filter, one bit stands for
each programming error detected; in the access
error filter, one bit stands for each access error
detected. When you define an error filter, you
set the bit that stands for the synchronous error
you want to mask, unmask or query. The error
filters returned by the system functions show a
“1” for synchronous errors that are still masked
or which have occurred.

The access error filter is shown in Table 23.3;
the Error Code column shows the contents of

Table 23.2 SFC Parameters for Synchronous Error Handling

SFC Parameter Declaration Data type Assignment, description

36 PRGFLT_SET_MASK INPUT DWORD New (additional) programming error mask

ACCFLT_SET_MASK INPUT DWORD New (additional) access error mask

RET_VAL RETURN INT W#16#0001 = The new mask overlaps with
the existing mask

PRGFLT_MASKED OUTPUT DWORD Complete programming error mask

ACCFLT_MASKED OUTPUT DWORD Complete access error mask

37 PRGFLT_RESET_MASK INPUT DWORD Programming error mask to be reset

ACCFLT_RESET_MASK INPUT DWORD Access error mask for resetting

RET_VAL RETURN INT W#16#0001 = The new mask contains bits
that are not set (in the saved mask)

PRGFLT_MASKED OUTPUT DWORD Remaining programming error mask

ACCFLT_MASKED OUTPUT DWORD Remaining access error mask

38 PRGFLT_QUERY INPUT DWORD Programming error mask for scanning

ACCFLT_QUERY INPUT DWORD Access error mask for scanning

RET_VAL RETURN INT W#16#0001 = The query mask contains bits
that are not set (in the saved mask)

PRGFLT_CLR OUTPUT DWORD Programming error mask with error
messages

ACCFLT_CLR OUTPUT DWORD Access error mask with error messages

23 Error Handling

412

variable OB122_SW_FLT in the start informa-
tion for OB 122.

The programming error filter is shown in Table
23.4; the Error Code column shows the con-
tents of variable OB121_SW_FLT in the start
information for OB 121.

The error filter bits not listed in the tables are
not relevant to the handling of synchronous
errors.

23.2.2 Masking Synchronous Errors

System function SFC 36 MSK_FLT disables
synchronous error OB calls via the error filters.
A “1” in the error filters indicates the synchro-
nous errors for which the OBs are not to be
called (the synchronous errors are “masked”).
The masking of synchronous errors in the error
filters is in addition to the masking stored in the
operating system's memory. SFC 36 returns a
function value indicating whether a (stored)
masking already exists on at least one bit for the
masking specified at the input parameters
(W#16#0001).

SFC 36 returns a “1” in the output parameters
for all currently masked errors.

If a masked synchronous error event occurs, the
respective OB is not called and the error is
entered in the error register. The Disable
applies to the current priority class (priority
level). For example, if you were to disable a
synchronous error OB call in the main program,
the synchronous error OB would still be called
if the error were to occur in an interrupt service
routine.

23.2.3 Unmasking Synchronous Errors

System function SFC 37 DMSK_FLT enables
the synchronous error OB calls via the error fil-
ters. You enter a “1” in the filters to indicate the
synchronous errors for which the OBs are once
again to be called (the synchronous errors are
“unmasked”). The entries corresponding to the
specified bits are deleted in the error register.
SFC 37 returns W#16#0001 as function value if
no (stored) masking already exists on at least
one bit for the unmasking specified at the input
parameters.

SFC 37 returns a “1” in the output parameters
for all currently masked errors.

If an unmasked synchronous error occurs, the
respective OB is called and the event entered in
the error register. The Enable applies to the cur-
rent priority class (priority level).

23.2.4 Reading the Error tab

System function SFC 38 READ_ERR reads
the error register. You must enter a “1” in the
error filters to indicate the synchronous errors
whose entries you want to read. SFC 38 returns
W#16#0001 as function value when the selec-
tion specified in the input parameters included
at least one bit for which no (stored) masking
exists.

SFC 38 returns a “1” in the output parameters
for the selected errors when these errors
occurred, and deletes these errors in the error
register when they are queried. The synchro-
nous errors that are reported are those in the
current priority class (priority level).

Table 23.3 Assignment of access error mask

Bit Error code Assignment

2 B#16#42 I/O access error when reading
S7-300 and CPU 417: The module is not present or does not acknowledge
S7-400 (except CPU 417): An existing module does not acknowledge on I/O access
(time-out)

3 B#16#43 I/O access error when writing
S7-300 and CPU 417: The module is not present or does not acknowledge
S7-400 (except CPU 417): An existing module does not acknowledge on I/O access
(time-out)

23.2 Synchronous Error Handling

413

23.2.5 Entering a Substitute Value

SFC 44 REPL_VAL allows you to enter a sub-
stitute value in accumulator 1 from within a
synchronous error OB. Use SFC 44 when you
can no longer read any values from a module
(for instance when a module is defective).
When you program SFC 44, OB 122 (“access
error”) is called every time an attempt is made

to access the module in question. When you call
SFC 44, you can load a substitute value into the
accumulator; the program scan is then resumed
with the substitute value. Table 23.5 lists the
parameters for SFC 44.

You may call SFC 44 in only one synchronous
error OB (OB 121 or OB 122).

Table 23.4 Programming Error Filter

Bit Error Code Contents

1 B#16#21 BCD conversion error (pseudo-tetrad detected during conversion)

2 B#16#22 Area length error on read (address not within area limits)

3 B#16#23 Area length error on write (address not within area limits)

4 B#16#24 Area length error on read (wrong area in area pointer)

5 B#16#25 Area length error on write (wrong area in area pointer)

6 B#16#26 Invalid timer number

7 B#16#27 Invalid counter number

8 B#16#28 Address error on read (bit address <> 0 in conjunction with byte, word or doubleword
access and indirect addressing)

9 B#16#29 Address area on write (bit address <> 0 in conjunction with byte, word or doubleword
access and indirect addressing)

16 B#16#30 Write error, global data block (write-protected block)

17 B#16#31 Write error, instance data block (write-protected block)

18 B#16#32 Invalid number of a global data block (DB register)

19 B#16#33 Invalid number of an instance data block (DI register)

20 B#16#34 Invalid number of a function (FC)

21 B#16#35 Invalid number of a function block (FB)

26 B#16#3A Called data block (DB) does not exist

28 B#16#3C Called function (FC) does not exist

30 B#16#3E Called function block (FB) does not exist

Table 23.5 Parameters of SFC 44 REPL_VAL

SFC Parameter name Declaration Data type Assignment, description

44 VAL INPUT DWORD Substitute value

RET_VAL RETURN INT Error information

23 Error Handling

414

23.3 Asynchronous Errors

Asynchronous errors are errors which can
occur independently of the program scan.
When an asynchronous error occurs, the oper-
ating system calls one of the organization
blocks listed below:

OB 80 Timing error

OB 81 Power supply error

OB 82 Diagnostic interrupt

OB 83 Insert/remove module interrupt

OB 84 CPU hardware fault

OB 85 Program execution error

OB 86 Rack failure

OB 87 Communication error

OB 88 Processing abort

The OB 82 call (diagnostic interrupt) is
described in detail in Chapter 23.4 “System
Diagnostics”.

On the S7-400H, there are three additional
asynchronous error OBs:

OB 70 I/O redundancy errors

OB 72 CPU redundancy errors

OB 73 Communications redundancy errors

The call of these asynchronous error organiza-
tion blocks can be disabled and enabled with
system functions SFC 39 DIS_IRT and SFC 40
EN_IRT, and delayed and enabled with system
functions SFC 41 DIS_AIRT and SFC 42 EN_
AIRT.

Timing errors OB 80

The operating system calls organization block
OB 80 when one of the following errors occurs:

b Cycle monitoring time exceeded,

b OB request error (the requested OB is still
being processed or an OB is requested too
frequently within a priority class),

b Time-of-day error interrupt (time-of-day in-
terrupt expired through setting ahead of
time or following transition to RUN).

If OB 80 is not present, the CPU switches to
STOP in the event of a time error. The CPU also

goes to STOP if the OB is called a second time
in the same program scan cycle due to a cycle
time violation.

Power supply errors OB 81

The operating system calls organization block
OB 81 if one of the following errors occurs:

b At least one backup battery in the central
rack or in an expansion unit is empty,

b No backup voltage in the central rack or an
expansion unit,

b Failure of the 24 V supply in the central rack
or in an expansion unit.

OB 81 is called for incoming and outgoing
events. If there is no OB 81, the CPU continues
functioning when a power supply error occurs.

Insert/remove module interrupt OB 83

The operating system monitors the module con-
figuration once per second. An entry is made in
the diagnostic buffer and in the system status
list each time a module is inserted or removed
in RUN, STOP or START-UP mode.

In addition, the operating system calls the oper-
ation block OB 83 in RUN. If OB 83 is not pres-
ent, the CPU switches to STOP in the event of
an insert/remove module interrupt.

As much as a second can pass before the insert/
remove module interrupt is generated. As a
result, it is possible that an access error or an
error relating to the updating of the process
image could be reported in the interim between
removal of a module and generation of the
interrupt.

If a suitable module is inserted into a config-
ured slot, the CPU automatically parameterizes
that module, using data records already stored
on that CPU. Only then is OB 83 called in order
to signal that the connected module is ready for
operation.

CPU hardware faults OB 84

The operating system calls organization block
OB 84 when an interface error (e.g. MPI net-
work, PROFIBUS DP) occurs or disappears. If
there is no OB 84, CPUs with older operating
systems go to STOP on a CPU hardware fault.

23.3 Asynchronous Errors

415

Program execution errors OB 85

The operating system calls organization block
OB 85 when one of the following errors occurs:

b Start request for an organization block
which has not been loaded

b Error occurred while the operating system
was accessing a block (for instance no
instance data block when a system function
block (SFB) was called)

b I/O access error while executing (auto-
matic) updating of the process image on the
system side

On the S7-400 CPUs, OB 85 is called at every
I/O access error (on the system side), i.e. when
updating the process image in each cycle. The
substitute value or zero is then entered in the
relevant byte in the process-image input table at
every update.

On the S7-300 CPUs, OB 85 is not called in the
event of an I/O access error during automatic
updating of the process image. At the first
errored access, the substitute value or zero is
entered in the relevant byte; it is then no longer
updated.

With appropriately equipped CPUs, you can
use CPU parameterization to influence the call
mode of OB 85 in the event of an I/O access
error on the system side:

b OB 85 is called every time. The affected
input byte is overwritten with the substitute
value or with zero each time.

b OB 85 is called in the event of the first error
with the attribute “incoming”. An affected
input byte is only overwritten with the sub-
stitute value or with zero the first time; fol-
lowing this it is no longer updated. If the
error is then corrected, OB 85 is called with
the attribute “outgoing”; following this, a
corresponding input byte is updated “nor-
mally”.

b OB 85 is not called in the event of an access
error. Affected input bytes are overwritten
once with the substitute value or zero, and
then no longer updated.

If there is no OB 85, the CPU goes to STOP on
a program execution error.

Rack failure OB 86

The operating system calls organization block
OB 86 if it detects the failure of an expansion
unit (power failure, line break, defective IM;
not with S7-300), a DP master system, or a dis-
tributed I/O station (PROFIBUS DP or PROFI-
NET IO). OB 86 is called for both incoming
and leaving errors.

In multiprocessor mode, OB 86 is called in all
CPUs if a rack fails.

If there is no OB 86, the CPU goes to STOP if
a rack failure occurs.

Communication error OB 87

The operating system calls organization block
OB 87 when a communication error occurs.
Some examples of communication errors are

b Invalid frame identification or frame length
detected during global data communication

b Sending of diagnostic entries not possible

b Clock synchronization error

b GD status cannot be entered in a data block

If there is no OB 87, the CPU goes to STOP
when a communication error occurs.

Processing abort OB 88

The operating system calls the organization
block OB 88 if the processing of a block is
aborted in the user program. Possible causes of
the abort are:

b With a synchronous error, the permissible
block nesting depth has been exceeded.

b With a block call, the permissible nesting
depth has been exceeded.

b A fault has occurred when allocating the
local data of a block.

If the OB 88 is not present, the CPU goes to
STOP if a processing abort occurs. The CPU
also goes to STOP if the OB is called in priority
class 28.

I/O redundancy error OB 70

The operating system of an H CPU calls orga-
nization block OB 70 if a redundancy loss
occurs on PROFIBUS DP, e.g. in the event of a

23 Error Handling

416

bus failure on the active DP master or in the
event of a fault in the interface of a DP slave.

If OB 70 does not exist, the CPU continues to
operate in the event of an I/O redundancy error.

CPU redundancy error OB 72

The operating system of an H CPU calls orga-
nization block OB 72 if one of the following
events occurs:

b Redundancy loss of the CPU
b Comparison error (e.g. in RAM, in the PIQ)
b Standby-master changeover
b Synchronization error
b Error in a SYNC submodule
b Update abort

If OB 72 does not exist, the CPU continues to
operate in the event of a CPU redundancy error.

Communication redundancy error OB 73

The operating system of a H-CPU calls the
organization block OB 73 when a fault-tolerant
S7 connection loses redundancy for the first
time. As long as at least one fault-tolerant S7
connection signals a loss of redundancy, the
OB 73 is not called again if there is an addi-
tional loss of redundancy.

If the OB 73 does not exist, the CPU continues
despite a communication redundancy error.

23.4 System Diagnostics

23.4.1 Diagnostic Events and Diagnostic
Buffer

System diagnostics is the detection, evaluation
and reporting of errors occurring in program-
mable controllers. Examples are errors in the
user program, module failures or wirebreaks on
signaling modules. These diagnostic events
may be:

b Diagnostic interrupts from modules with
this capability

b System errors and CPU mode transitions or

b User messages via system functions.

Modules with diagnostic capabilities distin-
guish between programmable and non-pro-

grammable diagnostic events. Programmable
diagnostic events are reported only when you
have set the parameters necessary to enable
diagnostics. Non-programmable diagnostic
events are always reported, regardless of
whether or not diagnostics have been enabled.
In the event of a reportable diagnostic event,

b The fault LED on the CPU goes on

b The diagnostic event is passed on to the
CPU's operating system and

b A diagnostic interrupt is generated if you
have set the parameters enabling such inter-
rupts (by default, diagnostic interrupts are
disabled).

All diagnostic events reported to the CPU oper-
ating system are entered in a diagnostic buffer
in the order in which they occurred, and with
date and time stamp. The diagnostic buffer is a
battery-backed memory area on the CPU which
retains its contents even in the event of a mem-
ory reset. The diagnostic buffer is a ring buffer
whose size depends on the CPU. When the
diagnostic buffer is full, the oldest entry is over-
written by the newest.

You can read out the diagnostic buffer with a
programming device at any time. In the CPU’s
System Diagnostics parameter block you can
specify whether you want expanded diagnostic
entries (all OB calls). You may also specify
whether the last diagnostic entry made before
the CPU goes to STOP should be sent to a spe-
cific node on the MPI bus.

23.4.2 Writing User Entries in the
Diagnostic Buffer

System function SFC 52 WR_USMSG writes
an entry in the diagnostic buffer which may be
sent to all nodes on the MPI bus. Table 23.6 lists
the parameters for SFC 52.

The entry in the diagnostic buffer corresponds
in format to that of a system event, for instance
the start information for an organization block.
Within the permissible boundaries, you may
choose your own event ID (EVENTN parame-
ter) and additional information (INFO1 and
INFO2 parameters).

The event ID is identical to the first two bytes
of the buffer entry (Figure 23.1). Permissible

23.4 System Diagnostics

417

for a user entry are the event classes 8 (diagnos-
tic entries for signal modules), 9 (standard user
events), A and B (arbitrary user events).

Additional information (INFO1) corresponds
to bytes 7 and 8 of the buffer entry (one word)
and additional information 2 (INFO2) to bytes
9 to 12 (one doubleword). The contents of both
variables may be of the user's own choice.

Set SEND to “1” to send the diagnostic entry to
the relevant node. Even if sending is not possi-
ble (because no node is logged in or because the
Send buffer is full, for example), the entry is
still made in the diagnostic buffer (when bit 9 of
the event ID is set).

23.4.3 Evaluating Diagnostic Interrupts

In the event of a diagnostic interrupt that comes
and goes, the operating system interrupts exe-
cution of the user program and calls the organi-
zation block OB 82. If OB 82 is not pro-
grammed, the CPU switches to STOP on a di-
agnostic interrupt. You can disable or enable
the processing of OB 82 with the system func-

tions SFC 39 DIS_IRT and SFC 40 EN_IRT,
and delay or enable it with the system functions
SFC 41 DIS_AIRT and SFC 42 EN_AIRT.

PROFIBUS DPV1 slaves can also generate a
diagnostic interrupt if the master CPU is in
STOP. A diagnostic interrupt in STOP of the
CPU is acknowledged but not processed. Call-
ing the organization block OB 82 is also not ex-
ecuted if the CPU goes to RUN.

Table 23.7 shows the startup information of the
diagnostics interrupt OB 82. In the first byte of
the start information, B#16#39 stands for an
incoming diagnostic interrupt and B#16#38 for
a leaving diagnostic interrupt. The sixth byte
gives the address identifier (B#16#54 stands for
an input, B#16#55 for an output); the subse-
quent INT variable contains the address of the
module that generated the diagnostic interrupt.
The next four bytes contain the diagnostic
information provided by that module.

You can use system function SFC 59 RD_REC
(read data record) in OB 82 to obtain detailed
error information. The diagnostic information
are consistent until OB 82 is exited, that is,
they remain “frozen”. Exiting of OB 82
acknowledges the diagnostic interrupt on the
module.

A module's diagnostic data are in data records
DS 0 and DS 1. Data record DS 0 contains four
bytes of diagnostic data describing the current
status of the module. The contents of these four
bytes are identical to the contents of bytes 8 to
11 of the OB 82 start information. Data record
DS 1 contains the four bytes from data record
DS 0 and, in addition, the module-specific diag-
nostic data.

When using a CPU with DPV1 capability and a
corresponding slave, you can obtain further
information on the diagnostics interrupt by

Table 23.6 Parameters for SFC 52 WR_USMSG

SFC Parameter name Declaration Data type Assignment, description

52 SEND INPUT BOOL For "1": Sending is enabled

EVENTN INPUT WORD Event ID

INFO1 INPUT ANY Additional information 1 (one word)

INFO2 INPUT ANY Additional information 2 (one double-
word)

RET_VAL RETURN INT Error information

Figure 23.1 Event ID for Diagnostic Buffer Entries

23 Error Handling

418

Table 23.7 Start Information of the Organization Block OB 82 (Diagnostics Interrupt)

Byte Variable Name Data Type Contents, Description

0 OB82_EV_CLASS BYTE B#16#38 = Outgoing event
B#16#39 = Incoming event

1 OB82_FLT_ID BYTE Error code (B#16#42)

2 OB82_PRIORITY BYTE Priority class for the diagnostics interrupt OB

3 OB82_OB_NUMBR BYTE OB number (B#16#52)

4 OB82_RESERVED_1 BYTE Spare

5 OB82_IO_FLAG BYTE I/O ID (B#16#54 = input, B#16#55 = output)

6..7 OB82_MDL_ADDR WORD Module starting address of module generating interrupt

8.0 OB82_MDL_DEFECT BOOL Module defect

8.1 OB82_INT_FAULT BOOL Internal fault

8.2 OB82_EXT_FAULT BOOL External fault

8.3 OB82_PNT_INFO BOOL Channel fault present

8.4 OB82_EXT-VOLTAGE BOOL External supply voltage missing

8.5 OB82_FLD_CONNCTR BOOL Front connector missing

8.6 OB82_NO_CONFIG BOOL Module not parameterized

8.7 OB82_CONFIG_ERR BOOL Incorrect parameters in the module

9 OB82_MDL_TYPE BYTE Bits 0 to 3: module class
Bit 4: channel information present
Bit 5: user information present
Bit 6: diagnostics interrupt from proxy
Bit 7: spare

10.0 OB82_SUB_MDL_ERR BOOL Incorrect or missing user module

10.1 OB82_COMM_FAULT BOOL Communications fault

10.2 OB82_MDL_STOP BOOL Operating status (“0” = RUN, “1” = STOP)

10.3 OB82_WTCH_DOG_FLT BOOL Timeout triggered

10.4 OB82_INT_PS_FLT BOOL Internal module voltage failed

10.5 OB82_PRIM_BATT_FLT BOOL Battery flat

10.6 OB82_BCKUP_BATT_
FLT

BOOL Complete backup failed

10.7 OB82_RESERVED_2 BOOL Spare

11.0 OB82_RACK_FLT BOOL Expansion unit failed

11.1 OB82_PROC_FLT BOOL Processor failure

11.2 OB82_EPROM_FLT BOOL EPROM fault

11.3 OB82_RAM_FLT BOOL RAM fault

11.4 OB82_ADU_FLT BOOL ADC/DAC fault

11.5 OB82_FUSE_FLT BOOL Blown fuse

11.6 OB82_HW_INTR_FLT BOOL Hardware interrupt lost

11.7 OB82_RESERVED_3 BOOL Spare

12..19 OB82_DATE_TIME DT Recording time of diagnostics event

23.4 System Diagnostics

419

means of the system function block SFB 54
RALRM.

23.4.4 Reading the System Status List

The system status list (SZL) describes the cur-
rent status of the programmable controller.
Using information functions, the list can be
read but not modified. Since the complete sys-
tem status list is extremely extensive, reading is
carried out in sublists and sublist extracts. Sub-
lists are virtual lists, which means that they are
made available by the CPU operating system
only on request.

The SZL ID is available to identify a sublist.
This contains the module type class to which
the list applies, the number of the sublist
extract, and the actual SZL sublist number (Fig-
ure 23.2). Together with the index, which spec-
ifies an object of a sublist, you are provided
with the desired information. As standard, the
CPU basically provides information on the
automation system, but FM and CP modules
can also use this service to provide information
(see module documentation). You can find the
possible system status lists of a CPU in the
description of operations.

Reading the header information

With the SZL ID W#16#0Fxx you can read the
header information of an SZL sublist, without
the associated data record (xx = SZL sublist
number). The parameter SZL_HEADER. N_
DR (number of data records) then returns the
maximum possible data record number of the
sublist extract which the module can deliver
with an SZL job. With dynamic sublists, the

value can be larger than the current number that
can be read. The length of a data record is pres-
ent in SZL_HEADER. LENGTHDR. With this
data in the header information, it is possible e.g.
to initialize in the startup a sufficiently large
data buffer for the associated SZL sublist.

SFC 51 RDSYSST
Reading SZL sublist

With the system function SFC 51 RDSYSST
you can read a sublist or a sublist extract of the
system status list (SZL). The SFC 51 parame-
ters are explained in Table 23.8.

REQ = “1” initiates the read operation, and
BUSY = “0” tells you when it has been com-
pleted. The operating system can execute sev-
eral asynchronous read operations quasi simul-
taneously; how many depends on the CPU
being used. If SFC 51 reports a lack of
resources via the function value (W#16#8085),
you must resubmit your read request.

The assignment of the parameters SZL_ID
and INDEX is CPU-dependent. If the
INDEX parameter is not required for infor-

Figure 23.2 Structure of the SZL_ID

Table 23.8 Parameters of the SFC 51 RDSYSST

SFC Parameter Declaration Data type Assignment, description

51 REQ INPUT BOOL For "1": Starts processing

SZL_ID INPUT WORD SZL_ID of partial list

INDEX INPUT WORD Type or number of the partial list object

RET_VAL RETURN INT Error information

BUSY OUTPUT BOOL For "1": Reading not yet completed

SZL_HEADER OUTPUT STRUCT Length and number of data records read

DR OUTPUT ANY Field for the read data records

23 Error Handling

420

mation, its assignment is irrelevant. The
parameter SZL_HEADER has data type
STRUCT with the variables LENGTHDR
(data type WORD) and N_DR (WORD) as
components. LENGTHDR contains the
length of a data record, N_DR the number
of data records read.

Use the DR parameter to specify the variable or
data area in which SFC 51 is to enter the data
records. For example, P#DB200.DBX0.0
WORD 256 would provide an area of 256 data
words in data block DB 200, beginning with
DBB 0. If the area provided is of insufficient
capacity, as many data records as possible will
be entered. Only complete data records are
transferred. The specified area must be able to
accommodate at least one data record.

23.5 Web Server

CPUs with Ethernet interface may have a Web
server which provides information from the
CPU. To read the information on the company-
internal intranet or the Internet, you require a
Web browser, e.g. Internet Explorer Version 6.0
or later, which displays the information on
HTML pages.

23.5.1 Activate Web Server

You can activate the Web server when parame-
terizing the CPU with the Hardware Configura-
tion. When a CPU is selected, EDIT OBJECT

PROPERTIES selects the "Web" tab on which you
activate the Web server and select the language
for the message texts and the entries in the di-
agnostics buffer. It is also possible to select sev-
eral languages, depending on the memory ca-
pacity of the CPU.

The languages installed with STEP 7 are avail-
able. You can establish agreement with the lan-
guages installed in the project in the SIMATIC
Manager: Select TOOLS LANGUAGE FOR

DISPLAY DEVICES and define the languages.
You can define the access privileges to the Web
server site by means of a user list. The Web
server is ready for use after the configuration
data has been loaded onto the CPU.

23.5.2 Reading Web Information

To select the CPU in the Web browser, enter the
IP address of the CPU in the form http://
aaa.bbb.ccc.ddd in the “Address” box. You can
obtain the IP address of the CPU from the
object properties of the PROFINET interface in
the “General” tab.

The Web server also supports the Terminal Ser-
vice of Windows so that thin client solutions
can be used with mobile devices or HMI sta-
tions with the thin client option under Windows
CE. In this case, specify the address in the form
http://aaa.bbb.ccc.ddd/basic.

You can navigate to a further range of informa-
tion from the start page of the CPU. Note that
the information offered is static, and you must
update the screen contents yourself. The most
recent information from the CPU is always
used for printouts independent of the display.

Note: provide a firewall to protect the Web
server from unauthorized access.

23.5.3 Web Information

The Web server can provide the following
information in an appropriately equipped CPU:

b Start page with general CPU information

b Identification information

b Diagnostics buffer

b Messages (without facility
for acknowledgement)

b PROFINET interface

b Status of variables

b Tables of variables

The first page provided by the Web server is the
welcome page. From here, you can select the
start page by clicking on ENTER. If you wish
to bypass this introductory page in the future,
activate the option “Skip Intro”.

Start and identification

The start page shows you general information
and the status of the CPU at the time of scan-
ning. The identification page contains the
CPU’s characteristic data, e.g. plant identifier,
location identifier and Order No.

23.5 Web Server

421

Diagnostics buffer

On this page you see the contents of the diag-
nostics buffer. Select the number of diagnostics
buffer entries per display interval. Detailed
information is displayed on the selected event.

You can select the display language in the win-
dow at the top right. If the selected language is
not configured, hexadecimal code will be dis-
played.

Messages

Messages are displayed in chronological order
with date and time. The messages cannot be
acknowledged using the Web browser.

You can search for specific information using
filter settings. Using the sorting function, you
can sort the messages e.g. according to message
number or status. Detailed information is dis-
played on the selected message.

You can select the display language in the win-
dow at the top right. If the selected language is
not configured, hexadecimal code will be dis-
played.

PROFINET interface

The information on the PROFINET interface is
present on the pages “Parameters” and “Statis-
tics”. For example, MAC and IP addresses are
displayed, as well as statistical evaluations of
sent and received data packets.

Status of variables

On this page, you can monitor the status of up
to 50 variables. Enter the address of the variable
and the display format to obtain the value of the
variable.

You can select the display language in the win-
dow at the top right. Note when entering the
address that the mnemonics differ for the
address input (e.g. I for input in English, E for
input in German). A faulty syntax is displayed
in red.

Table of variables

Using the Web server you can monitor up to 50
tables with up to 200 variables each. It could be
the case that the memory space available in the
CPU is too small to utilize all possibilities. If
tables of variables are displayed incompletely,
reduce the memory requirements for the mes-
sages and symbol comments as far as possible,
use only one language, and keep the number of
variables per table low.

Select one of the configured tables to display
the variables. You must previously prepare the
table for use by the Web server. If you select
EDIT OBJECT PROPERTIES with a table
selected or create a new table of variables, the
properties window is opened. Enter VATtoWEB
as the family on the “General – Part 2” tab or
alternatively activate the checkbox “Web
server”.

SFC 99 WWW
Synchronize user websites

Using the configuration tool S7-Web2PLC, you
can integrate self-generated websites into the
CPU's Web server. The websites can show CPU
data, controlled either by direct access or by the
user program.

These websites are saved in special data blocks
– the "Fragment DBs". One data block – the
"Web control DB" – contains the structure in-
formation required to edit the websites.

The system function SFC 99 WWW makes the
user websites known to the CPU's operating
system. It must be called once for this, e.g. dur-
ing startup.

In addition, the SFC 99 synchronizes the user
program and the Web server. It must be called
cyclically for this purpose, e.g. in the main pro-
gram.

Table 23.9 shows the parameters of the SFC 99
WWW.

Table 23.9 Parameters of the SFC 99 WWW

SFC Parameter name Declaration Data type Assignment, description

99 CTRL_DB INPUT BLOCK_DB Web control DB

RET_VAL RETURN INT Error information

Variable Handling

422

Variable Handling

This section provides information on handling
complex variables. Knowledge of the structure
of data types, mastery of indirect addressing
and the ability to determine the addresses of the
variables at runtime are all requirements here.

Variables if elementary data types can be ac-
cessed direct with STL statements, whether you
are dealing with binary logic operations, mem-
ory functions or load and transfer operations.
With complex data types and user-defined data
types, only the individual components can cur-
rently be accessed direct. If you still want to ac-
cess variables of these data types, you must
know the inner structure of the variables.

Indirect addressing allows you to access ad-
dresses whose addresses are not known until
runtime. You can choose between memory-in-
direct and register-indirect addressing. You can
even wait until runtime to use the address area.
Indirect addressing allows you to access vari-
ables of complex and user-defined data types
using absolute addressing.

Direct variable access loads the current ad-
dress of a local variable. When you have deter-
mined the address, you can process local vari-
ables (and so also block parameters) of any data
types. The two preceding chapters contain the
information required for this purpose.

Several extensive examples – collected in
Chapter 26.4 “Brief Description of the Message
Frame Example” – explain the handling of com-
plex variables. The examples “Message Frame
Data”, “Preparing a Message Frame” and
“Clock Check” deal with handling user-defined
data types and the use of variables of complex
data types in conjunction with system functions
and standard functions. The examples “Check-
sum” and “Data Item Conversion” describe
how to access parameters of complex data types
with the help of indirect addressing. The exam-
ple “Save Message Frame” shows how to use
the system function SFC 20 BLKMOV to trans-

fer data areas whose addresses are not known
until runtime.

24 Data Types
Elementary, complex and user-defined
data types; declaration and structure of
the data types

25 Indirect Addressing
Area pointers, DB pointers and ANY
pointers; memory-indirect and register-
indirect addressing, area-internal and ar-
ea-crossing; working with address regis-
ters

26 Direct Variable Access
Addresses of local variables; data storage
of variables; data storage with parameter
transfer; ‘Variable’ ANY pointer; Mes-
sage Frame example

24 Data Types

423

24 Data Types

Data types determine the properties and charac-
teristics of data, essentially the representation
of the content of one or more related addresses
and the permissible areas. STEP 7 provides pre-
defined data types that you can compile in ad-
dition to user-defined data types. The data types
are globally available; they can be used in any
block.

Chapter 3.7 “Variables and Constants” gives an
overview of all data types and the correspond-
ing constant representation.

This chapter gives detailed information on ele-
mentary data types and complex data types and
shows the structure of the relevant variables.
You will learn how user-defined data types are
created and used.

Examples of the data types can be found in the
download files (download address: see pages 8-
9) in the STL-Book library under the “Variable
Handling” program in function blocks FB 101,
FB 102 and FB 103 or source file Chap_24.

24.1 Elementary Data Types

Variables of elementary data types have a max-
imum length of one doubleword; they can
therefore be processed with load and transfer
functions or with binary logic operations.

24.1.1 Declaration of Elementary Data Types

Elementary data types can occupy one bit, one
byte, one word or one doubleword.

Declaration

varname is the name of the variable
datatype is an elementary data type
pre-assignment is a fixed value

The identifiers of the data types (for example,
BOOL, REAL) are keywords; they can also be
written in lower case. A variable of elementary
data type can be declared globally in the sym-
bol table or locally in the declaration section.

varname : datatype := pre-assignment;

Figure 24.1 Representation of BCD Numbers and CHAR

24 Data Types

424

Pre-assignment

The variable can be pre-assigned when it is de-
clared (not as a block parameter in a function or
as a temporary variable). The pre-assignment
must be of the same data type as the variable.

Application

You can apply variables of elementary data
type at the correspondingly declared block pa-
rameter (of the same data type POINTER or
ANY) or you can access them with “normal”
STL statements (for example, binary checks,
load functions).

Storing the variables

A variable of elementary data type is stored in
the same way as the relevant address. All ad-
dress areas including block parameters are per-
missible.

24.1.2 BOOL, BYTE, WORD, DWORD,
CHAR

A variable of data type BOOL represents a bit
value (for example, input I 1.0). Variables of
data types BYTE, WORD and DWORD are bit
strings of 8, 16 or 32 bits. The individual bits
are not evaluated. Chapter 3 “SIMATIC S7 Pro-
gram” shows possible representations as con-
stants.

Special forms of these data types include the
BCD numbers and the counter value as used in
conjunction with counter functions, as well as
the data type CHAR that represents a character
in ASCII code (Figure 24.1).

BCD numbers

BCD numbers have no special identifier in
STL. You enter a BCD number with data type
16# (hexadecimal) and use only digits 0 to 9.

BCD numbers occur in coded loading of timer
and counter values and in conjunction with con-
version functions. Data type S5TIME# is avail-
able for specifying a timer value when starting
a timer function (see below), and for specifying
a counter value there is data type 16# or C#. A
counter value C# is a BCD number between
000 and 999, where the sign is always 0.

In general, BCD numbers are unsigned num-
bers. In conjunction with conversion functions,
the sign of a BCD number is accommodated in
the extreme-left (highest) decade. This results
in the loss of one decade in the number range.

In the case of a BCD number stored in a 16-bit
word, the sign is in the upper decade with only
bit position 15 being relevant. Signal state “0”
signifies that the number is positive and signal
state “1” represents a negative number. The
sign does not affect the assignment of the indi-
vidual decades. An equivalent assignment ap-
plies for a 32-bit word.

The number range available is 0 to ±999 for 16-
bit BCD numbers and 0 to ±9 999 999 for 32-
bit BCD numbers.

CHAR

A variable of data type CHAR (character) occu-
pies one byte. The data type CHAR represents
a single character stored in ASCII format. Ex-
ample: ’A’. You can use every printable charac-
ter in single inverted commas.

In conjunction with STL load statements, some
special characters take the notation shown in
Table 24.1. Example: L ’$$’ loads a dollar sign
in ASCII code.

In addition, you can use other special forms of
the data type CHAR when loading ASCII-cod-
ed characters into the accumulator. L ’a’ loads
one character (in this case, an a) right-justified
into the accumulator, L ’aa’ loads two charac-
ters and L ’aaaa’ loads 4 characters.

Table 24.1 Special Characters for CHAR

CHAR Hex Meaning

$$ 24hex Dollar sign

$’ 27hex Single inverted comma

$L or $l 0Ahex Line feed (LF)

$P or $p 0Chex Page break (FF)

$R or $r 0Dhex Carriage return (CR)

$T or $t 09hex Tabulator

24.1 Elementary Data Types

425

24.1.3 Number Representations

The data types INT, DINT and REAL are sum-
marized in this section. Figure 24.2 shows the
bit assignments of these data types.

INT

A variable of data type INT represents an inte-
ger (whole number) that is stored as a 16-bit
fixed-point number. The data type INT has no
special identifier.

A variable of data type INT occupies one word.
The signal states of bits 0 to 14 represent the
positional weight of the number; the signal state
of bit 15 represents the sign (S). Signal state “0”
means that the number is positive. Signal state
“1” represents a negative number. Negative
numbers are represented in two’s complement.

The number range is

from +32,767 (7FFFhex)

to –32,768 (8000hex).

DINT

A variable of data type DINT represents an in-
teger that is stored as a 32-bit fixed-point num-
ber. An integer is stored as a DINT variable if it

is greater than +32,767 or less than –32,768 or
if an L# precedes the number as the type identi-
fier.

A variable of data type DINT occupies a dou-
bleword. The signal states of bits 0 to 30 repre-
sent the positional weights of the number; the
sign is stored in bit 31. This bit contains “0” for
a positive number and “1” for a negative num-
ber. Negative numbers are stored in two’s com-
plement.

The number range is

from +2,147,483,647 (7FFF FFFFhex)

to –2,147,483,648 (8000 0000hex).

Example for STL: with L –100, you load an
INT number into the accumulator, and with
L# –100 you load a DINT number. The differ-
ence is in the assignment of the left word in the
accumulator: in the example of INT number
–100, this contains the value 0000hex, and in the
example of the DINT number –100, it contains
the sign FFFFhex.

Example for SCL: if you specify the constant
value –100, the editor automatically converts
the value to a DINT number when it is com-
bined with a DINT variable (“implicit” data
type conversion).

Figure 24.2 Bit Assignments of the Data Types INT, DINT and REAL

24 Data Types

426

REAL

A variable of data type REAL represents a frac-
tion that is stored as a 32-bit floating-point
number. An integer is stored as a REAL vari-
able if the decimal point is followed by a zero.

Example for STL: while100 or L#100 indicates
the positive number 100 in INT or DINT for-
mat, you specify 100 in REAL format with
100.0 or 1.0e+2 (specification with decimal
point with or without exponent).

Example for SCL: in conjunction with REAL
variables, you can specify constant values in
every numerical representation. The value 100,
for example, is automatically converted by the
editor to a REAL number when it is combined
with a corresponding variable (“implicit” data
type conversion).

In exponent representation, you can specify an
integer or a fraction with 7 significant digits
with sign before the “e” or “E”. The specifica-
tion following the “e” or “E” is the exponent to
base 10. Conversion of the REAL variable into
the internal representation of a floating-point
number is handled by STEP 7.

With REAL numbers, a distinction is made be-
tween numbers that can be represented with to-
tal accuracy (“normalized” floating-point num-
bers) and numbers with restricted accuracy
(“denormalized” floating-point numbers). The
value range of a normalized floating-point
number lies between the limits:

–3.402 823 4 10+38 to –1.175 494 4 10–38

±0
+1.175 494 4 10–38 to +3.402 823 4 10+38

A denormalized floating-point number can lie
within the following limits:

–1.175 494 4 10–38 to –1.401 298 4 10–45

and
+1.401 298 4 10–45 to +1.175 494 4 10–38

The S7-300 CPUs cannot perform calculations
with denormalized floating-point numbers. The
bit pattern of a denormalized number is inter-
preted as a zero. If the result of a calculation
falls within this range, it is represented as a ze-
ro, with the status bits OV and OS being set
(number range violation).

The CPUs calculate with the full accuracy of
the floating-point numbers. Due to rounding er-
rors in the conversion, the results displayed on
the programming device may deviate from the
theoretically accurate representation.

A variable of data type REAL consists internal-
ly of three components: the sign, the 8-bit expo-
nent to base 2 and the 32-bit mantissa. The sign
can assume the values “0” (positive) or “1”
(negative). The exponent is stored incremented
by one constant (bias, +127), so that it has a val-
ue range of 0 to 255. The mantissa represents the
fraction component. The integer component of
the mantissa is not stored since it is either always
1 (in the case of normalized floating-point num-
bers) or always 0 (in the case of denormalized
floating-point numbers). Table 24.2 shows the
internal range limits of a floating-point number.

Table 24.2 Range Limits of a Floating-Point Number

Sign Exponent Mantissa Meaning

0 255 not equal to 0 Not a valid floating-point number (not a number)

0 255 0 + infinite

0 1 ... 254 any Positive normalized floating-point number

0 0 not equal to 0 Positive denormalized floating-point number

0 0 0 + zero

1 0 0 – zero

1 0 not equal to 0 Negative denormalized floating-point number

1 1 ... 254 any Negative normalized floating-point number

1 255 0 – infinite

1 255 not equal to 0 Not a valid floating-point number (not a number)

24.1 Elementary Data Types

427

24.1.4 Time Representations

The data types S5TIME, DATE, TIME and
TIME_OF_DAY are summarized in this sec-
tion. Figure 24.3 shows the bit assignments of
these data types.

A data type that fits into this category (DATE_
AND_TIME) belongs to the complex data
types since it occupies 8 bytes.

S5TIME

A variable of data type S5TIME is used for ini-
tializing the SIMATIC timer functions in the
basic languages STL, LAD and FBD (SCL uses
the representation of the data type TIME for
this purpose). The data type S5TIME occupies
a 16-bit word with 1 + 3 decades.

The time is specified in hours, minutes, seconds
and milliseconds. Conversion to the internal
representation is handled by STEP 7. The num-
ber is represented internally as a BCD number
from 000 to 999. The time base can assume the
following values: 10 ms (0000), 100 ms (0001),
1 s (0010) and 10 s (0011). The time is the prod-
uct of the time base and the time value.

Examples:

S5TIME#500ms (= 0050hex)

S5T#2h46m30s (= 3999hex)

DATE

A variable of data type DATE is stored in a
word as a un-signed fixed-point number. The
contents of the variable correspond to the num-
ber of days since 01.01.1990. The representa-
tion contains the year, the month and the day,
each separated by a hyphen. Examples:

DATE#1990-01-01 (= 0000hex)

D#2168-12-31 (= FF62hex)

TIME

A variable of data type TIME occupies one
doubleword. The representation contains the
specifications for days (d), hours (h), minutes
(m), seconds (s) and milliseconds (ms); indi-
vidual specifications can be omitted. The con-
tents of the variable are interpreted as millisec-
onds (ms) and stored as a 32-bit fixed-point
number with sign.

Figure 24.3 Bit Assignments of the Data Types S5TIME, DATE, TIME and TIME_OF_DAY

15

31

31

15

15

2

V

2

...

...

...

...

...

14

30

30

...

...

...

...

...

...

...

...

...

...

2

2

2

2

2

2

2

2

2

2

2

2

2

2

...

...

...

...

...

0

16

16

0

0

2

2

2

2

2

V = sign

TIME data type

TIME_OF_DAY data type

DATE data type

1010

Time scale Time value

10 10

S5TIME data type

15

0 0

0

0

0

1

1

1

1

2

2

2

2

1315

15

15

16

16

29

29

30

3031

14

... ... 0

24 Data Types

428

Examples:

TIME#24d20h31m23s647ms
(= 7FFF_FFFFhex)

TIME#0ms (= 0000_0000hex)

T#–24d20h31m23s648ms
(= 8000_0000hex)

SCL uses this representation for the duration of
SIMATIC timer functions (S5TIME). The edi-
tor then converts the specified TIME value to
an S5TIME representation (1 + 3 decades) and
rounds down where necessary.

A “decimal representation” is also possible for
TIME, e.g. TIME#2.25h or T#2.25h. This rep-
resentation is only permissible for positive val-
ues in SCL.

Examples:

TIME#0.0h (= 0000_0000hex)

TIME#24.855134d (= 7FFF_FFFFhex)

TIME_OF_DAY

A variable of data type TIME_OF_DAY occu-
pies one doubleword. It contains the number of
milliseconds since the start of the day (0:00
hours) as an unsigned fixed-point number. The
representation contains the specifications for
hours, minutes and seconds, each separated by
a colon. Specification of the milliseconds, fol-
lowing the seconds and separated by a dot, can
be omitted.

Examples:

TIME_OF_DAY#00:00:00 (= 0000_0000hex)
TOD#23:59:59.999 (= 0526_5BFFhex)

24.2 Complex Data Types

Complex data types are data types which (in
their totality) cannot be processed direct by
STL statements but are permissible in SCL ex-
pressions. STEP 7 defines the following four
complex data types:

b DATE_AND_TIME
date and time of day (BCD-coded)

b STRING
character string with up to 254 characters

b ARRAY
field (combination of variables of the same
type)

b STRUCT
structure (combination of variables of dif-
ferent types)

The data types are pre-defined, with the length
of the data type STRING (character string) and
the combination and size of the data types AR-
RAY and STRUCT (structure) being defined by
the user.

You can declare variables of complex data
types only in global data blocks, in instance da-
ta blocks, as temporary local data or as block
parameters.

Table 24.3 Examples of the Declaration of DT Variables and STRING Variables

Name Type Initial Value Comment

Date1 DT DT#1990-01-01-00:00:00 DT variable minimum value

Date2 DATE_AND_TIME DATE_AND_TIME#
2089-12-31-23:59:59.999

DT variable maximum value

First_name STRING[10] ‘Jack’ STRING variable,
4 characters out of 10 occupied

Last_name STRING[14] ‘Daniels’ STRING variable,
7 characters out of 14 occupied

NewLine STRING[2] ‘RL’ STRING variable,
occupied by special characters

EmptyString STRING[16] ‘’ STRING variable without entry

24.2 Complex Data Types

429

24.2.1 DATE_AND_TIME

The data type DATE_AND_TIME represents a
time consisting of the date and the time of day.
You can also use the abbreviation DT in place
of DATE_AND_TIME.

Declaration

DATE_AND_TIME or DT are keywords; they
can also be written in lower case.

Pre-assignment

At the declaration stage, the variable can be
pre-assigned (not as a block parameter in a
function, as an in/out parameter in a function
block or as a temporary variable). The pre-as-
signment must be of the type DATE_AND_
TIME or DT and must have the following ap-
pearance:

Keyword#Year-Month-Day-Hours:Minutes:
Seconds.Milliseconds

Specification of the milliseconds can be omit-
ted (Table 24.3).

Application

Variables of data type DT can be applied at
block parameters of data type DT or ANY; for
example, they can be copied with the system
function SFC 20 BLKMOV. There are standard
function blocks available for processing these
variables (“IEC functions”).

Structure of the variables

A variable of data type DATE_AND_TIME oc-
cupies 8 bytes (Figure 24.4). The variable be-
gins at a word boundary (at a byte with an even
address). All specifications are available in
BCD format.

24.2.2 STRING

The data type STRING represents a character
string consisting of up to 254 characters.

Declaration

STRING is a keyword and can also be written
in lower case.

maxNumber specifies the number of characters
that a variable declared in this way can have
(from 0 to 254). This specification can also be
omitted; the Editor then uses a length of 254

varname : DATE_AND_TIME
 := Pre-assignment;

varname : DT := Pre-assignment;

varname : STRING[maxNumber]
:= Pre-assignment;

Figure 24.4 Structure of a DT and a STRING Variable

24 Data Types

430

bytes. With functions FCs, the Editor does not
permit length specifications or it demands the
standard length of 254.

Pre-assignment

At the declaration stage, the variable can be
pre-assigned at the declaration stage (not as a
block parameter in a function, as an in/out pa-
rameter in a function block or as a temporary
variable). The pre-assignment is made with
ASCII-coded characters enclosed in single in-
verted commas or with a preceding dollar sign
in the case of certain characters (see data type
CHAR).

If the pre-assignment value is shorter than the
declared maximum length, the remaining char-
acter positions are not occupied. When further
processing a variable of data type STRING, on-
ly the currently occupied character positions
are taken into account. Pre-assignment as
“EmptyString” is possible.

Application

Variables of data type STRING can be applied
at block parameters of data type STRING or
ANY; for example, they can be copied with the
system function SFC 20 BLKMOV. There are
standard function blocks available for process-
ing these variables (“IEC functions”). See
Chapter 27.5.2 “Assignment of DT and
STRING Variables” for special points regard-
ing use in SCL.

Structure of the variables

A variable of data type STRING (character
string) has a maximum length of 256 characters
with 254 bytes of net data. It starts at a word
boundary (at a byte with an even address).

When the variables are applied, their maximum
length is defined. The current length (the actual
used length of the character string = Number of
valid characters) is entered when pre-assigning
or when processing a character string. The first
byte of the character string contains the maxi-
mum length and the second byte contains the
current length; these are followed by the char-
acters in ASCII format (Figure 24.4).

24.2.3 ARRAY

The data type ARRAY represents a field con-
sisting of a fixed number of components of the
same data type.

Declaration

ARRAY and OF are keywords and can also be
written in lower case.

fieldname is the name of the field

minIndex is the lower limit of the field and max-
Index is the upper limit. Both limits are INT
numbers in the range –32768 to +32767; max-

Table 24.4 Examples of field declarations

Name Type Initial value Comment

Measured
value

ARRAY[1..24] 0.4, 1.5, 11 (2.6, 3.0) Array tag with 24 REAL components

REAL

Time of
day

ARRAY[-10..10] 21 (TOD#08:30:00) Time of day field with 21 components

TIME_OF_DAY

Result ARRAY[1..24,1..4] 96 (L#0) Two-dimensional array with 96 components

DINT

Character ARRAY[1..2,3..4] 2 (‘a’), 2 (‘b’) Two-dimensional array with 4 components

CHAR

fieldname : ARRAY [minIndex..maxIndex]
OF datatype := pre-assignment;

fieldname : ARRAY [minIndex1..maxIndex1,..,
minIndex6..maxIndex6]
OF datatype := pre-assignment;

24.2 Complex Data Types

431

Index must be greater than or equal to minIn-
dex. A field can have up to 6 dimensions whose
limits can be specified separated by a comma.

data_type is every data type except for ARRAY
itself (exception in SCL), including user-de-
fined data types.

Pre-assignment

At the declaration stage, you can pre-assign
values to individual field components (not as a
block parameter in a function, as an in/out pa-
rameter in a function block or as a temporary
variable). The data type of the pre-assignment
value must match the data type of the field.

You do not require to pre-assign all field com-
ponents; if the number of pre-assignment val-
ues is less than the number of field components,
only the first components are pre-assigned. The
number of pre-assignment values must not be
greater than the number of field components.

The pre-assignment values are each separated
by a comma. Multiple pre-assignment with the
same values is specified within round brackets
with a preceding repetition factor. With SCL,
the pre-assigned values can be enclosed in
square brackets.

Application

You can apply a field as a complete variable at
block parameters of data type ARRAY with the
same structure or at a block parameter of data
type ANY. For example, you can copy the con-
tents of a field variable using the system func-
tion SFC 20 BLKMOV. You can also specify
individual field components at a block parame-
ter if the block parameter is of the same data
type as the components.

If the individual field components are of ele-
mentary data types, you can process them with
“normal” STL statements.

Figure 24.5 Structure of an ARRAY Variable

24 Data Types

432

A field component is accessed with the field
name and an index in square brackets. The in-
dex is a fixed value in STL and cannot be mod-
ified at runtime (no variable indexing possible).

In SCL, the index can also be a variable or an
expression of data type INT whose value can be
modified at runtime.

Multi-dimensional fields

Fields can have up to 6 dimensions. Multi-di-
mensional fields are analogous to one-dimen-
sional fields. At the declaration stage, the rang-
es of the dimensions are written in square
brackets, each separated by a comma.

With SCL, you can also declare a multi-dimen-
sional array by specifying another array as an
array component, for example:

Array: ARRAY [1..4] of ARRAY [1..4] OF INT;

When accessing the field components of multi-
dimensional fields, you must always specify
the indices of all dimensions in STL. In SCL, it
is possible to address part fields (see Chapter
27.5.4 “Assigning Fields”).

Structure of the variables

An ARRAY variable always begins at a word
boundary, that is, at a byte with an even address.
ARRAY variables occupy the memory up to the
next word boundary.

Components of data type BOOL begin in the
least significant bit; components of data type
BYTE and CHAR begin in the right-hand byte
(Figure 24.5 left). The individual components
are listed in order.

In multi-dimensional fields, the components are
stored line-wise (dimension-wise) starting with
the first dimension (Figure 24.5 right). With bit
and byte components, a new dimension always
starts in the next byte, and with components of
other data types a new dimension always starts in
the next word (in the next even byte).

24.2.4 STRUCT

The data type STRUCT represents a data struc-
ture consisting of a fixed number of compo-
nents that can each be of a different data type.

Declaration

STRUCT and END_STRUCT are keywords
that can also be written in lower case.

structname is the name of the structure.

komp1name, komp2name etc. are the names of
the individual structure components.

datatype is the data type of the individual com-
ponents. All data types can be used, including
further structures.

Pre-assignment

In the declaration, the individual structure com-
ponents can be preassigned with values (not as
block parameters on a function, in-out parame-
ters on a function block, or temporary tags).
The data type of the default values must corre-
spond to the data type of the component.

structname : STRUCT
komp1name : datatype := pre-assignment;
komp2name : datatype := pre-assignment;
...
END_STRUCT;

Table 24.5 Example of the declaration of a structure

Name Type Initial value Comment

MotCont STRUCT Simple structure tag with 4 components

On BOOL FALSE MotCont.On tag of type BOOL

Off BOOL TRUE MotCont.Off tag of type BOOL

Delay S5TIME S5TIME#5s MotCont.Delay tag of type S5TIME

maxSpeed INT 5000 MotCont.maxSpeed tag of type INT

END_STRUCT

24.2 Complex Data Types

433

Application

You can apply a complete variable at block pa-
rameters of data type STRUCT with the same
structure or at a block parameter of data type
ANY. For example, you can copy the contents
of a STRUCT variable with the system function
SFC 20 BLKMOV. You can also specify an in-
dividual structure component at a block param-
eter if the block parameter is of the same data
type as the component.

If the individual structure components are of el-
ementary data types, you can process them with
“normal” STL statements.

A structure component is accessed with the
structure name and the component name sepa-
rated by a dot.

Structure of the variables

A STRUCT variable always begins at a word
boundary, that is, at a byte with an even ad-
dress; following this, the individual compo-
nents are located in the memory in the order of
their declaration. STRUCT variables occupy
the memory up to the next word boundary.

Components with data type BOOL commence
in the least significant bit of the following byte;
components with data type BYTE and CHAR in
the following byte (Figure 24.6). Components
with other data types commence at a word limit.

A nested structure is a structure as a component
of another structure. A nesting depth of maxi-
mum 8 structures is possible. All components
can be addressed individually with"normal"
STL statements as long as they are elementary
data types. The individual names are each sep-
arated by a dot.

Figure 24.6 Structure of a STRUCT tag

24 Data Types

434

24.3 User-Defined Data Types

A user-defined data type (UDT) corresponds to
a structure (combination of components of any
data type) with global validity. You can use a
user-defined data type if a data structure occurs
frequently in your program or if you want to as-
sign a name to a data structure.

You create UDTs with the incremental editor
or with the text editor as a source file. They are
programmed and used in the STL and SCL
programming languages in the same way (you
can also use incrementally programmed UDTs
in SCL if they are located in the Blocks
object).

UDTs have global validity; i.e., once declared,
they can be used in all blocks. UDTs can be ad-
dressed symbolically; you assign the absolute
address in the symbol table. The data type of a
UDT (in the symbol table) is identical with the
absolute address.

If you want to give a variable the data structure
defined in the UDT, assign the UDT to it at dec-
laration like a “normal” data type. The UDT
can be absolutely addressed (UDT 0 to UDT
65,535) or symbolically addressed.

You can also define a UDT for an entire data
type. When programming the data block, you
assign this UDT to the block as a data structure.

The example “Message Frame Data” in Chap-
ter 26.4 “Brief Description of the Message Frame

Example” shows you how to work with user-de-
fined data types.

24.3.1 Programming UDTs
Incrementally

You create a user-defined data type either in the
SIMATIC Manager by selecting the Blocks ob-
ject and then INSERT S7 BLOCK DATA

TYPE, or in the editor by selecting FILE NEW

and entering “UDTn” in the “Object name” line.

A double-click on the UDT object in the pro-
gram window opens a declaration table that
looks exactly like the declaration table of a data
block. A UDT is programmed in exactly the
same way as a data block, with individual lines
for Name, Type, Initial value and Comments.
The only difference is that switching to the data
view is not possible. (With a UDT, you do not
create any variables but only a collection of da-
ta types; for this reason, there can be no actual
values here).

The initial values you program in UDT are
transferred to the tags in the declaration.

24.3.2 Source-File-Oriented Programming
of UDTs

The source-oriented entry of a UDT corre-
sponds to that of a STRUCT tag, "framed" by
the keywords TYPE and END_TYPE.

Table 24.6 Example of a user-defined UDT data type

Name Type Initial value Comment

STRUCT

Identifier WORD W#16#F200 UDT component identifier of type WORD

Number INT 0 UDT component number of type INT

Arrival TIME_OF_DAY TOD#0:0:0.0 UDT component arrival of type TOD

END_STRUCT

24.3 User-Defined Data Types

435

Declaration

TYPE, END_TYPE, STRUCT and END_
STRUCT are keywords that can also be written
in lower case.

udtname is the name of the user-defined data
type. In place of udtname, you can also use the
absolute address UDTn.

komp1name, komp2name etc. are the names of
individual structure components.

datatype is the data type of the individual com-
ponents. All data types can be used except
POINTER and ANY (not even as components
of a field or a structure).

User-defined data types are pre-assigned and
used like structures; the structure is the same as
for structures.

When pre-assigning a user-defined data type
UDT, the method of writing constants in STL
also applies in SCL (see the overview in Chap-
ter 3.7.3 “Elementary Data Types”).

Block properties

User-defined data types have a block header
which contains the block properties. With the
menu command FILE PROPERTIES in the edi-
tor, you can view and change the properties of
the currently opened block.

With source-oriented programming, use the
keywords provided for this purpose (Table
24.7).

TYPE udtname
STRUCT
komp1name : datatype := pre-assignment;
komp2name : datatype := pre-assignment;
...
END_STRUCT

END_TYPE

Table 24.7 Keywords for Programming User-
Defined Data Types UDT

Block type TYPE “Symbol” or UDTn

Header TITLE = Block title

//Block comment

KNOW_HOW_PROTECT

NAME : Block name

FAMILY : Block family

AUTHOR : Author

VERSION : Version

Declaration STRUCT

name Type = Pre-assignment;

END_STRUCT

Block end END_TYPE

25 Indirect Addressing

436

25 Indirect Addressing

Indirect addressing gives you the ability to as-
sign addresses that are not known until runtime.
With indirect addressing, you can also effect
multiple processing of program sections, for
example, in a loop, and with each pass, you can
assign a different address to the addresses used.
This chapter shows how the STL programming
language supports you here. Indirect addressing
for the SCL programming language is de-
scribed in the Chapter 27.2.3 “Indirect Address-
ing in SCL”.

Since the addresses are not calculated until run-
time in the case of indirect addressing, there is
a danger that memory areas could be inadver-
tently overwritten. The programmable control-
ler might then respond unpredictably! Please
exercise the utmost caution when using indirect
addressing!

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) under the “Variable Handling” program
in function block FB 125 or source file Chap_
25.

25.1 Pointers

The address for indirect addressing must be
structured in such a way that it contains the bit
address, the byte address and, if applicable, also
the address area. It therefore has a special for-
mat, called Pointer. A pointer is used for “point-
ing” to an address.

STEP 7 recognizes three types of pointers:

b Area pointers; these are 32 bits long and
contain a specific address

b DB pointers; these are 48 bits long and also
contain the number of the data block in ad-
dition to the area pointer

b ANY pointer; these are 80 bits long and
contain further specifications such as the da-
ta type of the address in addition to the DB
pointer

Only the area pointer is significant for indirect
addressing, the DB pointer and the ANY point-
er are used when transferring block parameters.
Since these pointer types contain the area point-
er, this chapter also describes the structure of
the DB pointer and the ANY pointer.

25.1.1 Area Pointer

The area pointer contains the address and pos-
sibly also the address area. Without the address
area, it is an area-internal pointer; if the pointer
also contains the address area, it is referred to as
an area-crossing pointer.

You can address an area pointer direct and load
it into the accumulator or into the address reg-
ister, since it is 32 bits long. The notation for
constant representation is as follows:

P#y x for an area-internal pointer
(for example P#22.0) and

P#Zy x for an area-crossing pointer
(for example P#M22.0)

where x = bit address, y = byte address and Z =
area. As the area, you specify the address iden-
tifier. The assignment of bit 31 differentiates
between the two pointer types (Figure 25.1).

The area pointer has a bit address that must al-
ways be specified even for digital addresses;
with digital addresses, the bit address is 0 (ze-
ro). With the area pointer P#M22.0, you can ad-
dress memory bit M 22.0 but also memory byte
MB 22, memory word MW 22 or memory dou-
bleword MD 22.

25.1.2 DB Pointer

A DB pointer also contains a data block number
as a positive INT number in addition to the area
pointer. It specifies the data block if the area
pointer contains the address areas global data or
instance data. In all other cases, the first two
bytes contain zero.

25.1 Pointers

437

Figure 25.1 Structure of the Pointer for Indirect Addressing

25 Indirect Addressing

438

You are familiar with the notation of the pointer
from the full addressing of data addresses. Here
too, the data block and the data address are
specified separated by a dot:

P#DataBlock.DataAddress

Example: P#DB 10.DBX 20.5

You cannot load this pointer; however, you can
apply it at a block parameter of parameter type
POINTER in order to point to a data address
(not in SCL). STEP 7 uses this pointer type in-
ternally in order to transfer actual parameters.

25.1.3 ANY Pointer

The ANY pointer also contains the data type
and a repetition factor in addition to the DB
pointer. This makes it possible to also point to a
data area.

The ANY pointer is available in two versions:
for variables with data types and for variables
with parameter types. If you point to a variable
with a data type, the ANY pointer contains a
DB pointer, the type and a repetition factor. If
the ANY pointer points to a variable with pa-
rameter type, it contains only the number in-
stead of the DB pointer, in addition to the type.
With a timer or counter function, the type is re-
peated in the byte (n+6); byte (n+7) contains
B#16#00. In all other cases, these two bytes
contain the value W#16#0000.

The first byte of the ANY pointer contains the
syntax ID; in STEP 7 it is always 10hex. The
type specifies the data type of the variables for
which the ANY pointer applies. Variables of el-
ementary data types, DT and STRING receive
the type shown in Figure 25.1 and the quantity 1.

If you apply a variable of data type ARRAY or
STRUCT (also UDT) to an ANY parameter, the
Editor generates an ANY pointer to the field or
the structure. This ANY pointer contains the
identifier for BYTE (02hex) as the type and the
number of bytes making up the length of the
variable as the quantity. The data type of the in-
dividual field or structure components are in-
significant here. An ANY pointer thus points to
a WORD field with double the quantity of

bytes. Exception: A pointer to a field consisting
of components of data type CHAR is also ap-
plied with CHAR type (03hex).

You can apply an ANY pointer at a block pa-
rameter of parameter type ANY if you want to
point to a variable or an address area (not in
SCL).

The constant representation for data types is as
follows:

P#[DataBlock.]Address Type Quantity

Examples:

b P#DB 11.DBX 30.0 INT 12
Area with 12 words in DB 11 from DBB 30

b P#M 16.0 BYTE 8
Area with 8 bytes from MB 16

b P#E 18.0 WORD 1
Input word IW 18

b P#E 1.0 BOOL 1
Input I 1.0

With parameter types, you write the pointer as
follows:

L# Number Type Quantity

Examples:

b L# 10 TIMER 1 Timer function T10
L# 2 COUNTER 1 Counter function Z2

The Editor then applies an ANY pointer that
agrees in type and in quantity with the specifi-
cations in the constant representation. Please
note that the memory location in the ANY
pointer for data types must always be a bit ad-
dress.

Specification of a constant ANY pointer is
meaningful if you want to access a data area for
which you have not declared a variable. In prin-
ciple, you can also apply variables or addresses
at an ANY parameter. For example, the repre-
sentation “P#I 1.0 BOOL 1” is identical to
“I 1.0” or the corresponding symbol address.

With parameter type ANY, you can also declare
variables in the temporary local data. You use
these variables to create an ANY pointer that

25.2 Types of Indirect Addressing in STL

439

can be modified at runtime (see Chapter 26.3.3
““Variable” ANY Pointer”).

If you do not specify any pre-assignment when
declaring an ANY parameter in a function
block, the Editor assigns 10hex to the syntax ID
and 00hex to the remaining bytes. It then repre-
sents these (empty) ANY pointers (in the data
view) thus: P#P0.0 VOID 0.

25.2 Types of Indirect Addressing
in STL

This section describes indirect addressing for
the STL programming language; for SCL,
please refer to Chapter 27.2.3 “Indirect Ad-
dressing in SCL”.

25.2.1 General

Indirect addressing is only possible with abso-
lute addressing. You cannot indirectly address
variables with symbolic addresses (you must
also access the components of a field individu-
ally and directly in STL). If you want to access
a variable indirectly, you must know the abso-
lute address of the variable. STL supports you
here with direct variable access (see next chap-
ter). Absolute addressing recognizes the fol-
lowing

b immediate addressing,

b direct addressing and

b indirect addressing.

Addressing via block parameters is a special
form of indirect addressing: By specifying the
actual parameter at the block parameter, you de-
termine the address to be processed at runtime.

We refer to immediate addressing when the
number value is specified together with the op-
eration. Examples of immediate addressing in-
clude loading a constant value into the accumu-
lator, shifting by a fixed value and also setting
and resetting the result of the logic operation
with SET or CLR.

With direct addressing, you access the address
direct, for example A I 1.2 or L MW 122. The
value you want to combine or load into the ac-

cumulator is located in an address, that is, in a
memory cell. You address this memory cell by
specifying the address direct in the STL state-
ment.

With indirect addressing, the STL statement in-
dicates where the address is to be found instead
of containing the address itself. We distinguish
between two types of indirect addressing de-
pending on the type of the indicator:

Memory-indirect addressing uses an address
from the system memory to accommodate the
address. Example: In the statement T QW [MD
220], the address of the output word to which
the transfer is to be made, is located in the
memory doubleword MD 220.

Register-indirect addressing uses an address
register to determine the address of the address.
Example: With the statement T QW
[AR1,P#2.0] a transfer is made to the output
word whose address is 2 (bytes) higher than the
address located in the address register AR1.

You can use register-indirect addressing in two
variants: With area-internal register-indirect
addressing, you program in the statement the
address area for which the address in the ad-
dress register is to apply. The address in the ad-
dress register therefore moves within an ad-
dress area (example: L MW[AR1,P#0.0], load
the memory word whose address is located in
AR1). With area-crossing register-indirect ad-
dressing, you specify only the address width
(bit, byte, word or doubleword) in the state-
ment; the address area is located in the address
register and can be modified dynamically (ex-
ample: L W[AR1,P#0.0], load the word whose
address area and address are located in the
AR1).

25.2.2 Indirect Addresses

Addresses that can be specified indirectly can
be divided into two categories:

b Addresses that can be assigned an elementa-
ry data type, and

b Addresses that can be assigned a parameter
type.

You can use memory-indirect and register-indi-
rect addressing with the former, but only mem-
ory-indirect addressing with the latter (Table

25 Indirect Addressing

440

25.1). The addresses that cannot have a bit ad-
dress also require no bit address in the pointer,
so that a 16-bit wide number is sufficient as the
address (unsigned INT number).

The areas of the pointers have a theoretical size
of 0 to 65535 (byte address or number). In prac-
tice, the addresses are restricted by the address
volume of the CPU in each case. The bit ad-
dress lies in the range from 0 to 7.

25.2.3 Memory-Indirect Addressing

With memory-indirect addressing, the address
is located in an address. This address has dou-
bleword width if an area pointer is required, or
word width, if indirect addressing via a number
is used.

The address can be within one of the following
address areas:

b Bit memory
as absolute address or as symbolically
addressed variable

b L stack (temporary local data)
as absolute address or as symbolically
addressed variable

b Global data block
as absolute address
When using global data addresses, please
ensure that the ‘correct’ data block is
opened via the DB register. If, for example,
you address a global data address indirect
via a global data doubleword, both opera-
tions must be located in the same data block.

b Instance data block
as absolute address or as symbolically
addressed variable
There are restrictions to the use of instance
data as addresses; see below.

If you use instance data as addresses in func-
tions, treat them in exactly the same way as glob-
al data addresses; you use only the DI register in
place of the DB register. Symbolic addressing is
not permissible in this case. You can use instance
data as addresses in function blocks only if you
compile the blocks as CODE_VERSION1 block
(no multi-instance capability).

Indirect addressing with an area pointer

The area pointer required for memory-indirect
addressing is always an area-internal pointer;
that is, it consists of byte and bit address. If you
want to address digital addresses, you must al-
ways specify 0 as the bit address.

Example: Memory doubleword MD 10 con-
tains the pointer P#30.0. The statement A M
[MD 10] accesses the memory bit whose ad-
dress is located in memory doubleword MD 10;
memory bit M 30.0 is therefore checked (Fig-
ure 25.2). With the statement L MW [MD 10],
you load memory word MW 30 into the accu-
mulator.

You can use memory-indirect addressing for all
binary addresses in conjunction with the binary
logic operations and the memory functions and
for all digital addresses in conjunction with the
load and transfer functions.

Indirect addressing with a number

The number for indirect addressing of timers,
counters and blocks is 16 bits wide. An address
of word width is sufficient for saving.

Example: Memory word MW 20 contains the
number 133. The statement OPN DB [MW 20]
opens the global data block whose number is
located in memory word MW 20. With the
statement SP T [MW 20] you start timer T 133
as a pulse.

Table 25.1 Indirect Addresses

Addresses that can be specified indirectly Addressing Pointer

Peripheral I/O, inputs, outputs, memory bits,
global data, instance data, temporary local data

Memory-indirect
and register-indirect

Area pointers, either area-internal
or area-crossing

Timers, counters, functions, function blocks,
data blocks

Memory-indirect 16-bit number

25.2 Types of Indirect Addressing in STL

441

You can use all timer and counter operations to-
gether with indirect addressing. You can open a
data block either via the DB register (OPN DB
[..]) or via the DI register (OPN DI [..]). If the
address word contains zero, the CPU executes a
NOP operation and “closes” the DB.

You can address the call of code blocks indi-
rectly with UC FC [..] and CC FC [..] or UC FB
[..] and CC FB [..]. Calling with UC or CC sim-
ply changes to another block; the transfer of
block parameters or the opening of an instance
data block does not take place.

Figure 25.2 Types of Indirect Addressing

25 Indirect Addressing

442

25.2.4 Register-Indirect Area-Internal
Addressing

With register-indirect area-internal addressing,
the address is located in one of the two address
register. The contents of the address register is
an area-internal pointer.

With register-indirect addressing, an offset is
specified in addition to the address register.
This offset is added to the contents of the ad-
dress register when the operation is executed
(without changing the contents of the address
register). This offset has the format of an area-
internal pointer. You must always specify it and
you can only specify it as a constant. With indi-
rect addressed digital addresses, this offset
must have the bit address 0. The maximum val-
ue is P#8191.7.

Example: Address register AR1 contains the ar-
ea pointer P#10.0 (with LAR1, you can load the
pointer direct into address register AR1, see be-
low). The statement A I [AR1,P#2.1] adds the
pointer P#2.1 to address register AR1 and so
forms the address of the input to be checked.
With the statement L MW [AR1,P#4.0], you
load memory word MW 14 into the accumulator.

Area-internal addressing with area-crossing
pointers

If the address register contains an area-crossing
pointer and if you use this address register in
conjunction with area-internal operations, the
address area in the address register is ignored.

Example: The following statements load an ar-
ea-crossing pointer to the global data bit DBX
20.0 into address register AR1 and then execute
area-internal addressing via AR1 on a memory
doubleword. When the load statement is exe-
cuted, memory doubleword MD 20 is loaded.

LAR1 P#DBX20.0;
L MD[AR1,P#0.0];

25.2.5 Register-Indirect Area-Crossing
Addressing

With register-indirect area-crossing addressing,
the address is located in one of the two address
registers. The contents of the address register is
an area-crossing pointer.

With area-crossing addressing, you write the
address area in conjunction with the area point-
er into the address register. If you use indirect
addressing you only specify an ID for the ad-
dress width as the address: no specification for
a bit, “B” for a byte, “W” for a word and “D”
for a doubleword.

As with area-internal addressing, you work
here with an offset that you specify with as a
fixed value with bit address. The contents of the
address register are not changed by the offset.

Example: Address register AR1 contains the ar-
ea pointer P#M12.0 (with LAR1 P#M12.0, you
can load the pointer direct into address register
AR1, see below). The statement

L B [AR1,P#4.0]

adds the pointer P#4.0 to address register AR1
and so forms the address of the memory byte to
be loaded (MB 16 in this case). With the state-
ment

= [AR1,P#0.7]

you assign the result of the logic operation
(RLO) to memory bit M 12.7.

25.2.6 Summary

When do you use which type of addressing? If
possible, use register-indirect area-internal ad-
dressing. STL supports this type of addressing
best. You see the accessed address area in the
operation and the CPU processes register-indi-
rect area-internal addressing fastest.

Memory-indirect addressing offers advantages
if more than two pointers are currently involved
in program execution. However, please note the
“validity period” of a pointer: A pointer in the
bit memory area is available without restriction
during the entire program even across several
program cycles. A pointer in a data block re-
mains valid as long as the data block is open. A
pointer in the temporary local data area remains
valid only during the runtime of the block.

If address areas are also to be accessible with
variable addressing during runtime, register-in-
direct area-crossing addressing is the right
choice.

Table 25.2 shows a comparison of indirect ad-
dressing types. All statement sequences shown

25.3 Working with Address Registers

443

lead to the same result, the setting of output
Q 4.7.

25.3 Working with Address Registers

The Figure 25.3 shows you the statements pos-
sible in combination with the address registers
in the STL programming language, as a list
above and as a diagram below.

All statements are executed without regard to
any conditions and they do not affect the status
bits.

25.3.1 Loading into an Address Register

The statement LARn loads an area pointer into
address register ARn. As the source, you can se-
lect an area-internal or area-crossing pointer or a
doubleword from the address areas bit memory,
temporary local data, global data and instance
data. The contents of the doubleword must cor-
respond to the format of an area pointer.

If you do not specify an address, LARn loads
the contents of accumulator 1 into address reg-
ister ARn.

With the statement LAR1 AR2, you copy the
contents of address register AR2 into address
register AR1.

Examples:

LAR2 P#20.0; //Load AR2 with P#20.0
L P#24.0;
LAR1 ; //Load AR1 with <Accum 1>
LAR1 MD 120; //Load AR1 with <MD 120>
LAR1 AR2; //Load AR1 with <AR2>

25.3.2 Transferring from an Address
Register

The statement TARn transfers the complete ar-
ea pointer from address register ARn. As the
destination, you can specify a doubleword from

the address areas bit memory, temporary local
data, global data and instance data.

If you do not specify an address, TARn transfers
the contents of address register ARn into accu-
mulator 1. In so doing, the previous contents of
accumulator 1 are shifted into accumulator 2; the
previous contents of accumulator 2 are lost.
Accumulators 3 and 4 remain unaffected.

With the statement TAR1 AR2, you copy the
contents of address register AR1 into address
register AR2.

Examples:

TAR2 MD 140; //Transfer <AR2>
to MD 140

TAR1 ; //Transfer <AR1>
to Accum 1

TAR1 AR2; //Transfer <AR1>
to AR2

25.3.3 Swap Address Registers

The statement CAR swaps the contents of ad-
dress registers AR1 and AR2.

Example: 8 Bytes of data are transferred be-
tween the bit memory area from MB 100 and
the data area from DB 20.DBB 200. The direc-
tion of transfer is determined by memory bit
M 126.6. If M 126.6 has signal state “0”, the
contents of the address registers are swapped. If
you want to transfer data between two data
blocks in this way, load the two data block reg-
isters (with OPN DB and OPN DI) together
with the address registers and swap with the
statement TDB.

LAR1 P#M100.0;
LAR2 P#DBX200.0;
OPN DB 20;
A M 126.6;
JC OV;
CAR ;

OV: L D[AR1,P#0.0];
T D[AR2,P#0.0];
L D[AR1,P#4.0];
T D[AR2,P#4.0];

Table 25.2 Comparison of Indirect Addressing Types

Memory-Indirect Register-Indirect Area-Internal Register-Indirect Area-Crossing

L P#4.7 LAR1 P#4.7 LAR1 P#Q4.7

T MD 24

S Q [MD 24] S Q [AR1,P#0.0] S [AR1,P#0.0]

25 Indirect Addressing

444

LAR1 - Load address register AR1
LAR2 - Load address register AR2

P#Zy.x with an area-crossing pointer
P#y.x with an area-internal pointer

LAR1 - Load address register AR1 with the content of
LAR2 - Load address register AR2 with the contents of

MD y a memory doubleword
LD y a local data doubleword
DBD y a global data doubleword
DID y an instance data doubleword 1)

LAR1 Load address register AR1 with the contents of accumulator 1
LAR2 Load address register AR2 with the contents of accumulator 1
LAR1 AR2 Load address register AR1 with the contents of address register AR 2

TAR1 - Transfer the contents of address register AR1 to
TAR2 - Transfer the contents of address register AR2 to

MD y a memory doubleword
LD y a local data doubleword
DBD y a global data doubleword
DID y an instance data doubleword 1)

TAR1 Transfer the contents of address register AR1 to accumulator 1
TAR2 Transfer the contents of address register AR2 to accumulator 1
TAR1 AR2 Transfer the contents of address register AR1 to accumulator AR 2

CAR Swap the contents of the address registers

+AR1 Add the contents of accumulator 1 to address register AR 1
+AR2 Add the contents of accumulator 1 to address register AR 2
+AR1 P#y.x Add a pointer to the contents of address register AR1
+AR2 P#y.x Add a pointer to the contents of address register AR2

1) There are restrictions to the use of these addresses
(see “Special Features of Indirect Addressing” below)

Figure 25.3 STL Statements in Conjunction with Address Registers

25.3 Working with Address Registers

445

Note: System function SFC 20 BLKMOV is
available for transferring larger data areas.

25.3.4 Adding to the Address Register

You can add a value to the address registers in or-
der, for example, to increment an address at each
loop pass in program loops. You either specify
the value as a constant (as an area-internal point-
er) in the statement, or the value is located in the
right-hand word of accumulator 1. The type of
pointer in the address register (area-internal or
area-crossing) and the address area are retained.

Adding with pointers

The statements +AR1 P#y x and +AR2 P#y x add
a pointer to the address register specified. Please
note, that with these statements, the area pointer
has a maximum size of P#4095.7. If the accumu-
lator contains a value greater than P#4095.7, the
number is interpreted as a fixed-point number in
two’s complement and subtracted (see below).

Example: A data area is to be compared word-wise
with a value. If the comparison value is greater
than the value in the data field, a memory bit is to
be set to “1”, otherwise it is to be set to “0”.

OPN DB 14;
LAR1 P#DBX20.0;
LAR2 P#M10.0;
L Quantity_Data;

Loop: T LoopCounter;

L ComparisonVal;

L W[AR1,P#0.0];

>I ;

= [AR2,P#0.0];

+AR1 P#2.0;

+AR2 P#0.1;

L LoopCounter;

LOOP Loop;

Adding with value in the accumulator

The statements +AR1 and +AR2 interpret the
value in accumulator 1 as a number in INT for-
mat, extend it with the correct sign to 24 bits
and add it to the contents of the address register.
In this way, a pointer can also be reduced. Vio-
lation of the maximum range of the byte ad-
dress (0 to 65535) has no further effects: The
uppermost bits are “cut” (Figure 25.4).

Please note, that the bit address is located in bits
0 to 2. If you want to increment the byte address
already in accumulator 1, you must add from bit
3 (shift the value by 3 to the left).

Example: In data block DB 14, the 16 bytes
whose addresses are calculated from the pointer
in memory doubleword MD 220 and a (byte)
offset in memory byte MB 18 are to be deleted.
Before adding to AR1, the contents of MB 18
must be adjusted (SLW 3).

Figure 25.4 Adding to the Address Register

25 Indirect Addressing

446

OPN DB 14;
LAR1 MD 220;
L MB 18;
SLW 3;
+AR1 ;
L 0;
T DBD[AR1,P#0.0];
T DBD[AR1,P#4.0];
T DBD[AR1,P#8.0];
T DBD[AR1,P#12.0];

Note: System function SFC 21 FILL is avail-
able for filling larger data areas with bit pat-
terns.

25.4 Special Features of Indirect
Addressing

25.4.1 Using Address Register AR1

STL uses address register AR1 to access block
parameters that are transferred as DB pointers.
In the case of functions, these include all block
parameters of complex data type and in the case
of function blocks, it means in/out parameters
of complex data type.

When you access a block of this kind, in order,
for example, to check a bit component of a
structure or to write an INT value to a field
component, the contents of address register
AR1 are changed and so, incidentally, are the
contents of the DB register. This also applies
when you ‘pass on’ block parameters of this da-
ta type to called blocks.

If you use address register AR1, there must be
no block parameter access as described above
between loading the address register and indi-
rect addressing. Otherwise, you must save the
contents of AR1 before the access, and load
them again following the access.

Example: You load a pointer into AR1 and use
this address register for indirect addressing. In
the meantime, you want to load the value of the
structure component Motor.Act. Before loading
Motor.Act, you save the contents of the DB reg-
ister and address register AR1; after loading,
you restore the contents of the registers (Figure
25.5 top).

25.4.2 Using Address Register AR2

With “multi-instance-capable” function blocks
(block version 2), STEP 7 uses address register
AR2 as the “Base address register” for instance
data. When an instance is called, AR2 contains
P#DBX0.0 and all accesses to block parameters
or static local data in the FB use register-indi-
rect area-internal addressing with the address
area DI via this register. A call of a local in-
stance increments the “base address” with
+AR2 P#y.x, so that access can be made rela-
tive to this address within the called function
block that uses the instance data block of the
calling function block. In this way, function
blocks can be called both as autonomous in-
stances and as local instances (and here at any
point in a function block, even several times).

If you program a function block with block ver-
sion 1 (no “multi-instance capability”), STEP 7
does not use address register AR2.

So if you want to use address register AR2 in a
function block with multi-instance capability,
you must first save the contents and then restore
them after use. You must not program any block
parameter or static local data accesses in the ar-
ea in which you work with address register
AR2.

Within functions, there are no restrictions on
working with address register AR2.

Example: You want to perform indirect ad-
dressing in a function block with AR2 and the
DI register. First, you save their contents. You
must not access block parameters or static local
data again until you have restored the contents
of AR2 and the DI register (Figure 25.5 bot-
tom).

25.4.3 Restrictions with Static Local Data

With function blocks compiled with CODE_
VERSION1 (no “multi-instance capability”),
you can use all statements described in this
chapter without restriction.

In the case of function blocks with “multi-in-
stance capability”, the Editor accesses instance
data via address register AR2; that is, all ac-
cesses are indirect. This also applies in con-
junction with indirect addressing or when han-
dling address registers. If you use absolute ad-

25.4 Special Features of Indirect Addressing

447

dressing for the instance data in which you
store area pointers, the Editor adopts the abso-
lute address. However, as soon as you use sym-
bolic addressing, the Editor rejects this pro-
gramming as “double indirect addressing”.

Table 25.3 gives two examples of this: If you
are using memory-indirect addressing in the
case of function blocks with “multi-instance ca-

pability”, you cannot use direct a pointer that
you want to store in the static local data. You
copy the pointer into a temporary local data
item and then you can work with it. You cannot
load the pointer in the static local data direct in-
to an address register and you cannot transfer
the contents of an address register direct to the
pointer (second example).

//******************** Save address register AR1 *************************
...
VAR_TEMP
 AR1_Memory : DWORD;
 DB_Memory : WORD;
END_VAR
...
//Indirect addressing with AR1 and DB register
LAR1 P#y.x;
OPN DB z;
...
//Save the register contents
L DBNO;
T DB_Memory;
TAR1 AR1_Memory;
//Access block parameters of complex data types
L Motor.Act;
//Restore the register contents
OPN DB [DBMemory];
LAR1 AR1_Memory;
T DBW[AR1,P#0.0];// store loaded value

//******************** Save address register AR2 *************************
...
VAR_TEMP
 AR2_Memory : DWORD;
 DI_Memory : WORD;
END_VAR
...
//Save the register contents
L DINO;
T DI_Memory;
TAR2 AR2_Memory;
//Indirect addressing with AR2 and the DI register
LAR2 P#y.x;
OPN DI z;
...
L DIW[AR2, P#0.0];
...
//Restore the register contents
OPN DI [DI_Memory];
LAR2 AR2_Memory;

Figure 25.5 Examples: Saving Address Registers AR1 and AR2

25 Indirect Addressing

448

Table 25.3 Different Programming in the Case of Static Local Data

In the FB with CODE_VERSION1
(no “multi-instance capability”)

In function block with “multi-instance
capability”

VAR
sPointer : DWORD;

END_VAR

VAR
sPointer : DWORD;

END_VAR
VAR_TEMP

tPointer : DWORD;
END_VAR

L MW[sPointer];

L sPointer;
T tPointer;
L MW[tPointer];

LAR1 sPointer; L sPointer;
LAR1;

TAR1 sPointer; TAR1;
T sPointer;

26 Direct Variable Access

449

26 Direct Variable Access

This chapter shows you how to access the abso-
lute addresses of local variables direct. The
“normal” STL statements are available for local
variables of elementary data types. Local vari-
ables of complex data types or block parame-
ters of type POINTER or ANY cannot be han-
dled “as a whole”. To process these variables,
you first calculate the starting address at which
the variable is stored and you then process parts
of the variable with indirect addressing. In this
way, you can also process block parameters of
complex data types.

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the STL_Book library under the
“Variable Handling” program in function block
FB 126 or source file Chap_26.

26.1 Loading the Variable Address

The following statements give the starting ad-
dress of a local variable

L P#name;
LAR1 P#name;
LAR2 P#name;
with name as the name of the local variable.
These statements load an area-crossing pointer
into accumulator 1 or into address register AR1

or AR2. The area pointer contains the address
of the first byte of the variable. If name cannot
be identified uniquely as the local variable, in-
sert a “#” before the name so that the statement
becomes, for example: L P##name. Depending
on the block, the variable areas listed in Table
26.1 are permissible for name.

With functions, the address of a block parame-
ter cannot be loaded direct into an address reg-
ister. You can take the route via accumulator 1
here (for example: L P#name; LAR1;).

In function blocks compiled with the keyword
CODE_VERSION1 (no “multi-instance capa-
bility”), the absolute address of the instance
variable is loaded.

In “multi-instance capable” functions blocks,
the absolute address relative to address register
AR2 is loaded in the case of the static local data
and the block parameters. If you want to calcu-
late the absolute address of the variable in the
instance data block, you must add the area-in-
ternal pointer (address only) of AR2 to the
loaded variable address.

Example 1:
Load variable address into address register AR1

TAR2 ;
UD DW#16#00FF_FFFF;
LAR1 P#name;
+AR1 ;

Table 26.1 Loading Permissible Addresses for Variable Addresses

Operation name is a OB FC FB V1 FB V2

L P#name temporary local datum x x x x

static local datum - - x x 1)

block parameter - x x x 1)

LARn P#name temporary local datum x x x x

static local datum - - x x 1)

block parameter - - x x 1)

1) Variable address relative to the address register AR2

26 Direct Variable Access

450

With the first two statements, the address in the
AR2 is loaded into the accumulator and
masked. The content of the AR1 is then added.
As a result, the address of the tags #name is lo-
cated in AR1.

Example 2:
Load variable address into accumulator 1

TAR2 ;
UD DW#16#00FF_FFFF;
L P#name;
+D ;

Similarly to example 1, the result of this is that
accumulator 1 then contains the address of the
variable #name.

The addition of the area-internal pointer can be
omitted if it has the value P#0.0. This is the case
if you do not use the function block as a local
instance.

Please note that “LAR2 P#name” overwrites
address register AR2 that is used in the case of
“multi-instance capable” function blocks as the
“base address register” for addressing the in-
stance data!

You can only access one overall variable with
these load statements and not individual com-
ponents of fields, structures or local instances.
You cannot reach variables in global data
blocks or in the address areas inputs, outputs,
peripheral I/O and bit memory with these load
statements.

Table 26.2 shows you how to calculate the ad-
dress of an INT and a STRING variables in the
static local data and how to work with this ad-
dress. If you use the example program in a
function block that you call as a local instance,
you must add the base address to the variable
address as shown above.

26.2 Data Storage of Variables

26.2.1 Storage in Global Data Blocks

The Editor stores the individual variables in the
data block in the order of their declaration. Es-
sentially, the following rules apply here:

b The first bit variable of an uninterrupted
declaration sequence is located in bit 0 of

Table 26.2 Load Variable Address (Examples)

//Variable declaration (function block is not local instance!)

//Variable assignment begins at address P#0.0

VAR

Field : ARRAY [1..22] OF BYTE; //ARRAY variable, occupies 22 bytes

Number : INT := 123; //INT variable, occupies 2 bytes

FirstName : STRING[12] := 'Joane'; //STRING variable, occupies 5 bytes

END_VAR

LAR1 P#Number; Loads the starting address of Number into AR1
AR1 now contains P#DIX22.0

L W[AR1,P#0.0]; Corresponds to the statement L DIW 22 or L Number

LAR1 P#FirstName; Loads the starting address of FirstName into AR1
AR1 now contains P#DIX24.0

L B[AR1,P#0.0]; Loads the first byte (maximum length of the character string) into accumulator 1

L B[AR1,P#2.0]; Loads the third byte (first relevant byte) into accumulator 1

L 'John';
T D[AR1,P#2.0];

Writes ‘John’ into the character string

L 4;
T B[AR1,P#1.0];

Corrects the current length of the character string to 4
The variable FirstName now contains ‘John’

26.2 Data Storage of Variables

451

the next byte followed by the next bit vari-
ables.

b Byte variables are stored in the next byte.

b Word and doubleword variables always start
at a word boundary, that is, at a byte with an
even address.

b DT and STRING variables start at a word
boundary.

b ARRAY variables start at a word boundary
and are “filled” up to the next word bound-
ary. This applies also for bit and byte fields.
Field components of elementary data types
are stored as described above. Field compo-
nents of higher data types start at word
boundaries. Each dimension of a field is
aligned like an autonomous field.

b STRUCT variables begin at a word bound-
ary and are “filled” up to the next word
boundary. This applies also for purely bit
and byte structures. Structure components
of elementary data types are stored as de-
scribed above. Structure components of
higher data types begin at word boundaries.

By combining bit variables and arranging byte
variables in pairs, you can optimize data stor-
age in a data block.

In Figure 26.1, you can see one example each of
non-optimized and optimized data storage.
Please note that the Editor always “fills” AR-
RAY and STRUCT variables up to the next
word, that is, no bit or byte variables can be
stored in byte gaps. However, you can have op-
timized arrangement of the variables within the
structure.

26.2.2 Storage in Instance Data Blocks

The Editor stores the variables in an instance
data block in the following order:

b Input parameters

b Output parameters

b In/out parameters

b Local variables (including local instances)

Each variable is stored in the order of its decla-
ration. The declaration areas each begin at a

word boundary, that is, at a byte with an even
address. Within the declaration areas, the indi-
vidual variables are arranged as described in the
previous chapter (as in a global data block).
Figure 26.2 shows an example for the assign-
ment of an instance data block.

26.2.3 Storage in the Temporary Local Data

Storage of the variables in the temporary local
data (L stack) corresponds to storage in a global
data block. The assignment always begins at
(relative) byte 0. Please note, that in organiza-
tion blocks, the first 20 bytes are occupied by
the start information. Even if you do not use the
start information, the first 20 bytes must be de-
clared (even if only with a field of 20 bytes).

The Editor itself also uses local data, for exam-
ple when transferring parameters in a block
call. The Editor applies the symbolically de-
clared temporary local data and the temporary
local data it uses itself in the order of their dec-
laration or their use. The absolutely addressed
temporary local data are not taken into account
here, so that overlaps can occur if you do not
know which local data the Editor is applying. If
you want or have to access local data with ab-
solute addressing, you can, for example, de-
clare at the first location of the temporary local
data declaration a field that keeps free the re-
quired number of bytes (words, doublewords).
You can then make absolute accesses in this
field area. With organization blocks, you define
the field after the 20 bytes for the start informa-
tion.

The example in Figure 26.3 shows the assign-
ment of the temporary local data of an organi-
zation block. The field Ldata starts immediate-
ly following the start information, at byte LB 20
and stretches in this example to byte LB 35.
The Editor does not occupy this area with its
own temporary data so you can use this area for
absolute addressing.

The start information is omitted in functions
and function blocks. If you require the tempo-
rary local data for absolute addressing, apply
the field as the first variable in these blocks; it
then begins at byte LB 0.

26 Direct Variable Access

452

Figure 26.1 Example of assignment of a data block

BYTE

BYTE
REAL REAL

BOOL BOOL
Bit Bit

ARRAY

ARRAY

OF BOOL

OF BOOL

STRUCT

STRUCT

BOOL

BOOL

STRING

STRING

DATE

DATE

BYTE

BYTE

INT

INT

(Filler byte)

(Filler byte)

(Filler byte)

(Filler byte)

(Filler byte)

(Filler byte)

BYTE

BYTE

(Filler byte)

7 76 65 54 43 3
3 3

3

33

3

2 2
2 2

2

22

2

1 1
1 1

1

11

1

0 0

Even
byte
address

Even
byte
address

DATA BLOCK StorageNotOptimized
STRUCT

Bit1 : BOOL ;
Bit2 : BOOL ;
Bit3 : BOOL ;
Real1 : REAL;
Byte1 : BYTE;
Bit array : ARRAY [1..3] OF BOOL;
Structure : STRUCT

S Bit1 : BOOL ;
S Bit2 : BOOL ;
S Bit3 : BOOL ;
S Int1 : INT ;
S Byte : BYTE;
END STRUCT;

Characters: STRING[3];
Date : DATE ;
Byte2 : BYTE;

END STRUCT
BEGIN
END DATA BLOCK

DATA BLOCK StorageOptimized
STRUCT
Bit1 : BOOL ;
Bit2 : BOOL;
Bit3 : BOOL;
Byte1 : BYTE;
Real1 : REAL;
Bit array : ARRAY [1..3] OF BOOL;
Structure : STRUCT

S Bit1 : BOOL ;
S Bit2 : BOOL ;
S Bit3 : BOOL ;
S Byte : BYTE;
S Int1 : INT ;
END STRUCT;

Characters: STRING[3];
Byte2 : BYTE;
Date : DATE ;

END STRUCT
BEGIN
END DATA BLOCK

26.2 Data Storage of Variables

453

Figure 26.2
Example of assignment of an instance data block

Figure 26.3
Example of assignment of the L stack for
organization blocks

26 Direct Variable Access

454

26.3 Data Storage when Transferring
Parameters

The block parameters are stored differently in
functions and function blocks. You as the user
need not be concerned with this; you program
the block parameters for both block types in the
same way. However, this difference is extreme-
ly important for direct block parameter access.

26.3.1 Parameter Storage in Functions

The Editor stores a block parameter of a func-
tion as area-crossing area pointer in block code
in accordance with its own call statement so
that each block parameter requires one double-
word of memory. Depending on data type and
declaration type, the pointer points to the actual
parameter itself, to a copy of the actual param-
eter in the temporary local data of the calling
block (set up by the Editor), or to a pointer in
the temporary local data of the calling block
that in turn points to the actual parameter (Table
26.3). Exception: With the parameter types
TIMER, COUNTER and BLOCK_xx the
pointer is a 16-bit number located in the left-
hand word of the block parameter.

With elementary data types, the block parame-
ter points direct to the actual parameter (Figure
26.4). However, with the area-pointer as block
parameter, you cannot reach any constants or
addresses located in data blocks. For this rea-
son, at the compiling stage, the Editor copies a
constant or a (fully-addressed) actual parameter
located in a data block into the temporary local
data of the calling block and directs the area
pointer to this. This parameter area is called V
(temporary local data of the preceding block, V
area).

Copying to the V area takes place before the ac-
tual FC call with input parameters and with in/
out parameters and after the call with in/out and
output parameters and therefore also with the
function value. For this reason, the rule that you
can only check input parameters and write to
output parameters also applies. If, for example,
you transfer a value to an input parameter with
a fully-addressed data address, the value will be
stored in the temporary local data of the preced-
ing block and it will be forgotten because no
more copying take place to the “actual” vari-
able in the data block.

It is a similar story for loading a corresponding
output parameter: Since no copying takes place
from the “actual” variable from the data block
to the V area, you load an (indeterminate) value
from the V area in this case.

Because of the copy operation, you have to
overwrite an output parameter, and therefore al-
so a function value, of elementary data type in
the block with a defined value if a fully ad-
dressed data address is envisaged or could be
envisaged as the actual parameter. If you do not
assign a value to the output parameter (e.g. by
previously exiting the block or by jumping the
program location) the local datum will also not
be initialized. It is then at the value it “hap-
pened” to have prior to the block call. The out-
put parameter is then overwritten with this “un-
defined” value.

With complex data types (DT, STRING, AR-
RAY, STRUCT as well as UDT), the actual pa-
rameters are located either in a data block or in
the V area. Since an area pointer cannot reach
an actual parameter in a data block, the Editor
creates a DB pointer in the V area at the com-
piling stage. Since pointer then points to the ac-
tual parameter in the data block (DB No. <> 0)

Table 26.3 Parameter Storage in Functions

Data Type INPUT IN_OUT OUTPUT

The parameter is an area pointer to

Elementary a value a value a value

Complex a DB pointer a DB pointer a DB pointer

TIMER, COUNTER, BLOCK a number not possible not possible

POINTER a DB pointer a DB pointer a DB pointer

ANY an ANY pointer an ANY pointer an ANY pointer

26.3 Data Storage when Transferring Parameters

455

or to the V area (DB No. = 0). The DB pointers
for all declaration types in the V area are creat-
ed before the ‘actual’ FC call.

With the parameter types TIMER, COUNTER
and BLOCK_xx the block parameter contains a
number (16 bits left-justified in the 32-bit pa-
rameter) instead of the area pointer.

The parameter type POINTER is handled in ex-
actly the same way as a complex data type.

With the parameter type ANY, the editor cre-
ates a 10-byte ANY pointer in the V area which
may point to any variable. The same principle
applies as with complex data types.

The Editor makes an exception if you apply at
a block parameter of type ANY an actual pa-
rameter that is located in the temporary local
data and is of data type ANY. The Editor then
does not create any more ANY pointers, but
instead directs the area pointer (the block pa-

Figure 26.4 Transferring Parameters in Functions

26 Direct Variable Access

456

rameter) straight to the actual parameter (in
this case, the ANY pointer can be modified at
runtime, see Chapter 26.3.3 ““Variable” ANY
Pointer”).

26.3.2 Storing Parameters in
Function Blocks

The Editor stores the block parameters of a
function block in the function block’s instance
data block. At the function block call, the Edi-
tor generates statement sequences that copy the
values of the actual parameters into the instance
data block before the actual call and then copy
them back from the instance data block to the
actual parameters following the call. You do not
see these statement sequences when you look at
the compiled block. You only notice it indirect-
ly in the occupied memory space.

In the instance data block, the block parameters
are stored either as a value, as a 16-bit number
or as a pointer to the actual parameter (Table
26.4). When stored as a value, the memory re-
quired depends on the data type of the block pa-
rameter; the number occupies 2 bytes, the
pointers occupy 6 bytes (DB pointers) or 10
bytes (ANY pointers).

The relationships between block parameters,
instance data assignments and actual parame-
ters are shown in Figure 26.5. When copying
actual parameters of complex data types into
the instance data block (input parameters) or
back to the actual parameter (output parame-
ter), the Editor uses the system function SFC 20
BLKMOV, whose parameters it builds up in the
temporary local data area of the calling block.

Copying block parameters that are stored as a
value in the instance data block is carried out
using statement sequences before the “actual”
FB call in the case of input parameters and in/
out parameters, and after the call in the case of

in/out and output parameters. For this reason,
the rule that you can only check input parame-
ters and write to output parameters also applies.
If, for example, you transfer a (new) value to an
input parameter, the current value of the actual
parameter is lost. If you load an output parame-
ter, you load the (old) value in the instance data
block and not that of the actual parameter.

Because the block parameters are stored in the
instance data block, they need not be initialized
every time the function block is called. When
no initialization is made, the program works
with the “old” value of the input or in/out pa-
rameter or you fetch the value of the output pa-
rameter from another subsequent position in the
program. Outside the function block, you can
access variables in the instance data block in
the same way as you do variables in a global da-
ta block (with the symbolic name of the data
block and the name of the block parameter).
The same applies also for the static local data.

If you apply a temporary local variable of data
type ANY at an ANY parameter, the Editor
copies the contents of this variable into the
ANY pointer (into the block parameter) in the
instance data block.

26.3.3 “Variable” ANY Pointer

ANY parameters can only be parameterized
with data areas or variables that must be de-
fined already at the compiling stage. Example:
Copying a variable into a data area with SFC 20
BLKMOV

CALL SFC20 (
SRCBLK := "ReceiveMailbox".Data,
RET_VAL := SFC20Error,
DSTBLK := P#DB63.DBX0.0 BYTE 8);

It is possible to modify or re-define the variable
or the data area at runtime because the Editor

Table 26.4 Storing Parameters in the Case of Function Blocks

Data Type INPUT IN_OUT OUTPUT

Elementary Value Value Value

Complex Value DB pointer Value

TIMER, COUNTER, BLOCK Number not possible not possible

POINTER DB pointer DB pointer not possible

ANY ANY pointer ANY pointer not possible

26.3 Data Storage when Transferring Parameters

457

applies a fixed ANY pointer to the actual pa-
rameter in the temporary local data (see below
in this chapter).

The Editor makes an exception to this if the ac-
tual parameter itself is in the temporary local
data and the is of data type ANY. Then no fur-
ther ANY pointer is set up, instead the Editor
interprets these ANY variables as ANY point-
ers to the actual parameter. This means that the
ANY variable must have the same structure as
an ANY pointer.

You can now modify these ANY variables in
the temporary local data at runtime and so spec-
ify another actual parameter for an ANY pa-
rameter. To apply this “variable” ANY pointer,
proceed as follows:

b Applying a temporary local variable of data
type ANY (The name of the ANY variable
can be selected freely within the permissible
framework for block-local variables.):

VAR_TEMP
 ANY_POINTER : ANY;
END_VAR

b Providing the ANY tag with values:

b Initialize the ANY parameter, for example,
at an SFC 20

CALL SFC20 (
SRCBLK := "ReceiveMailbox".Data,
RET_VAL := SFC20Error,
DSTBLK := ANY_POINTER);

This procedure is not restricted to SFC 20
BLKMOV; you can use it on all ANY parame-
ters of any blocks.

Figure 26.5 Transferring Parameters in the Case of Function Blocks

The address is known at
runtime (e.g. from 0)

The address is not known
at runtime

LAR1 P#ANY_POINT-
ER;

L W#16#1002; L W#16#1002;

T LW 0; T LW[AR1,P#0.0];

L 16; L 16;

T LW 2; T LW[AR1,P#2.0];

L 63; L 63;

T LW4; T LW[AR1,P#4.0];

L P#DBX0.0; L P#DBX0.0;

T LD 6; T LD[AR1,P#6.0];

26 Direct Variable Access

458

Example: We want to write a copy block that is
to copy data areas between data blocks. The
source and target area is to be parameterizable.
We use SFC 20 BLKMOV for copying. The
block – a function FC – has the following pa-
rameters:

VAR_INPUT
QDB : INT; //Source data block
SSTA : INT; //Source starting

address
NUMB : INT; //Number of bytes
DDB : INT; //Destination data block
DSTA : INT; //Destination starting

address
END_VAR
The function value is to contain the error mes-
sage of SFC 20 and can then also be evaluated as
if we were using SFC 20 direct. In addition, the
status bit BR is set to “0” in the event of an error.

Two ANY variables, one as a pointer for the
source area and one as a pointer for the target
area, are sufficient for the block-local data:

VAR_TEMP
SANY : ANY; //ANY pointer source
DANY : ANY; //ANY pointer

destination
END_VAR

Since we know the addresses of the ANY point-
ers in the temporary local data, we can program
them with absolute addresses, for example, the
preparation of a source pointer:

L W#16#1002;//Type BYTE
T LW 0;
L NUMB; //Number of bytes
T LW 2;
L QDB; //Source DB
T LW 4;
L SSTA; //Start of the source
SLD 3;
OD DW#16#8400_0000;
T LD 6;

The destination pointer starting at address LB
10 is prepared in the same way.

It only remains to initialize SFC 20:

CALL SFC20 (
SRCBLK := SANY,
RET_VAL := RET_VAL,
DSTBLK := DANY);

The function value RET_VAL of SFC 20 is ini-
tialized with the function value RET_VAL of
our function FC.

This little example in full can be found in the
download files (download address: see pages 8-
9) (function FC 47 in the program “General Ex-
amples”).

In this way, an ANY pointer can be assigned
any value, for example, you can vary the type in
word 2 or the area pointer so that in principle,
you can address any variables and data areas,
for example also the bit memory area.

Note: if the ANY pointer located in the tempo-
rary local data points to a variable that is also
located in the temporary local data of the call-
ing block, V must be entered as the address area
because from the viewpoint of the called block,
this variable is located in the temporary local
data of the predecessor block.

26.4 Brief Description of the
Message Frame Example

The following examples will deepen your un-
derstanding of how to handle complex vari-
ables. the program of the different blocks each
emphasizes a specific aspect of this topic. The
declared technological function of the exam-
ples such as “Generate_ Frame” and “Check-
sum”, are intended only to make things clearer
and, where necessary, are dealt with only briefly.

At this point, the examples are described with
text and figures. The program can be found in
the download files (download address: see pag-
es 8-9) in the STL-Book library under the pro-
gram “Message Frame Example”.

This example consists of the following sec-
tions:

b Message frame data
(UDT 51, UDT 52, DB 61, DB 62, DB 63)
shows how to handle self-defined data
structures

b Clock check (FC 61)
shows how to handle system blocks and
standard blocks

b Checksum (FC 62)
shows how to use direct variable access

26.4 Brief Description of the Message Frame Example

459

b Generate frame (FB 51)
shows how to use SFC 29 BLKMOV with
fixed addresses

b Store frame (FB 52)
Shows how to use the “variable” ANY pointer

b Date conversion (FC 63)
shows the processing of variables of com-
plex data types

Message frame data example

The example shows how you can define fre-
quently occurring data structures as your own
data type and how to use this data type in vari-
able declaration and parameter declaration.

We establish a database for incoming and out-
going frames: A send mailbox with the struc-
ture of a message frame, a receive mailbox with
the same structure and a (receive) ring buffer
for intermediate storage of the incoming mes-
sage frames (Figure 26.6).

Since the data structure of the message frame
occurs frequently, we want to make it a user-de-
fined data type (UDT) Frame. The frame con-
tains a frame header; we also want to give a

name to the structure of the frame header. The
send mailbox and the receive mailbox are to be
data blocks each containing a variable with the
structure of Frame. Finally, there is the ring
buffer, a data block with a field of eight compo-
nents that also have the data structure of Frame.

First, we define the UDT Header, then the UDT
Frame. Frame consists of a structure Header, a
field Measured_values with 4 components and
a variable Check. All components are initial-
ized with zero. In the data blocks “Send_mailb”
and “Rec_mailb”, a variable Data with the
structure Frame is defined in each case.

The variables can now be individually initial-
ized in the initialization section of the data
block. In the example, the component ID re-
ceives a value in each case that deviates from
the initialization in the UDT. The data block
“Buffer” contains the variable Entry as a field
with 8 components of the structure Frame.

Here too, the individual components can be ini-
tialized with different values in the initializa-
tion section (for example:
Entry[1].Header.Numb := 1).

Figure 26.6 Data Structure for the Message Frame Data Example

26 Direct Variable Access

460

This example contains the following objects
that are used in the examples that follow:

UDT 51 User-defined data type Header

UDT 52 User-defined data type Frame

DB 61 Send mailbox (Send_mailb)

DB 62 Receive mailbox (Rec_mailb)

DB 63 Buffer

Clock check example

The example shows how to handle system
blocks and standard blocks (error evaluation,
copying from the library, renaming).

The function “Clock_check” is to output the
time-of-day in the CPU-integrated real-time
clock as a function value. For this purpose, we
require the system function SFC 1 READ_CLK
that reads the date and time-of-day of the real-
time clock in data format DATE_AND_TIME
or DT. Since we only want to read the time-of-
day, we also require the IEC function FC 8 DT_
TOD. This function fetches the time-of-day in
format TIME_OF_DAY or TOD from the data
format DT (Figure 26.7)

The time specification of the real-time clock is
stored in data block “Data66” since we still re-

quire this information for the “Date conver-
sion” example. Without this additional use, we
could have also declared a temporary local vari-
able instead of the variable CPU_Tim.

Error evaluation

The system functions signal an error via the bi-
nary result BR and the via the function value
RET_VAL. An error exists if the binary result
BR = “0”; the function value is then also nega-
tive (bit 15 is set). The IEC standard functions
signal an error only via the binary result.

Both types of error evaluation are shown in the
example. In the “Clock_Check” function, the
binary result is first set to “1”; if an error exists,
the binary result is set to “0” by the relevant
block. Then an invalid value is output for the
time-of-day. After the “Clock_check” function
has been called, you can also check for an error
via the binary result.

Offline programming of system functions

Before compiling the example program or be-
fore calls in incremental program input, the of-
fline user program must contain the system
function SFC 1 and the standard function FC 8.

Figure 26.7 Clock Check Example

26.4 Brief Description of the Message Frame Example

461

Both functions are included in the scope of sup-
ply of STEP 7. You can find these functions in
the block libraries supplied. (For the system
functions integrated in the CPU, the library
contains an interface description instead of the
program of the system functions. The function
can be called offline via this interface descrip-
tion; the interface description is not transferred
to the CPU. The loadable functions such as the
IEC functions are stored in the library as exe-
cutable programs.)

With FILE OPEN in the SIMATIC Manager,
you select the library Standard Library and
open the library System Function Blocks. Under
Blocks here you will find all interface descrip-
tions for the system functions. If you have not
opened the project window of your project, you
can arrange both windows next to each other
with WINDOW ARRANGE VERTICALLY

and drag the selected system functions into
your program with the mouse (mark the SFC
with the mouse, “hold” it, “drag” to Blocks or to
its open window and “drop”). You can copy the
standard function FC 8 in the same way. You
will find it in the library IEC Function Blocks.
FC 8 is a loadable function; it therefore occu-
pies user memory, in contrast to SFC 1.

If a standard block is called from the Editor’s
Program Element Catalog under “Libraries”
during incremental programming, it is automat-
ically copied to Blocks and entered in the sym-
bol table.

Renaming standard functions

You can rename a loadable standard function.
You mark the standard function (for example,
FC 8) in the project window and click (again)
on the identifier. A frame appears around the
name and you can specify a new address (for
example, FC 98). If you now press F1 while the
standard function (renamed to FC 98) is
marked, you will still nevertheless receive the
online Help function for the original standard
function (FC 8).

If an identically addressed block exists when
copying is performed, a dialog box appears to
allow to choose between overwriting and re-
naming.

Symbol address

In the symbol table, you can assign names to
the system functions and the standard func-
tions, so that you can also access these func-
tions symbolically. You have a free choice of
names within the framework of the permissible
definitions for block names. In the example, a
symbolic name has been selected for each block
name (for improved identification).

Checksum example

This example shows direct access to a block pa-
rameter of type ANY with calculation of the
variable address and use of indirect addressing.

A checksum is to be generated from a data
structure by simply adding all bytes with no ac-
count being taken of any carry (overflow, num-
ber range violation for DINT).

All data structures (STRUCT and UDT) are
treated by the Editor like a field with byte com-
ponents if they are applied to a block parameter
of parameter type ANY. With this program,
therefore, you can generate the checksum not
only from a field with byte components (AR-
RAY OF BYTE), but also from structure vari-
ables. If you also want to use the program on
variables of other data types, you must modify
the relevant check (type ID in the ANY point-
er).

The checksum function uses direct variable ac-
cess to get the absolute address of the block pa-
rameter (more precisely: the address at which
the Editor has stored the ANY pointer).

First, a check is made to ensure that the type ID
“Byte” and a repetition factor >1 has been en-
tered. In the event of an error, the binary result
is set to “0” and the function is exited with a
function value equal to zero.

The starting address of the actual parameter (at
runtime) is in the ANY pointer. It is loaded into
address register AR1. If the variable is located
in a data block, this data block is also opened.

The next network adds the values of all bytes
making up the actual parameter. The program
loop runs until the variable Quantity has the val-
ue zero (LOOP decrements this value).

Then, the total is transferred to the function value.

26 Direct Variable Access

462

Generate frame example

The example shows you how to copy complex
variables with the function SFC 20 BLKMOV.

The data block “Send_mailb” is to be filled
with the data of a message frame. We use a
function block that has stored the ID and the
consecutive number in its instance data block.
The net data are located in a global data block;
they are copied to the send mailbox with the
system function BLKMOV.

We get the time-of-day from the real-time clock
in the CPU with the help of the function
“Clock_check” (see previous example) and we
generate the checksum by simply adding all
bytes in the message frame header and the data
(see “Checksum” examples). Figure 26.9
shows the program and the data structures.

The first network in the function block FB
“Generate_Frame” transfers the ID stored in
the instance data block to the frame header. The
consecutive number is incremented by +1 and
is also entered in the frame header.

The second network contains the call of the
function “Clock_check” that fetches the time-
of-day from the real-time clock and enters it in
the format TIME_OF_DAY in the frame header.

In the third network, you can see a method of
using system function SFC 20 BLKMOV to co-
py variables selected at runtime without using
indirect addressing. It is therefore also not nec-
essary to know the absolute address and the
structure of the variable.

The principle is extremely simple: The desired
copy function is selected with the jump distrib-
utor. The numbers 1 to 4 are permissible as se-
lection criteria. The example “Buffer entry”
shows the same functionality this time with a
variable destination range using a pointer cal-
culated at runtime.

The next network generates the checksum via
the frame header and the frame data. Since the
function “Checksum” generates the checksum
over a single data area, the frame header and the
data are first combined in the temporary varia-
ble Block. The contents of Block are then added

Figure 26.8 Example: Checksum

26.4 Brief Description of the Message Frame Example

463

bytewise and stored in the checksum in the send
frame.

The FB “Generate_Frame” is programmed in
such a way that it can be called via a signal edge
for the purpose of generating the frame.

Store frame example

This example concentrates on showing you
how to use an “variable” ANY pointer.

A frame in the data block “Rec_mailb” is to be
entered at the next location in the data block
“Buffer”. The block-local variable Entry deter-
mines the location in the ring buffer; the ad-
dress of the ring buffer is calculated from the
value in this location (Figure 26.10).

If the number of the frame in the receive mail-
box has changed, the frame is to be written to a
buffer at the next location. The buffer is to be a
data block that can accommodate 8 frames. Af-
ter the eighth frame has been entered, the next
frame is to b entered at the first location again.

The function block “Store_Frame” compares
the entered frame number with the stored num-
ber in the data block “Rec_mailb”. If the frame
numbers are different, the stored number is cor-
rected and the frame in the receive mailbox is

copied to the data block “Buffer” in the next en-
try. The system function SFC 20 BLKMOV
handles the copying. Since the destination can
be different depending on the value of Entry,
we calculate the absolute address of the target
area, generate an ANY pointer from this in the
variable ANY_Pointer and transfer it to the SFC
at the parameter DSTBLK. Please note that you
only use area-internal addressing for indirect
addressing of a temporary local variable.

The data structure Frame has a length of 20
bytes (header: 8 bytes, Meas: 8 bytes, Check: 4
bytes). The variable Receive in the data block
“Rec_mailb” is therefore 20 bytes long, just as
every component of the field Entry in the data
block Buffer is also 20 bytes long. Consequent-
ly, the individual components Entry[n] begin at
byte address n 20, where n corresponds to the
variable Entry.

Date conversion example

The example concentrates on showing the pro-
cessing of variables of complex data types us-
ing direct variable access and indirect address-
ing with both address registers.

The global data block “Data66” contains the
variables CPU_Tim (data type DATE_AND_

Figure 26.9 Example: Generate Frame

26 Direct Variable Access

464

TIME) and Dat (data type STRING). The date
is to be fetched from the variable CPU_Tim and
stored as a character string with the format
“YYMMTT” in the variable Dat.

The subsequent program in the function “DT_
Conv” uses address register AR1 and the DB
register for the pointer to the input parameter
Tim and address register AR2 and the DI regis-
ter for the pointer to the function value (corre-
sponding to the STRING variable Dat in the da-
ta block “Data66”). The program is located in a
function so that both data block registers and
both address registers are available without re-
striction.

The program in the first network calculates the
address for the actual parameter at the block pa-
rameter Tim, valid at runtime, and stores the ad-
dress in the DB register in AR1. An actual pa-
rameter of complex data type can only be locat-
ed in a data block (global or instance data) or in
the temporary local data of the calling block (in
the V area). If the actual parameter is in a data
block, the data block number would be loaded
into the DB register and the area pointer in AR1
would contain the address area DB. If the actual
parameter is in the V area, zero would be load-
ed into the DB register and the are pointer in
AR1 would contain the address area V.

The second network contains the equivalent
program for the function value whose address is
then located in address register AR2 and in the
DI register. In order to be able to address indi-
rect via the DI register as well, the address area
DI must be entered in AR2. However, depend-
ing on the memory occupied by the actual pa-
rameter, either DB for data block or V for V area
would be found here. By setting bit 24 in AR2 to
“1”, we change the address area from DB to DI
but we do not change any address area V.

Prepared in this way, the maximum length fixed
for the actual parameter at the function value
can be checked in the next network. The length
must be at least 6 characters. If it is less than 6,
“0” in is entered in the binary result BR (other-
wise “1”) and block processing is terminated.
In this way, you can check for processing errors
via the binary result after calling the function
“DT_Conv”.

The next network fetches the year and the
month from Tim (in BCD form), converts the
values into ASCII characters (precedes them
with a 3) and writes them back to the function
value. The same happens with the days.

The program is ended with the correction of the
current length in the function value.

Figure 26.10 Example: Store Frame

Structured Control Language (SCL)

465

Structured Control Language (SCL)

Structured Control Language (SCL) is a high-
level programming language for SIMATIC S7.
The language is based on the “Structured Text”
part of the DIN EN 61131-3 standard and has
PLC-Open certification Base Level from V4.01
if international mnemonics are used (the Ger-
man mnemonics are used in this book). SCL is
optimized for the programming of programma-
ble controllers and contains PASCAL language
elements as well as typical PLC elements like
inputs and outputs.

SCL is especially suitable for programming
complex algorithms or for tasks from the data
management area. SCL supports the STEP 7
block structure and so enables creation of an S7
program in conjunction with the STL, LAD and
CSF programming languages.

S7-SCL is available as optional software for
STEP 7 Basis. The description in this book is
based on the SCL version 5.3 SP5.

Following installation, SCL is fully integrated
in the SIMATIC Manager and is then used in
the same way as one of the basic programming
languages (e.g. STL). Using the SCL program
editor, you create within an S7 project the pro-
gram sources that you then compile with the
SCL compiler. The user program contains the
compiled SCL blocks; it can also contain com-
piled blocks created in other languages. You
can test the blocks created with SCL online in
the CPU using the SCL Debugger.

The language elements of SCL differ in in-
struction notation from the language elements
of the basic programming languages (operators,
expressions, value assignments). They all share
data types, address areas, symbolic program-
ming and block structure.

Using the control statements, you can execute
program branches (alternatives), repeat pro-
gram sections (program loops) or exit linear
program execution and then continue it at an-
other location in the block (jumps).

You program blocks with SCL and you can call
blocks (integrate them into your program so to
speak) that have been created with SCL or with
another S7 programming language. With SCL,
you have access to all system functions.

The standard functions like conversion func-
tions are available as SCL functions, or you
can program your own functions with SCL or
STL. In addition, the IEC functions supplied
with the STEP 7 Basic Package enable the han-
dling of variables with complex data types.

27 Introduction, Language Elements
Integration in SIMATIC; Addressing;
Operators; Expressions: Value Assign-
ments

28 Control Statements
IF, CASE, FOR, WHILE, REPEAT,
CONTINUE, EXIT, GOTO, RETURN

29 SCL Blocks
Block Calls; Parameter Transfer; OK
Variables; EN/ENO Mechanism

30 SCL Functions
Timer/counter Functions; Conversion
Functions; Math Functions; Shift and Ro-
tate; Programming Your Own Functions
with SCL and STL

31 IEC Functions
Conversion, Comparison and STRING
Functions; Date/Time of Day Functions;
Numerical Functions

27 Introduction, Language Elements

466

27 Introduction, Language Elements

This chapter gives an overview of the require-
ments for programming with SCL. Chapters 2
and 3 contain the detailed description; refer-
ence is made to these chapters where appropri-
ate.

Chapter 2 “STEP 7 Programming Software” in-
troduces the “programming tools”: symbol edi-
tor, SCL program editor, compiler and debug-
ger. The chapter also indicates the environment
in which you can write an SCL program.

Chapter 3 “SIMATIC S7 Program”, shows you
how a user program is structured. It describes
the different types of program execution, the
program block structure and it lists all the re-
quired keywords for block programming. There
is an introduction to variable addressing and to
the STEP 7 data types.

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the SCL_Book library under the pro-
gram “27 Language Elements”.

27.1 Integration in SIMATIC

27.1.1 Installation

Installation of SCL requires a SIMATIC Man-
ager of a suitable version. SCL is installed with
the SETUP program; memory requirement is
approximately 50 MB if all languages and ex-
amples are installed. You require the relevant
authorization for SCL, supplied on its own dis-
kette or on a USB flash drive.

27.1.2 Setting Up a Project

The SIMATIC Manager is the central tool for
SCL too. To program with SCL, you must start
it and, in the same way as for a standard pro-
gramming language, set up a project (Chapter

2.1 “STEP 7 Basic Package”). You can either
use the project wizard or create the project
“manually”.

When configuring the station, it is sufficient to
assign a CPU so that the SIMATIC Manager
sets up the containers for the associated S7 pro-
gram. You can also set up an S7 program direct
under a project and assign it later to a CPU.

You can also use an existing project. The con-
tainers S7 Program, Sources and Blocks must
be available, as well as Symbols for the symbol
table. If an object does not exist, you generate it
by marking the (higher-level) containers and
then selecting the menu command INSERT.

If you use an existing project, then STL sources
or compiled blocks, written say in CSF, may al-
ready exist. This does not upset the SCL editor.
You can even call previously compiled blocks
in the SCL program regardless of the language
used to write them.

27.1.3 Editing the SCL Source

Mark the Sources container and select INSERT

 SCL SOURCE. This menu command is only
available if you have installed SCL. You can
now rename the inserted object SCL Source(1).
Double click on the SCL source to call the SCL
program editor which then displays an empty
source file. Now you can enter the SCL pro-
gram.

Use of the SCL program editor is described in
Chapter 2.5.4 “SCL Program Editor”. You be-
gin program entry by editing a block. Chapter
3.5 “Programming Code Blocks with SCL” de-
scribes the structure of a block and gives the
keywords.

Here is a simple example to get you started:
we’ll program a “Delimiter” function that lim-
its an input value between an upper and lower
value and we’ll call this function in the organi-
zation block OB 1 (Figure 27.1).

27.1 Integration in SIMATIC

467

The example program begins with the defini-
tion of the block type for the delimiter (a func-
tion FC) and defines the data type of the func-
tion value (INT). This is followed by the decla-
ration of the block parameters: an INT input for
the maximum value, the minimum value and
the input value. The program itself follows the
declaration section. If the input value IN is
greater than the maximum value, the function
value is to assume the maximum value. If this
is not the case, and the input value is less than
the minimum value, the minimum value is as-
signed to the function value. If neither applies,
the function value assumes the contents of the
input value.

Then we call the “Delimiter” function in the or-
ganization block “Main Program”. In SCL you
must also reserve 20 bytes of temporary local
data as start information in an organization
block whether you use them or not.

In contrast to the standard programming lan-
guages, a function FC with function value is a
“real” function in SCL that you can incorporate
in an expression in place of an address, provid-
ed the data types are compatible. When calling
the “Delimiter” function in the organization
block “Main Program”, its value is assigned to
a global variable “Result”; this variable now

contains the “Input_value” limited between the
limits “Maximum” and “Minimum”.

An SCL source can contain one or more blocks.
You can also create several sources that are then
compiled with a compiler control file in the or-
der specified.

Save the source file with FILE SAVE. Be-
cause we use symbols instead of operands in
the program, we need to fill out the symbol ta-
ble before compiling.

27.1.4 Completing the Symbol Table

The symbol table is completed in SCL in the
same way as in the standard programming lan-
guages (see Chapter 2.5.2 “Symbol Table”).
You can also supplement an existing, partly
completed, symbol table with the desired en-
tries (there can only be one single symbol table
in any given S7 program). The symbol table is
represented by the object Symbols in the S7
Program container.

You can call the symbol editor either by select-
ing OPTIONS SYMBOL TABLE in the SCL
program editor or by double clicking on Sym-
bols in the SIMATIC Manager. You enter your

FUNCTION Limiter : INT
VAR_INPUT

MAXI : INT; //Maximum value
IN : INT; //Input value
MINI : INT; //Minimum value

END_VAR
BEGIN
IF IN > MAXI THEN Limiter := MAXI; //Restricted to upper limit

ELSIF IN < MINI THEN Limiter := MINI; //Restricted to lower limit
ELSE Limiter := IN; //Value lies between the limits

END_IF;
END_FUNCTION

ORGANIZATION_BLOCK Main
VAR_TEMP

SINFO : ARRAY [1..20] OF BYTE;
END_VAR
BEGIN
Result := Limiter (MAXI := Maximum, IN := Input_value, MINI := Minimum);
END_ORGANIZATION_BLOCK

Figure 27.1 Example: "Limiter"

27 Introduction, Language Elements

468

symbols in an empty symbol table or supple-
ment existing entries (Table 27.1).

You can, of course, select other addresses to try
them out. We then save the symbol table.

27.1.5 Compiling the SCL Program

To compile, open the SCL source, if it is not al-
ready open. You can find the options required
for compiling under OPTIONS CUSTOMIZE

on the “Compiler”. (If blocks are to be generat-
ed, for example, select the “Blocks generated”
option).

The source is compiled with FILE COMPILE;
the compiled blocks are stored in the Blocks
container. Chapter 2.5.4 “SCL Program Editor”
contains more details on compiling.

With a compiler control file, you can also batch
compile several sources in any order. Please
note that called blocks or functions must be
available at compiling, either as compiled
blocks in the Blocks container, as (error-free)
program sources before being called in the
source file or as standard functions in the stan-
dard library.

27.1.6 Loading SCL Blocks

If the programming device is connected to a
CPU, the compiled blocks are loaded into the
CPU’s user memory with PLC LOAD. The
CPU must be in the STOP mode because the se-
quential order on loading may differ from the
sequential call order. Please refer to Chapter 2.6
“Online Mode” for details of any other points
you must take into account.

You can also handle the blocks with the SIMA-
TIC Manager in the offline or online window.

27.1.7 Testing SCL Blocks

The SCL debugger can test individual blocks in
Program Status (“continuous monitoring”) or in
single-step mode. In Program Status, you can
see the assignment of the variables during con-
tinuous program execution. In single-step
mode, you can stop the program at a breakpoint
and execute it statement by statement while
monitoring the variable values (Chapter 2.7
“Testing the Program”).

The variable table can also be used to test the
SCL program. Here you can specify variable
values while the program is running and moni-
tor the results.

27.1.8 Addresses and Data Types

Address areas

The addresses and variables in SCL correspond
to those of the standard programming languag-
es (see Chapter 1.5 “Address Areas”).

b Inputs I, outputs Q, memory bits M

b Peripheral inputs PI,
Peripheral outputs PQ

b Global data addresses D

b Temporary and static local data
(symbolic addressing only)

b Organization blocks OBs, function blocks
FBs, functions FCs with and without func-
tion value, data blocks DBs

Table 27.1 Symbol Table for the “Delimiter” Example

Symbol Address Data Type Comment

Main OB 1 OB 1 Cyclic program execution block

Limiter FC 271 FC 271 Function for limiting an INT variable

Input_value MW 10 INT Specified value

Maximum MW 12 INT Upper limit

Minimum MW 14 INT Lower limit

Result MW 16 INT Limited value

27.1 Integration in SIMATIC

469

Timer functions T and counter functions C are
handled in SCL as “standard functions” (see
Chapters 30.1 “Timer Functions” and 30.2
“Counter Functions”).

Note: The global data addresses have a differ-
ent address identifier to the standard program-
ming languages. Please refer to Chapter 27.2.1
“Absolute Addressing” for details of the ad-
dress identifiers used in SCL.

In SCL, function calls that return a function val-
ue can also be used as addresses in expressions.

Data types

The definition of a data type contains:

b Type and meaning of the data elements (e.g.
integer, character string)

b Permissible ranges (number range, length of
a character string)

b Permissible operations that can be executed
with a data type

b Method of writing the constants

The data types in SCL are the same as in the
standard programming languages: Chapter 3.7
“Variables and Constants” gives an overview in
tabular form; Chapter 24 “Data Types” contains
the detailed descriptions.

Numerical values can be represented as deci-
mal numbers, hexadecimal numbers, octal
numbers (8#17 corresponds to 16#F or 15dec)
and binary numbers.

Data type classes

In conjunction with the combination of values,
SCL defines classes of data types that show the
same behavior in the relevant combination:

b ANY_INT comprises the data types INT
and DINT

b ANY_NUM comprises the data types INT,
DINT and REAL

b ANY_BIT comprises the data types BOOL,
BYTE, WORD and DWORD

These data type classes have been introduced in
order to make description of the operations and
operators clearer; variables cannot be declared
with these data type classes.

Constant notation

A constant is a fixed value that generally does
not change with program execution. Constants
are used to pre-assign initial values to variables
at variable declaration or to combine them with
other variables in the program, e.g. as limit val-
ues.

In SCL, a constant does not receive the data
type until it is combined arithmetically. The
constant 1234, for example, can have data type
INT or data type REAL, depending on the ap-
plication:

int1 := int2 + 1234;
//INT constant

real1 := real2 + 1234;
//REAL constant

In SCL, you can also assign a data type to a con-
stant (“type-defined” constant notation). With a
suitable prefix, you can, for example, pre-as-
sign a WORD variable in the declaration with a
decimal, hexadecimal, octal or binary number.
The example below shows the contents of the
variable with the same value in each case but
with different representations:

w1 : WORD := W#1234; //decimal
w2 : WORD := W#16#04D2;//hexadecimal
w3 : WORD := W#8#2322;//octal
w4 : WORD := W#2#0000_0100_1101_0010;

//binary

Data type in the case of absolute addresses

An absolute Address is always of the data type
ANY_BIT (e.g. memory doubleword MD10
has the data type DWORD). Only if the address
is symbolic (“when it has been turned into a
variable”) or after a data type conversion, can
the address be used with a data type, e.g. DINT
or REAL.

MW14 := SHL(IN := MW12, N := 2);
real1 := real2 + DWORD_TO_REAL(MD10);

Data type STRING

A character string is represented in single in-
verted commas; non-printable control charac-
ters can be entered with $hh (hh represents the
value of the ASCII character in hexadecimal
form).

string1 := ’$0A$0D’; //new line

27 Introduction, Language Elements

470

The characters ‘$>’ and ‘<$’ are available for
interrupting a character string, e.g. at the end of
a line or for comments that are not to be printed
or displayed.

string2 := ’ABCDEFGHIJKLMNOP$>

<$QRSTUVWXYZ’;

27.1.9 Data Type Views

In SCL, you can assign additional data types to
an already declared variable (more precisely:
you can assign additional data type views). It is
then possible to address the contents of the vari-
able in whole or in part areas with different data
types.

Example: you declare an input parameter with
the name Station and the data type STRING.
You transfer the variable Station to a called
block in order to further process it, e.g. supple-
menting it with a number. In addition, you want
to calculate the current length of Station. For
this purpose, you apply an additional data type
view in the form, for example, of a structure of
two bytes via the variable Station. The second
byte then contains the current string length. The
additional data type view is to receive the name

Len and the components are to be called max
and cur.

VAR_INPUT
Station : STRING[24] := ’ ’;
Len AT Station : STRUCT

max : BYTE; //Maximum length
cur : BYTE; //Current length
END_STRUCT;

END_VAR
....
IF WORD_TO_INT(Len.cur) > 12

THEN ...
END_IF;
...
First, you declare the variable with the “origi-
nal” data type and with any pre-assignments.
Then, you can assign an additional data type
view to this variable with the keyword AT:

View AT Variable : Data_type; //Comment

You can apply several data type views to a vari-
able, distinguishing between them by name.
Pre-assignment with fixed values (initializa-
tion) is not possible.

The memory requirement of the data type view
must not be greater than the variable to which
the view has been assigned (the new data type
must “fit” into the variable).

Table 27.2 Permissible Data Type Views

Bloc
k

The variable is de-
clared in the block

The variable is of data type

Elementary Complex POINTER ANY

FC VAR_INPUT E C

VAR_OUTPUT E C

VAR_IN_OUT E C

VAR 1) E C E C A C

VAR_TEMP E C E C A C

FB VAR_INPUT E C E C P A C C

VAR_OUTPUT E C E C

VAR_IN_OUT E C

VAR E C E C

VAR_TEMP E C E C A C

1) corresponds to temporary local data
Data type of the view:
E elementary (BOOL, CHAR, BYTE, WORD, DWORD, INT, DINT, REAL, S5TIME, TIME, DATE, TIME_OF_DAY)
C complex (DATE_AND_TIME, STRING, ARRAY, STRUCT) and UDT
P POINTER
A ANY

27.2 Addressing

471

You use a data type view like any other variable
but only locally in the block. In the example
above, the calling block initializes the input pa-
rameter Station with a character string: the data
type view is not accessible to it as a byte struc-
ture.

A data type view can be applied via block pa-
rameters and via temporary and static local da-
ta. The data type view must be declared in the
same declaration block as the variables.

Table 27.2 shows which data type views you
can apply to a variable of a specific data type.
If, for example, the variable is located in the
temporary local data of an FC and if it is of a
complex data type, the data type views applied
to it can be of the elementary, complex,
POINTER or ANY data types.

Variables of the type TIMER, COUNTER and
BLOCK_xx cannot have data type views ap-
plied to them.

27.2 Addressing

27.2.1 Absolute Addressing

Absolute addressing assigns addresses in rela-
tion to the start of the address area; e.g. I1.0 (in-
put bit 0 in byte 1). Absolute addressing in SCL
corresponds to that of the standard program-
ming languages (Chapter 3.3 “Addressing Vari-
ables”) with the exception that the address iden-
tifiers of global data addresses are different (Ta-
ble 27.3).

In SCL, access to global data addresses is only
possible with complete addresses. The data
block can also be a block parameter of the type
BLOCK_DB (see also Chapter 27.2.3 “Indirect
Addressing in SCL”).

Note: Please note that in SCL there must be no
separator (space or tab) between the address ID
and the address.

Differences to the standard programming lan-
guages: no absolute addressing of temporary
and static local data; calling a data block with
subsequent part address access is not possible;
calculation of the number and length of the cur-
rent global instance data block is not possible.

27.2.2 Symbolic Addressing

Symbolic addressing assigns names to address-
es and variables. For global data, the name is
assigned in the symbol table; for local data it is
assigned in the declaration section of the block.

Symbolic addressing in SCL corresponds to
symbolic addressing in the standard program-
ming languages (Chapter 3.3 “Addressing Vari-
ables”). Mixed absolute/symbolic identifiers
such as:

DB10.Setpoint

"Motor1Data".DW12.

are permissible for full address access to global
data addresses.

In SCL, you can assign names to constants in
the declaration section of a block and use these
names as symbols in the program.

Table 27.3 Address Identifiers for Absolute Addressing

Address area Bit Byte Word Doubleword

Inputs Iy.x IBy IWy IDy

Outputs Qy.x QBy QWy QDy

Peripheral inputs - PIBy PIWy PIDy

Peripheral outputs - PQBy PQWy PQDy

Memory bits My.x MBy MWy MDy

Global data addresses DBz.DXy.x
DBz.Dy.x

DBz.DBy DBz.DWy DBz.DDy

x = bit address, y = byte address, z = data block number

27 Introduction, Language Elements

472

27.2.3 Indirect Addressing in SCL

Indirect assignment of global addresses

Indirect assignment of global addresses is
based on absolute addressing. Instead of the
memory location, an INT variable is specified
in square brackets; in the case of bit addresses,
two INT variables are used:

b I[byteindex, bitindex]

b MB[byteindex]

byteindex and bitindex are constants, variables
that can be modified at runtime, or expressions
of data type INT. You can address the following
areas in this way:

b Peripheral inputs PI, peripheral outputs PQ
(no bit addressing in either case)

b Inputs I, outputs Q, and memory bits M

b Global data addresses D (data block and da-
ta address)

b Timer functions T and counter functions C
(no bit addressing for neither of the func-
tions)

Indirect assignment of global data addresses

Indirect assignment of global data addresses is
based on absolute addressing but the data ad-
dress as well as the data block address can be
modified at runtime.

You can assign either an absolute address or a
symbolic address to the data block:

b DB10.DX[byteindex, bitindex]
b MotorDaten.DW[byteindex]

byteindex and bitindex are constants, variables
that can be modified at runtime or expressions
of data type INT.

With the WORD_TO_BLOCK conversion
function, you can assign an indirect address to
a data block. The DB number is specified as a
variable or as an expression of data type
WORD (see Figure 27.2 for examples).

b WORD_TO_BLOCK_DB(dbindex).DW0

dbindex is a variable that can be modified at
runtime or an expression of data type WORD.

If the data block is addressed indirectly, the data
address cannot be accessed symbolically.

//***
//Example of indirect assignment of global addresses
k := 120; FOR i := 48 TO 62 BY 2 DO
MW[k] := PIW[i]; k := k + 2; END_FOR;

//

//Indirect addressing of data blocks
//The DB index is available in data type WORD
M0.0 := WORD_TO_BLOCK_DB(dbindex_w).DX0.0;
M0.0 := WORD_TO_BLOCK_DB(dbindex_w).DX[byteindex,bitindex];

//The DB index is available in data type INT
M0.0 := WORD_TO_BLOCK_DB(INT_TO_WORD(dbindex_i)).DX0.0;
M0.0 := WORD_TO_BLOCK_DB(INT_TO_WORD(dbindex_i)).DX[byteindex,bitindex];

//

//Indirect addressing via a block parameter
//With the name "Data" and the parameter type BLOCK_DB
M0.0 := Data.DX0.0;//absolute addressing
M0.0 := Data.DX[byteindex,bitindex];//indirect addressing

Figure 27.2 Examples of Indirect Addressing of Global Addresses

27.3 Operators

473

Assignment of data addresses via a block
parameter BLOCK_DB

If the data block is available as a block param-
eter, its data addresses can be assigned abso-
lutely and indirectly (Figure 27.2). Example:
The input parameter Data is of the type
BLOCK_DB:

b Data.DW0
b Data.DX2.0

b Data.DW[byteindex]
b Data.DX[byteindex.bitindex]

byteindex and bitindex are constants, variables
that can be modified at runtime or expressions
of data type INT.

If the data block is addressed via a block param-
eter, the data address cannot be accessed sym-
bolically.

Addressing fields

In SCL, you can use either a constant or a vari-
able or an expression of data type INT as a field
index and so modify it at runtime. You can also

address part fields as variables (Chapter 27.5.4
“Assigning Fields”).

At pre-assignment, repetition factors can be as-
signed for the individual field dimensions.

27.3 Operators

An expression represents a value. It can consist
of a single address (a single variable) or several
addresses (variables) combined using opera-
tors.

Example: a + b;
a and b are addresses, + is the operator.

The order of combinations is specified by the
priority of the operators and can be controlled
with parentheses. Expressions can be mixed
provided the data types created in the calcula-
tion of the expression permit it.

SCL provides the operators listed in Table 27.4.
Operators of the same priority are executed
from left to right.

Table 27.4 Operators in SCL

Combination Name Operator Priority

Parentheses (Expression) (,) 1

Arithmetic Power ** 2

Unary plus, unary minus (sign) +, - 3

Multiplication, division *, /, DIV, MOD 4

Addition, subtraction +, - 5

Comparison Less than, less than/equal to, greater than,
greater than/equal to

<, <=, >, >= 6

equal to, not equal to =, <> 7

Binary combination Negation (unary) NOT 3

AND logic operation AND, & 8

Exclusive OR XOR 9

OR logic operation OR 10

Assignment Assignment := 11

“unary” means this operator is assigned to an address

27 Introduction, Language Elements

474

27.4 Expressions

An expression is a formula for calculating a
value and consists of addresses (variables) and
operators. In the simplest case, an expression is
an address, a variable or a constant. A sign or
negation can be included here.

An expression can consist of addresses com-
bined using operators. Expressions themselves
can be combined with operators so that an ex-

pression can have an extremely complex struc-
ture. Parentheses can be used to control the or-
der of execution of an expression.

The result of an expression can be assigned to a
variable or a block parameter or it can be used
as a condition in a control instruction.

Expressions are divided, according to the type
of combination, into arithmetic expressions,
comparison expressions and logical expres-
sions.

Table 27.5 Data types and operators in SCL expressions

Operation Operator 1st operand 2nd operand Result

Arithmetic expressions

Power ** ANY_NUM INT REAL

Multiplication * ANY_NUM ANY_NUM ANY_NUM

TIME ANY_INT TIME

Division / ANY_NUM ANY_NUM ANY_NUM

Integer division DIV ANY_INT ANY_INT ANY_INT

TIME ANY_INT TIME

Division with remainder as result MOD ANY_INT ANY_INT ANY_INT

Addition + ANY_NUM ANY_NUM ANY_NUM

TIME TIME TIME

TOD TIME TOD

DT TIME DT

Subtraction – ANY_NUM ANY_NUM ANY_NUM

TIME TIME TIME

TOD TIME TOD

DATE DATE TIME

TOD TOD TIME

DT TIME DT

Comparison expressions

Comparison as equal, unequal,
lesser than, lesser than or equal to,
greater than, greater than or equal to

=, <>,
<, <=,
>, >=,

ANY_NUM ANY_NUM BOOL

CHAR or
STRING

CHAR or
STRING

BOOL

TIME TIME BOOL

DATE DATE BOOL

TIME_OF_DAY TIME_OF_DAY BOOL

Comparison as equal and unequal =, <> ANY_BIT ANY_BIT BOOL

Logical expressions

Negation NOT ANY_BIT - ANY_BIT

AND logic operation (conjunction) AND, & ANY_BIT ANY_BIT ANY_BIT

Exclusive OR
(exclusive disjunction)

XOR ANY_BIT ANY_BIT ANY_BIT

OR logic operation (disjunction) OR ANY_BIT ANY_BIT ANY_BIT

27.4 Expressions

475

27.4.1 Arithmetic Expressions

An arithmetic expression either consists of a
numerical value or it combines two values or
expressions with arithmetic operators. Exam-
ple:

Voltage * Current

Table 27.5 lists the permissible data types for
arithmetic expressions and the data type of the
result.

Specification of the data type class ANY_NUM
means that the data type of the first and second
operands can be INT, DINT, or REAL. If you
link an INT operand and a DINT operand, the
result is of data type DINT; if you link an INT
or DINT operand with a REAL operand, the re-
sult is of data type REAL. The program editor
carries out a corresponding data type conver-
sion (not visible to the user) prior to the arith-
metic operation (see also Table 30.4 "Implicit
conversion functions").

In the case of a division, the second address
must not be equal to zero. Figure 27.3 gives an

example for arithmetic expressions in conjunc-
tion with value assignments.

27.4.2 Comparison Expressions

A comparison expression compares the values
of two addresses and yields a Boolean value; if
the comparison is met, it yields the result
TRUE, otherwise it yields the result FALSE.
Example:

Voltage1 > Voltage2

The addresses compared must be of the same
data type or the same data class (ANY_INT,
ANY_NUM, ANY_BIT) (Table 27.5). To en-
hance clarity, the use of parentheses is recom-
mended in comparison expressions.

Comparison expressions can be combined with
logical operators such as:

(Value1 > 40) AND NOT (Value2 = 20)

Comparison of variables of data type CHAR is
carried out according to the ASCII character
code.

(****************************** Assignment *********************************)
Automatic := TRUE;//Assignment of a constant value
Setpoint := StartSetpoint;//Assignment of a variable
Deviation := ActualValue - Setpoint;//Assignment of an expression
Display := INT_TO_WORD(Deviation);//Assignment of a function value

(************************** Arithmetic expressions ***************************)
Power := Voltage * Current;
Volume := 4/3 * PI * Radius**3;
Solution1 := -P/2 + SQRT(SQR(P/2)-Q);
MeanValue := (Motor[1].Power + Motor[2].Power)/2;

(************************** Comparison expressions ***************************)
TooLarge := Voltage_Act > Voltage_Set;
Warning := (Voltage * Current) >= 20_000;
M101.0 := Setpoint = ActualValue;
IF Deviation > 2_000 THEN Display := 16#F002; END_IF;

(*************************** Logical expressions *****************************)
Q4.0 := I1.0 & I1.1;
ON := (Manual_on OR Auto_on) AND NOT Fault;
MW30 := MW32 AND Mask;
Pulses := (Edge_mem_bits XOR ID16) AND ID16; Edge_mem_bits := ID16;

Figure 27.3 Operators, Expressions and Value Assignment

27 Introduction, Language Elements

476

The IEC functions are available for comparing
variables of data type STRING and DT: IEC
functions are loadable FC blocks in the Stan-
dard Library in the IEC Function Blocks pro-
gram.

Figure 27.3 gives some examples of compari-
son expression in conjunction with value as-
signments.

27.4.3 Logical Expressions

A logical expression combines addresses and
expressions of data type ANY_BIT according
to AND, OR and exclusive OR.

Example:

Automatic AND NOT Manual_on
The logical expressions also include (Boolean)
negation; it is handled similarly to the sign of a
number.

A logical expression yields a value of data type
class ANY_BIT. The result of a logical expres-
sion is of data type BOOL if both addresses are
also of data type BOOL. If one or both of the
addresses are a bit pattern of data type BYTE,
WORD or DWORD, the result will be of the
“more powerful” of the data types involved.

Figure 27.3 gives some examples of logical ex-
pressions in conjunction with value assign-
ments.

27.5 Value Assignments

With a value assignment, a variable receives the
value of another variable or of an expression.
On the left of the assignment operator := is the
variable that is to assume the value of the ad-
dress or expression on the right.

The data types of both sides of the assignment
must be identical. An exception to this is “Im-
plicit data type conversion”: if the data type of
the variable has at least the same bit width as,
or a greater bit width than, the data type of the
expression, the data type of the expression is
implicitly converted (the value of the expres-
sion is automatically converted in the data type
and assigned to the variable). Otherwise, ex-
plicit conversion (with conversion functions) is
necessary.

27.5.1 Assignment for Elementary Data
Types

A constant value, another variable, an address
or an expression can be assigned to a variable or
an address (Figure 27.3).

Absolute addresses (e.g. MW 10) are of data
type ANY_BIT; i.e. depending on “data width”
BOOL, BYTE, WORD or DWORD. If you
want to assign a value of a different data type to
an absolute address, use data type conversion or
assign a name and the desired data type to the
address in the symbol table.

27.5.2 Assignment of DT and STRING
Variables

Every DT variable can be assigned the value of
another DT variable or a DT constant.

Every STRING variable can be assigned the
value of another STRING variable or a charac-
ter STRING. If the assigned character string is
longer than the variable on the left of the as-
signment operator, a warning is issued at the
compiling stage.

No pre-assignment is possible at the declaration
stage in the temporary local data. If you use
STRING processing functions, such as the IEC
functions, that check the STRING variable (as
well as the output parameter) for valid assign-
ment, you must program the pre-assignment
out.

27.5.3 Assignment of Structures

A STRUCT variable can only be assigned to
another STRUCT variable if

b the data structures agree,

b the structure components agree in data type,

b the structure components agree in name.

Individual structure components can be han-
dled like variables of the same data type, for ex-
ample, a structure component Motor1.Setpoint
of data type INT can be assigned to another INT
variable, or an INT value can be assigned to this
structure component.

27.5 Value Assignments

477

27.5.4 Assigning Fields

An ARRAY variable can only be assigned to
another ARRAY variable if the data types of the
field components as well as the field limits with
the smallest and largest field index agree.

Individual field components can be handled in
the same way as variables of the corresponding
data type.

In the case of multi-dimensional fields, you can
handle part fields in the same way as corre-
spondingly dimensioned variables: starting
from the right, leave out field indices to get a

lower dimensioned part area of the original
field. Example:

Field1 : ARRAY [1..8,1..16] OF
INT represents a two-dimensional field; you
can now address the entire field with Field1,
a part field with Field1[i] (corresponds to
the lines of the matrix) and a field component
with Field1[i,j].

You can assign part field Field1[i] to a
correspondingly dimensioned field, e.g.
Field2 := Field1[i], where i = 1 to 8
and Field2 : ARRAY [1..16] OF INT.

28 Control Statements

478

28 Control Statements

With the control statements, you can execute
program branchings, repeat program sections
or jump to another point in the program of the
block. SCL provides the following control
statements:

IF Program branch dependent on a
Boolean value

CASE Program branch dependent on an
INT value

FOR Program loop with a run variable

WHILE Program loop with an execution
condition

REPEAT Program loop with an cancel
condition

CONTINUE Cancellation of the current loop
pass

EXIT Exit the program loop

GOTO Jump to a jump label

RETURN Exit the block

Note: Please ensure that the cycle monitoring
time is not exceeded when using program
loops.

The examples in this chapter can be found in
the download files (download address: see pag-
es 8-9) in the SCL_Book library under the “28
Control Statements” program.

28.1 IF Statement

The IF statement controls program flow depen-
dent on a Boolean value. You can program dif-
ferent types of IF statement, depending on the
type of branching.

IF condition
 THEN statements;
END_IF;

Condition is an address or an expression with a
Boolean value. If condition has the value
TRUE, the statements following THEN are ex-
ecuted. If condition has the value FALSE, pro-
gram execution is continued with the statement
following END_IF. END_IF terminates an IF
statement.

IF condition
 THEN statements1;
 ELSE statements0;
END_IF;

As in the previous example, condition here ei-
ther has the value TRUE or FALSE. If TRUE,
the statements following THEN are executed, if
FALSE, the statements following ELSE are ex-
ecuted.

IF condition1
 THEN statements1;
 ELSIF condition2
 THEN statements2;
 ELSE statements0;
END_IF;

IF statements can be parenthesized. If
condition1 is met (TRUE), statements1 are ex-
ecuted and then program execution is continued
following END_IF. If condition1 has the value
FALSE, condition2 is tested; if the value is
TRUE, statements2 are executed and program
execution is continued following END_IF.

You can insert any number of ELSIF…
THEN… combinations between IF…THEN…
and ELSE. If no condition is met, the state-
ments following ELSE are executed. ELSE and
the subsequent statements are not mandatory.

Example: If the variable Actual_value is greater
than the variable Setpoint, the statements fol-
lowing THEN are executed. Otherwise, if
Actual_value is found to be less than Setpoint,
the statements following ELSIF are executed. If
neither of the two comparisons is fulfilled, the
statements following ELSE are executed.

28.2 CASE Statement

479

IF Actual_value > Setpoint
THEN greater_than := TRUE;

less_than := FALSE;
equal_to := FALSE;

ELSIF Actual_value < Setpoint
THEN less_than := TRUE;
greater_than := FALSE;
equal_to := FALSE;

ELSE equal_to:= TRUE;
greater_than := FALSE;
less_than := FALSE;

END_IF;

28.2 CASE Statement

With the CASE statement, you can process one
of several statement sequences dependent on an
INT value.

The general structure of a CASE statement
takes the following form:

CASE Selection OF
Const1 : Statements1;

 Const2 : Statements2;
 ...
 Constx : StatementsX;
 ELSE Statements0;
END_CASE;

Selection is an address or an expression of data
type INT. If Selection has the value of Const1,
Statements1 are executed and program execu-
tion is then continued following END_CASE.
If Selection has the value of Const2,
Statements2 are executed, etc.

If there is no value in the value list corresponding
to Selection, the statements following ELSE are
executed. The ELSE branch is not mandatory.

The value list with Const1, Const2, etc. consists
of INT constants. Various expressions are pos-
sible for a component in the value list:

b a single INT number,

b a range of INT numbers (e.g. 15..20) or

b a list of INT numbers and INT number rang-
es (e.g. 21,25,30..33).

Each value must occur only once in the value
list.

CASE statements can be parenthesized. Instead
of a statement block, another CASE statement
can stand in the selection table of a CASE state-
ment.

Example: A value is assigned to the Error_
number variable dependent on the assignment
of ID variable.

CASE ID OF
0 : Error_number := 0;
1,3,5 : Error_number := ID + 128;
6..10 : Error_number := ID;
ELSE Error_number := 16#7F;
END_CASE;

28.3 FOR Statement

With the FOR statement, a program loop is re-
peated for as long as a run variable remains
within a value range.

The general representation of a FOR statement
is as follows:

FOR Runtime_variable := Starting_value
 TO End_value
 BY Step_width
 DO Statements;
END_FOR;

In the start statement, a starting value is as-
signed to a run variable. You define the run
variable yourself; it must be a variable of data
type INT or DINT. Starting_value is any INT or
DINT expression, as are End_value and Step_
width.

At the start of loop execution, the run variable
is set to the starting value. At the same time,
End_value and Step_width are calculated and
“frozen” (modification of these values during
loop execution has no effect on execution of the
loop). Then the terminating condition is
scanned and – if is not fulfilled – the program
loop is executed.

Following each loop pass, the run variable is in-
creased by the step width (in the case of a posi-
tive step width) or decreased by the step width
(in the case of a negative step width). The spec-
ification ‘BY step width’ is not mandatory; +1
is then used as the step width. If the run variable
is outside the range between starting value and
end value, program execution is continued fol-
lowing END_FOR.

The last loop pass is made with the end value,
or the value End_value minus Step_width if the
end value has not been reached exactly. After

28 Control Statements

480

exiting of a fully passed program loop, the run
variable has the value of the last loop pass plus
Step_width.

FOR loops can be parenthesized: within the
FOR loop, further FOR loops can be pro-
grammed with other runtime variables.

In the FOR loop, the current program pass can
be aborted with CONTINUE; EXIT terminates
the entire FOR loop.

Example: The peripheral I/O words PIW 128 to
PIW 142 are read into the memory words MW
128 to MW 142.

FOR i := 128 TO 142 BY 2 DO

MW[i] := PEW[i];

END_FOR;

28.4 WHILE Statement

With the WHILE statement, a program loop is
repeated as long as an execution condition is
met.

The general representation of a WHILE state-
ment is as follows:

WHILE Condition DO

Statements;

END_WHILE;

Condition is an address or an expression of data
type BOOL. The statements following DO are
repeated for as long as Condition has the value
TRUE.

Condition is scanned before every pass. If the
value is FALSE, program execution is continued
following END_WHILE. This can be the case
even before the first loop pass (the statements in
the program loop are then not executed).

WHILE loops can be parenthesized: further
WHILE loops can be programmed within one
WHILE loop.

In the WHILE loop, the current program pass
can be aborted with CONTINUE; EXIT termi-
nates the entire WHILE loop.

Example: data block DB10 is searched for the
bit pattern 16#FFFF: data word DW0 contains
either 16#FFFF or the interval to the next data
word which contains either 16#FFFF or the in-
terval to the next data word again.

i := 0;
WHILE DB10.DB[i] = 16#FFFF DO
i := i + WORD_TO_INT(DB10.DB[i]);

END_WHILE;

28.5 REPEAT Statement

With the REPEAT statement, a program loop is
repeated as long as a terminating condition is
not met.

The general representation of a REPEAT state-
ment is as follows:

REPEAT
Statements;

UNTIL Condition
END_REPEAT;

Condition is an address or an expression of data
type BOOL. The statements following RE-
PEAT are repeated as long as Condition has the
value FALSE. Condition is scanned following
every loop. If the value is TRUE, program exe-
cution is continued following END_REPEAT.
The program loop is executed at least once even
if the terminating condition is met from the
start.

REPEAT loops can be parenthesized: other
REPEAT loops can be programmed within the
REPEAT loop.

In the REPEAT loop, the current program pass
can be aborted with CONTINUE; EXIT termi-
nates the entire REPEAT loop.

Example: SFC25 COMPRESS is invoked in
the restart program until it has completed com-
pression of the user memory.

REPEAT
SFC_ERROR := COMPRESS(

BUSY := busy,
DONE := done);

UNTIL done
END_REPEAT;

28.6 CONTINUE Statement

481

28.6 CONTINUE Statement

CONTINUE terminates the current program
pass in a FOR, WHILE or REPEAT loop.

After CONTINUE has been executed, the con-
ditions for continuing the program loop are
scanned (in the case of WHILE and REPEAT),
or the run variable is changed by the step width
and tested to see if it is still within the run range.
If the conditions are met, the next loop pass
starts after CONTINUE.

CONTINUE terminates the program pass of the
loop immediately surrounding the CONTINUE
statement.

Example: memory bits are set with two paren-
thesized FOR loops. If the byte address (i) is
equal to zero, and the bit address (k) is less than
2, the subsequent statements of the inner FOR
loop are not executed (setting starts at memory
bit M0.3).

FOR i := 0 TO 2 DO
FOR k := 0 TO 7 DO
IF (k<2 & i=0) THEN CONTINUE; END_IF;
M[i,k] := TRUE;
END_FOR;
END_FOR;

28.7 EXIT Statement

With EXIT, you exit a FOR, WHILE or RE-
PEAT loop at any position regardless of condi-
tions. The loop pass is aborted immediately and
the program is executed following END_FOR,
END_WHILE or END_REPEAT.

EXIT exits the loop immediately surrounding
the EXIT statement.

Example: memory bits are set with two paren-
thesized FOR loops. If the byte address (i)
equals 2, and the bit address (k) is greater than
5, execution of the inner FOR loop is aborted
(setting ends with memory bit M2.5).

FOR i := 0 TO 2 DO
FOR k := 0 TO 7 DO
IF (i=2 & k>5) THEN EXIT; END_IF;
M[i,k] := TRUE;
END_FOR;
END_FOR;

In the example, execution of the FOR loop is
aborted with run variable k at EXIT. Execution
of the outer FOR loop with run variable i is not
affected by this. However, the example is de-
signed in such a way that the EXIT statement
becomes effective in the last pass of the “i
loop”.

28.8 RETURN Statement

The RETURN statement exits the currently ex-
ecuting block without conditions. Program ex-
ecution is continued in the invoking block or in
the operating system if an organization block is
exited.

RETURN is not mandatory at block end.

RETURN transfers the signal state of the OK
variable to the ENO output of the exited block.

Example: conditional block end

IF Error <> 0 THEN RETURN; END_IF;

28.9 GOTO Statement

With GOTO, you can continue program execu-
tion at another point.

Example:

GOTO M1;

...; //jumped

...; //statements

M1: ...; //jump destination

The connection between the GOTO statement
and the jump destination is represented by the
jump label. You must declare jump labels in the
declaration section of the block between the
keywords LABEL and END_LABEL. The
name of a jump label has the same structure as
the name of a block-local variable.

A jump label must be unique; it must be as-
signed only once in the block. You can jump
from several GOTO statements to one jump la-
bel.

28 Control Statements

482

Following execution of the GOTO statement,
program execution is continued at the statement
with the jump label. Jump label and statement
are separated by a colon.

A jump label must always be followed by a
statement. An “empty statement” is also per-
missible:

Label1: ;

The jump destination must be within a block. If
statements form a defined block, e.g. a program
rump within a program loop,

b the jump destination must be within this
statement block if the GOTO statement is
also within the statement block,

b you cannot jump from “outside” into this
statement block.

Example:

...
LABEL
M1, M2, M3, END;
END_LABEL;
...
GOTO CASE Selection DO;
1 : GOTO M1;
2 : GOTO M2;
3 : GOTO M3;
ELSE GOTO End;
END_CASE;
M1: ...statements1...;
GOTO End;
M2: ...statements2...;
GOTO End;
M3: ...statements3...;
End: ;

Note: GOTO is not defined in the standard.
SCL provides all the statements and functions
required for structured programming, so that
GOTO can be dispensed with.

29 SCL Blocks

483

29 SCL Blocks

29.1 SCL Blocks – General

SCL uses the block structure in exactly the
same way as the standard programming lan-
guages. You can program individual blocks
with SCL that you then invoke in, say, an FBD
block, or you invoke blocks in SCL that you
have created in STL, for example.

To be able to use blocks in the user program that
have been created with different languages, the
block interface must have a “standardized”
structure. This essentially means initialization
of the EN input and the ENO output (see Chap-
ter 29.4 “EN/ENO Mechanism”).

Programming examples in this chapter can be
found in the download files (download address:
see pages 8-9) in the SCL_Book library in the
“29 Block Calls” program.

User program structure

The organization blocks represent the interface
between the operating system and the user pro-
gram. Organization blocks are called by the op-
erating system of the CPU when certain events
occur, such as interrupts. “Normal” program
execution for a programmable controller is cy-
clic execution; the assigned organization block
is OB 1 (Chapter 3.1 “Program Processing”).

You can subdivide the user program in OB 1 in-
to individual subroutines (“blocks”) to suit your
requirements. The user program is located in
code blocks and user data in data blocks. Code
blocks are subroutines that you must invoke to
execute (Chapter 20.1 “Program Organiza-
tion”).

Blocks

STEP 7 provides functions FCs and function
blocks FBs as code blocks. Function blocks
FBs are invoked in conjunction with a data
block in which the block-local variables are

stored (“memory” of the block). This data
block, assigned to an FB call, is called an in-
stance data block; it can be a data block in itself
or it can be part of a “higher-level” data block.
Functions FCs have no data block but they can
have a function value. This function value
makes it possible, for example, to combine a
function FC (or more precisely, its function val-
ue) with another variable in an arithmetic ex-
pression (Chapter 3.2 “Blocks”).

Both block types can have block parameters.
Block parameters make it possible to parame-
terize the execution rule (the block function).
You declare the block parameters when pro-
gramming the block: as input parameter
(VAR_INPUT) if you only scan or read its val-
ue in the block program, as output parameter
(VAR_OUTPUT) if you only write to it, or as
in-out parameter (VAR_IN_OUT) if it is to be
read and written to.

If you address a block parameter in the block
program, use a formal parameter with the name
of the block parameter. The formal parameter
serves as a dummy for the actual parameter
used by the CPU during program execution.
You assign the actual parameters to the block
parameters when you call the block; they repre-
sent the values with which the block is to work,
or the values the block is to yield.

29.2 Programming SCL Blocks

The tools for programming SCL blocks are de-
scribed in Chapter 2; the relevant keywords can
be found in Chapter 3.5 “Programming Code
Blocks with SCL”. Data blocks and user-de-
fined data types are generally programmed in
the same way as in STL (Chapters 3.6 “Pro-
gramming Data Blocks” and 24.3 “User-De-
fined Data Types”).

29 SCL Blocks

484

To highlight the programming differences be-
tween the different code blocks we will imple-
ment the “Delimiter” function from the intro-
duction to Chapter 27 “Introduction, Language
Elements” as the following

b Function FC 291 without function value

b Function FC 292 with function value

b Function block FB 291 with its own data
block DB 291

b Function block FB 291 as local instance in
function block FB 290

Then we will call all blocks in a function block
(FB 290 with DB 290 as instance data block).
The program is always the same; only the dec-
laration and the initialization of the parameters
change.

Note: Since the “Delimiter” program does not
store local data and it returns a value, a function
FC with function value is the optimal block
type.

29.2.1 Function FC without a Function
Value

A function FC without a function value is of da-
ta type VOID. In our example, function FC 291
has the input parameters MAXI, IN, MINI and
the output parameter OUT.

FUNCTION FC291 : VOID
VAR_INPUT
 MAXI : INT;
 IN : INT;
 MINI : INT;
END_VAR
VAR_OUTPUT
 OUT : INT;
END_VAR
BEGIN
IF IN > MAXI THEN OUT := MAXI;
 ELSIF IN < MINI THEN OUT := MINI;
 ELSE OUT := IN;
END_IF;
END_FUNCTION

All output parameters of elementary data type
in a function must be set in a defined manner on
execution and must also be executed at runtime.
Input parameters may only be read and output
parameters may only be written to.

29.2.2 Function FC with Function Value

A function FC with function value has the data
type of the function value (return value). In our
example, function FC 292 has the input param-
eters MAXI, IN, MINI and a function value that
has the address (name) of the function either in
absolute or symbolic form. The data type of the
function value is specified after the block name,
separated by a colon.

FUNCTION FC292 : INT
VAR_INPUT
 MAXI : INT;
 IN : INT;
 MINI : INT;
END_VAR
BEGIN
IF IN > MAXI THEN FC292 := MAXI;
 ELSIF IN < MINI THEN FC292 := MINI;
 ELSE FC292 := IN;
END_IF;
END_FUNCTION

You can use all elementary data types as the da-
ta type of the function value, as well as the data
types DATE_AND_TIME, STRING and user-
defined data types UDT. ARRAY, STRUCT,
POINTER and ANY are not permissible.

If the function value is of data type STRING,
the reserved length is determined by the com-
piler setting (and not the maximum length giv-
en in square brackets).

All output parameters of elementary data type
in a function must be set in a defined manner on
execution and must also be executed at runtime.
Input parameters may only be read and output
parameters may only be written to.

In the FC program, a value must be assigned to
the function value, for example, with an expres-
sion of the same data type. This assignment
must also be executed at runtime.

29.2.3 Function Block FB

A function block has an instance data block in
which it can store its variables (the function
block is either called with its own data block or
it uses the data block of the called function
block). We want to make use of this and declare
the limit values as static local variables. The in-
put value IN and the result OUT remain as
block parameters.

29.2 Programming SCL Blocks

485

FUNCTION_BLOCK FB291
VAR_INPUT
 IN : INT;
END_VAR
VAR_OUTPUT
 OUT : INT;
END_VAR
VAR
 MAXI : INT := 10_000;
 MINI : INT := -5_000;
END_VAR
BEGIN
IF IN > MAXI THEN OUT := MAXI;
 ELSIF IN < MINI THEN OUT := MINI;
 ELSE OUT := IN;
END_IF;
END_FUNCTION_BLOCK

Input parameters may only be read and output
parameters may only be written to.

There are two variants for the call: call with
own data block or call as local instance. The
type of the subsequent block call need not be
taken into account when programming the
function block. However, please ensure that
when used as a local instance, at least one block
parameter or one static local data item is avail-
able: the instance length must not be zero.

Note: Input and output parameters of complex
data types are stored as a value in the instance
data block, in-out parameters are stored as
pointers to the actual parameters (see Chapter
26.3.2 “Storing Parameters in
Function Blocks”).

29.2.4 Temporary Local Data

All code blocks have temporary local data that
you can use as intermediate storage in the
block. You use the temporary local data in SCL
in the same way as in the standard program-
ming languages. Please refer to Chapter 18.1.5
“Temporary Local Data” for more detailed in-
formation.

You declare the temporary local data in the dec-
laration section of the block under VAR_
TEMP. All elementary, complex and user data
types are permissible, as well as the data types
POINTER and ANY. Special rules apply for
ANY (see below).

Temporary local data cannot be pre-assigned at
the declaration stage. This is why, when assign-
ing the L stack, the Editor reserves the length

entered on the “Compiler” tab under OPTIONS

 CUSTOMIZE for STRING variables.

If temporary local data are to be assigned mean-
ingful values, they must first be written to. This
also applies to (temporary) STRING variables
created at an output parameter, e.g. in the case
of IEC functions. When writing, the IEC func-
tion checks that a meaningful (valid) value has
been entered in the length information of the
STRING variable. You achieve this by assign-
ing a value (any value) to the variable in the
program before it is used.

In SCL, you can declare variables of the same
data type as a list:

VAR_TEMP
Value1, Value2, Value3 : INT;
...
END_VAR

Please note that with SCL the temporary local
data are only addressed symbolically.

Data type ANY

Temporary local data of data type ANY can
store the address of an instruction or of a global
or block-local variable:

any_var := MW10;
any_var := Setpoint;
any_var := DB10.Field1;

You can also pre-assign a temporary local variable
of data type ANY with NIL, a pointer “to zero”.

any_var := NIL;

Example: Various data records are to be copied
to a send mailbox with SFC 20 BLKMOV de-
pendent on an identifier:

...
VAR_TEMP
Address := ANY;
...
END_VAR
...

CASE Identifier OF
1: Address := DataRecord1;
2: Address := DataRecord2;
...
ELSE Address := NIL;
END_CASE;

SFC_ERROR := BLKMOV(
SRCBLK := Address,
DSTBLK := SendMailBox);

29 SCL Blocks

486

You can edit the individual components of an
ANY pointer, such as the DB number or the ad-
dress, direct with the help of a data type view
(see Chapter 27.1.9 “Data Type Views”).

29.2.5 Static Local Data

The static local data are the “memory” of a
function block. They are stored in the instance
data block and retain their value until changed
by the program just like data addresses in a
global data block.

In the static local data, you also declare the lo-
cal instances of function blocks and system
function blocks. Please refer to Chapter 18.1.6
“Static Local Data” for more detailed informa-
tion.

You declare the static local data with the key-
words VAR and END_VAR. All elementary,
complex and user data types are permissible, as
well as the data types POINTER and ANY.

In SCL you can declare variables of the same
data type as a list. Variables declared in this
way cannot be pre-assigned:

VAR
Value1, Value2, Value3 : INT;
...
END_VAR

Please note that with SCL, the static local data
in the function block are only addressed sym-
bolically.

Since the static local data are located in a data
block, they can also be accessed in the same
way as global data addresses. They are ac-
cessed with full addressing specifying the data
block and the data address.

29.2.6 Block Parameters

The block parameters constitute the interface
between the calling block and the called block.
They are declared as input, in/out and output
parameters (Chapter 19.1.3 “Declaration of the
Block Parameters”).

You may only scan input parameters and you
may only write to output parameters. If you
want to read, modify and write back to a block
parameter, use an in/out parameter.

In the case of functions FCs, the block parame-
ters are pointers to the actual parameters or to
another pointer. In the case of function blocks
FBs, the block parameters are stored in the in-
stance data block (Chapter 26.3 “Data Storage
when Transferring Parameters”).

In SCL, you can declare block parameters of
the same data type as a list. Variables declared
in this way cannot be pre-assigned. Example:

VAR_INPUT

Value1, Value2, Value3 : INT;

...

END_VAR

Since the block parameters are located in a data
block, they can also be accessed in the same
way as global data addresses. They are ac-
cessed with full addressing specifying the data
block and the data address.

Result := DB279.DW20;

Result := DB279.Total;

Result := Totalizer.Total;

Result := Totalizer.DW20;

In the case of output parameters, it is in fact, the
only possibility of further processing their val-
ues (see block calls in Chapters 29.3.3 “Func-
tion Block with its Own Data Block” and
29.3.4 “Function Block as Local Instance”).

Pre-assignment of block parameters

Pre-assignment of block parameters is optional
and only permissible in the case of function
blocks if the block parameter is stored as a val-
ue. This applies to all block parameters of ele-
mentary data type and to input and output pa-
rameters of complex data type.

If you make no initialization, the editor uses ze-
ro, the least value, or a space as the initializa-
tion value depending on the data type. The de-
fault initialization in the case of parameters of
type BLOCK_DB is DB1 (DB0 is not permis-
sible since it does not exist).

If you do not specify length information for
STRING variables, the Compiler sets 254 as
the maximum length and 0 as the current length
or it takes the setting on the “Compiler” tab un-
der OPTIONS CUSTOMIZE.

29.3 Calling SCL Blocks

487

29.2.7 Formal Parameters

You use formal parameters to address the block
parameters in the block program. The formal
parameters have the same name as the block pa-
rameters and are used in the statements in place
of an address.

Formal parameters of elementary data type

You can use formal parameters of elementary
data type instead of addresses of the same data
type in any expression, and you can “pass them
on” to block parameters of called blocks.

You can assign several data type views to block
parameters of elementary data type and so ac-
cess them with different formal parameters.

Formal parameters of complex
data type and UDTs

You can use formal parameters of complex data
type and of user-defined data types instead of
addresses of the same data type in an assign-
ment, and you can “pass them on” to block pa-
rameters of called blocks. You can treat individ-
ual components of data types ARRAY,
STRUCT and UDT in the same way.

You can assign several data type views to block
parameters of complex data type and so access
them with different formal parameters. This is
especially useful with the data types DT and
STRING whose individual bytes you otherwise
cannot process.

Formal parameters of parameter types
TIMER and COUNTER

Formal parameters of the parameter types TIM-
ER and COUNTER can be processed with the
SIMATIC timer functions or SIMATIC counter
functions (Chapters 30.1 “Timer Functions”
and 30.2 “Counter Functions”). Formal param-
eters of these data types can also be passed on
to the parameters of called blocks.

Formal parameters of parameter types
BLOCK_xx

With a formal parameter of the type BLOCK_
DB, you can access a data address in a data
block (see Chapter 27.2.3 “Indirect Addressing
in SCL”). You can also pass a formal parameter
of this type to a parameter of the called block.

Formal parameters of parameter types
BLOCK_FB and BLOCK_FC can only be
passed on to called blocks in SCL (no process-
ing of the formal parameter in the block).

Formal parameters of data types
POINTER and ANY

Formal parameters of data types POINTER and
ANY can be passed on to called blocks in SCL
as entire units. Exception: if the actual parame-
ter is located in the temporary local data, pass-
ing on is not permissible.

You can assign several data type views to block
parameters of data types POINTER and ANY
and so access them with different formal pa-
rameters. This is especially useful in the case of
the data type ANY since you can, for example,
modify an ANY pointer at runtime in this way.

29.3 Calling SCL Blocks

When calling blocks, SCL differentiates be-
tween blocks with and without function value.

Function blocks FBs and functions FCs without
function value are simply program branchings
in the sense of subroutines; this also includes
system function blocks SFBs and system func-
tions SFCs without function value.

Functions FCs with function value can be used
in value assignments and expressions in place
of variables. Table 29.1 gives an overview of
the block calls.

You call system function blocks SFBs in exact-
ly the same way as function blocks FBs and you
call system functions SFCs in exactly the same
way as functions FCs. If you call system func-
tion blocks SFBs with a data block, the data
block is located in the user program.

Table 29.1 SCL Block Calls

Calling a function

with function value without function value

Variable := FCx(...);
Variable := FC_name(...);

FCx(...);
FC_name(...);

Calling a function block

with data block as local instance

FBx.DBx(...);
FB_name.DB_name(...);

local_name(...);

29 SCL Blocks

488

When calling a block with block parameters,
the block parameters are initialized with actual
parameters. These are the values (constants,
variables or expressions) with which the block
works at runtime and in which it stores its re-
sults

All block parameters must be initialized when
calling functions FCs and system function
SFCs.

When calling function blocks FBs and system
function blocks SFBs, the block parameters can
be freely initialized. Output parameters in the
case of FBs and SFBs are initialized with direct
access to the instance data instead of with actu-
al parameters when called.

29.3.1 Function FC without Function Value

FC291(MAXI:= Maximum,
IN := InputValue,
MINI:= Minimum,
OUT := Result);

The call is made under specification of the
block address (absolute or symbolic) followed
by the parameter list in parentheses.

All parameters must be initialized and the order
is optional. The parentheses must be written
even if a function FC has no parameters.

If a function has an input parameter as its single
parameter, the parameter name can be omitted
at initialization.

Example: conversion of the INT variable Speed
to a STRING variable Display:

Display := I_STRNG(Speed);

29.3.2 Function FC with Function Value

Result := FC292(
MAXI := Maximum,
IN := InputValue,
MINI := Minimum);

A function FC with function value can be used
in any expression in place of a variable of the
same data type; in a value assignment in the ex-
ample. The global variable Result is assigned to
the function value of function FC 292.

The call is made under specification of the
block address (absolute or symbolic) followed
by the parameter list in parentheses.

All parameters must be initialized and the order
is optional. The parentheses must be written
even if a function FC has no parameters.

If a function has an input parameter as its single
parameter, the parameter name can be omitted
at initialization.

If you use the EN input at block call, and if this
input has the value FALSE, the function value
is undefined (assigned any value).

29.3.3 Function Block with its Own
Data Block

The instance data block is specified when call-
ing the function block. It can either be pro-
grammed in the program source (following the
function block and before its invocation), or
SCL generates the data block specified in the
invocation after checking, provided it does not
already exist. The instance data block can also
be programmed incrementally in SCL without
source (Chapter 3.6.1 “Programming Data
Blocks Incrementally”).

Any free data block can be used as the instance
data block. The symbolic name can be selected
freely within the permissible framework.

DATA_BLOCK DB291
 FB291
BEGIN
END_DATA_BLOCK

Call with instance data block:

FB291.DB291(IN := InputValue);
Result := DB291.OUT;

The call is made under specification of the
function block followed by the instance data
block, separated by a colon, and the parameter
list in parentheses. The addresses (names) can
be specified either absolutely or symbolically.

Initialization of function block parameters is
free. Since in/out parameters of complex data
types are stored as pointers, they should be ini-
tialized the first time the function block is
called so that a meaningful value is entered. If a
block parameter is not initialized, it retains its
last set value. The parentheses must be written
even if no parameters are initialized.

All parameters can also be addressed as global
data addresses with specification of the in-

29.3 Calling SCL Blocks

489

stance data block and the parameter name. In
the example, the limit values are assigned con-
stants. They can also be initialized prior to the
function block call with

DB291.MAXI := Maximum;
DB291.MINI := Minimum;

Output parameters cannot be initialized at a
block call. If required, their values are read di-
rect from the instance data block and further
processed without intermediate storage:

IF DB291.OUT > 10_000 THEN ... END_IF;

29.3.4 Function Block as Local Instance

Other function blocks can be declared as local
instances and called in a function block. The
function blocks to be called then store their lo-
cal data in the instance data block of the calling
function block.

FUNCTION_BLOCK FB290
...
VAR
 Delimiter : FB291;
END_VAR
...
BEGIN
...
Delimiter(IN := InputValue);
Result := Delimiter.OUT;
...
END_FUNCTION_BLOCK

You make the declaration as local instance in
the static local data; you assign a name (e.g. De-
limiter) and assign the function block (FB291
or its symbolic name) as the data type. When
compiling, the function block to be called must
exist, either as a compiled block in the contain-
er Blocks or as an (error-free) program source
that is compiled prior to being called.

You choose the same procedure when you call
a system function block SFB as a local instance.

The call as local instance is made under speci-
fication of the variable name followed by the
parameter list in parentheses. Initialization of
function block parameters is free. Since in/out
parameters of complex data types are stored as
pointers, they should be initialized the first time
the function block is called so that a meaningful
value is entered. If a block parameter is not ini-
tialized, it retains its last set value. The paren-

theses must be written even if no parameters are
initialized.

You can create several local instances with dif-
ferent names for the same function block.

All parameters of a local instance can also be
addressed as components of a structure variable
under specification of the local instance name
and the parameter name. In the example, the
limit values are assigned constants. They can
also be initialized prior to calling the local in-
stance with

Delimiter.MAXI := Maximum;
Delimiter.MINI := Minimum;

Output parameters cannot be initialized at a
function block call (also applies to local in-
stances). If required, their values are read as
components of the local instance:

Result := Delimiter.OUT;

You can also access the parameters of a local in-
stance from “outside” the calling function
block. Access takes place like access to global
data addresses under specification of the data
block (DB 290), the local instance (Delimiter)
and the parameter name:

DB290.Delimiter.MAXI := Maximum;
DB290.Delimiter.MINI := Minimum;
Result := DB290.Delimiter.OUT;

29.3.5 Actual Parameters

When a block is called, you initialize the block
parameters with the current values (”actual pa-
rameters”) by making an assignment (see previ-
ous section). The same statements apply to ac-
tual parameters in SCL as in STL (see Chapter
19.3 “Actual Parameters”) with the following
exceptions:

b Block parameters of the complex data types
DT and STRING can be initialized with
constant values in SCL.

b Block parameters of data type POINTER
cannot be initialized with constants, or with
a pointer of the form P#Operand. Excep-
tion: pre-assignment with a zero pointer
NIL is permissible.

b Block parameters of data type ANY cannot
be initialized with constants or with an
ANY pointer of the form P#[Data

29 SCL Blocks

490

block.]Operand Type Quantity. Exception:
pre-assignment with a zero pointer NIL is
permissible.

b You can initialize block parameters with ex-
pressions that supply a value of the same da-
ta type as the block parameter. For example,
a function FC with function value can also
be an actual parameter.

Note: If you initialize a formal parameter of
type POINTER or ANY with a temporary vari-
able when calling an FB or an FC, you cannot
pass this parameter in the called block on to an-
other block. The addresses of the temporary
variables lose their values when passed on.

29.4 EN/ENO Mechanism

In SCL, you can check certain expressions for
correct execution, for example, you can check
if the result of a computational function is still
within the permissible number range. The re-
sult of this scan is stored in the OK variable.
You can also communicate the assignment of
OK to the calling block via the ENO output of
the block. Finally, you can execute the block
call with EN, dependent on the conditions.

You can use the pre-defined variables EN and
ENO for all blocks (FCs, SFCs, FBs, SFBs and
also IEC functions), for all standard functions
(e.g. shift and conversion functions) except the
timer and counter functions.

Chapter 15 “Status Bits”, in particular Chapter
15.4 “Using the Binary Result”, describes how
the EN/ENO mechanism is handled in the stan-
dard programming languages.

29.4.1 OK Variable

SCL provides an initialized variable with the
name “OK” and the data type BOOL. This vari-
able indicates errors in program execution in an
SCL block but only if you have selected the op-
tion “Set OK flag” in the “Compiler” tab under
OPTIONS CUSTOMIZE in the SCL Program
Editor.

The editor or the compiler to do not check
whether this option is set or not when you use
the OK variable in the program.

At the start of the block, the OK variable has the
value TRUE. In the event of a program error,
OK is set to FALSE. You can scan the OK vari-
able with SCL statements or assign a value to
the OK variable at any time.

SUM := SUM + IN;
IF OK

THEN (* no error occurred *);
ELSE (* errored addition *);

END_IF;

The OK variable is affected by arithmetic ex-
pressions and by some conversion functions
(Chapter 30.5.2 “Explicit Conversion Func-
tions”). If an error occurs when executing stan-
dard functions, such as math functions, it is re-
ported via the ENO output (see below).

When exiting the block, the value of the OK
variable is assigned to the ENO output.

29.4.2 ENO Output

The called block stores the result of the OK
variable in the ENO output (enable output).
ENO is of the data type BOOL. Following the
block call, ENO can be used to see if the block
was executed properly (ENO = TRUE) or if an
error occurred (ENO = FALSE).

FC15 (In1 := ..., In2 := ...);
IF ENO

THEN (* all in order *);
ELSE (* error occurred *);

END_IF;

If you want to “pass on” a group error reported
with ENO to the calling block following the
block call, you must set the OK variable ac-
cordingly:

FC15 (In1 := ..., In2 := ...);
OK := ENO;

You an also assign a value to the ENO output in
the block by setting the OK variable according-
ly.

IF (* error occurred *)
THEN OK := FALSE; RETURN;

END_IF;

ENO is not a block parameter but a sequence of
statements generated by the program editor
when you use ENO. ENO is not declared. You
scan ENO immediately after calling the block.

29.4 EN/ENO Mechanism

491

If you control the block call with the EN input
(see next chapter), and EN has the value
FALSE, so that the block call is not executed,
the ENO output will also have the value
FALSE.

Note: If a block written with the standard pro-
gramming languages uses the binary result BR
as an error message, you can scan the error
message in SCL with the ENO output following
this block call (see also Chapter 15.4 “Using the
Binary Result”).

29.4.3 EN Input

You control a block call with the Boolean EN
input. If EN is initialized with TRUE, the called
block will be executed. If EN is initialized with
FALSE, the called block is not executed. A
jump is then made beyond the block call to the
next statement.

FC15 (EN := I1.0,

In1 := ...,

In2 := ...);

(*FC15 is only executed if I1.0 = "1"*)

If you do not use EN, the block will always be
executed.

EN is not a block parameter but a sequence of
statements generated by the program editor
when you use EN. EN is not declared. You use
EN in the parameter list in the same way as an
input parameter.

You can initialize EN with ENO, in which case
the called block is only executed if the previ-
ously called block has been properly executed.
Example:

FC16 is only called if FC15 has been executed
and no errors have occurred.

FC15 (EN := I1.0,
In1 := ...,
In2 := ...);

FC16 (EN := ENO,
In1 := ...,
In2 := ...);

If no block has been called previously on the
same call level, ENO has the value TRUE.

Please note that a function FC or a system func-
tion SFC yields an undefined function value
(any assignment) if you control its execution
with EN and EN has the value FALSE.

30 SCL Functions

492

30 SCL Functions

30.1 Timer Functions

The timers in the system memory of the CPU
are addressed in SCL as functions with a func-
tion value. The function names for the different
behaviors of the timer functions are as follows:

b S_PULSE (pulse time)

b S_PEXT (extended pulse)

b S_ODT (ON delay)

b S_ODTS (latching ON delay)

b S_OFFDT (OFF delay)

All timer functions have the parameters shown
in Table 30.1. Timer function call example:

Time_BCD := S_PULSE(
T_NO := Timer_address,
S := Start_input,
TV := Timer_duration,
R := Reset,
Q := Timer_status,
BI := Binary_time);

The behavior of the timer functions with pulse
diagrams is described in detail in Chapter 7
“Timer Functions”. Please note that enabling of
a timer function is not available in SCL.

The following rules apply for initializing the
parameters of a timer function:

b T_NO must always be initialized.

b S and TV can be omitted in pairs.

b Q can be omitted.

b BI can be omitted.

In addition to the SIMATIC timer functions, the
correspondingly set up CPUs are provided with
“IEC timer functions” as system function
blocks SFBs:

b SFB 3 TP
Pulse generation

b SFB 4 TON
ON delay

b SFB 5 TOF
OFF delay

These functions are described in Chapter 7.7
“IEC Timer Functions”. The block shells are
stored in the Standard Library in the System
Function Blocks program.

Examples of the SIMATIC timer functions and
the IEC timer functions can be found in the
download files (download address: see pages 8-
9) in the SCL_Book library in the “Timer Func-
tions” source file of the “30 SCL Functions”
program.

Table 30.1 Parameters for the SIMATIC Timer Functions

Parameter Declaration Data type Meaning

T_NO INPUT TIMER Timer address

S INPUT BOOL Start timer

TV INPUT S5TIME Timer value to be set

R INPUT BOOL Reset timer

Function value OUTPUT S5TIME Current time BCD coded

Q OUTPUT BOOL Timer status

BI OUTPUT WORD Current time binary coded

30.2 Counter Functions

493

30.2 Counter Functions

The counters in the system memory of the CPU
are addressed by SCL as functions with a func-
tion value. The function names for the different
behaviors of the counter functions are as fol-
lows:

b S_CU (up counter)

b S_CD (down counter)

b S_CUD (up-down counter)

The counter functions have the parameters
shown in Table 30.2. Counter function call ex-
ample:

BCD_count_value := S_CU(
C_NO := Counter_address,
CU := Count_up,
S := Set_input,
PV := Count_value,
R := Reset,
Q := Counter_status,
CV := Binary_count_value);

The behavior of the counter functions is de-
scribed in detail in Chapter 8 “Counter Func-
tions”. Please note that enabling of counter
functions is not available in SCL.

The following rules apply for initializing the
parameters of a counter function:

b The CD parameter is not available in the
S_CU counter function.

b The CU parameter is not available in the
S_CD counter function.

b C_NO must always be initialized.

b CU and CD must be initialized depending
on the counter function

b S and PV can be omitted in pairs

b Q can be omitted

b CV can be omitted

An INT number in the range 0 to 999 or a hex
number in the range 16#000 to 16#3E7 can be
applied as a constant to the PV counter value to
be set.

In addition to the SIMATIC counter functions,
the correspondingly set up CPUs are provided
with “IEC counter functions” as system func-
tion blocks SFBs:

b SFB 0 CTU
Up counter

b SFB 1 CTD
Down counter

b SFB 2 CTUD
Up-down counter

These functions are described in Chapter 8.6
“IEC Counter Functions”. The block shells are
stored in the Standard Library in the System
Function Blocks program.

Examples of the SIMATIC counter functions
and the IEC counter functions can be found in
the download files (download address: see pag-
es 8-9) in the SCL_Book library in the “Coun-
ter Functions” source file of the “30 SCL Func-
tions” program.

Table 30.2 Parameters for the SIMATIC Counter Functions

Parameter Declaration Data type Meaning

C_NO INPUT COUNTER Counter address

CU INPUT BOOL Count up

CD INPUT BOOL Count down

S INPUT BOOL Set counter

PV INPUT WORD Count to be set

R INPUT BOOL Reset counter

Function value OUTPUT WORD Current count value BCD coded

Q OUTPUT BOOL Counter status

CV OUTPUT WORD Current count value binary coded

30 SCL Functions

494

30.3 Math Functions

SCL provides the following math functions:

b Trigonometric functions:
SIN Sine
COS Cosine
TAN Tangent

b Arc functions:
ASIN Arc sine
ACOS Arc cosine
ATAN Arc tangent

b Logarithmic functions:
EXP Exponentiation to the base e
EXPD Exponentiation to the base 10
LN Natural logarithm
LOG Decimal logarithm

b Other math functions:
ABS Generate absolute value
SQR Generate square
SQRT Generate square root

A math function processes INT, DINT and RE-
AL numbers. If you enter an INT or a DINT
number as the input parameter, it is automati-
cally converted to a REAL number.

The math functions operate with REAL num-
bers internally and yield a REAL number as the
result. Exception: ABS yields the data type
available at the input as the result.

A trigonometric function expects as an input
value an angle in radian measure in the range 0
to 2p (where p = +3.141593e+00) correspond-
ing to 0° to 360°. The arc functions are inverse
trigonometric functions; they yield an angle in

radian measure. The permissible value ranges
for the arc functions are:

Examples:

Reactive_power :=
Voltage * Current * SIN(phi);

Volume := SQR(Radius) * Level * PI;
c := SQRT(SQR(a) + SQR(b));

30.4 Shifting and Rotating

The general function call for the shift and rotate
functions are:

Result := Function(
IN := Input_value,
N := Shift_number);

The shift and rotate functions have two input
parameters: parameter N of data type INT indi-
cates the number of positions by which the shift
or rotation is to be made. Parameter IN indi-
cates the variable to be shifted in data type
ANY_BIT (BOOL, BYTE, WORD,
DWORD). The function value is of the same
data type as the input value.

Examples:

MW14 := SHL(IN := MW12, N := 2);
res_dword := ROR(

IN := in_dword,
N := shift_int);

Function Permissible range Returned value

ASIN –1 to +1 –p/2 to +p/2

ACOS –1 to +1 0 to p

ATAN Entire range –p/2 to +p/2

Table 30.3 Shift and Rotate Functions

SHL Shift left Input value IN is shifted to the left by N positions; the vacated positions are filled
with zeros.

SHR Shift right Input value IN is shifted to the right by N positions; the vacated positions are
filled with zeros.

ROL Rotate left Input value IN is rotated to the left by N positions; the vacated positions are filled
with the shifted positions.

ROR Rotate right Input value IN is rotated to the right by N positions; the vacated positions are
filled with the shifted positions.

30.5 Conversion Functions

495

30.5 Conversion Functions

When you combine variables, the variables
must be of the same data type. This also applies
when you make value assignments or when you
initialize function parameters or block parame-
ters. If a variable is not available in the required
data type, the data type must be changed. This
is the purpose of the conversion functions.

SCL provides two types of conversion func-
tion. “Class A” conversions can be executed
automatically (“implicitly”) in SCL since they
are not associated with information loss (e.g.
conversion from BYTE to WORD). You must
specify “Class B” conversions explicitly (e.g.
conversion from REAL to INT). Any threat of
information loss can be anticipated and avoided
with an upstream check, or you can scan the
OK variable in such cases (must be set in the
Compiler Properties).

You can convert and process variables of data
type DATE_AND_TIME and STRING with
the IEC functions (Standard Library and IEC
Function Blocks, described in Chapter 31 “IEC
Functions”).

30.5.1 Implicit Conversion Functions

Implicit conversion functions are executed “au-
tomatically” by SCL. You can also program
them, e.g. when you want to enhance the clarity
or readability of the program.

Table 30.4 shows the implicit conversion func-
tions available in SCL.

When converting from CHAR_TO_STRING, a
STRING variable with the length 1 is generated
and the OK variable is set to FALSE.

Examples:

MB10 := M7.0;
real_var := int_var;
string_var := char_var;

In the example, memory bit M10.0 receives the
signal state of memory bit M7.0. The remaining
bits are set to signal state “0”.

30.5.2 Explicit Conversion Functions

You must specify explicit conversion functions
in the program; nevertheless, with some of
these functions, conversion does not take place
and no code is executed (indicated in Table 30.5
with “Accepted without change”). The OK
variable is affected by some conversion func-
tions.

Examples:

MB10 := CHAR_TO_BYTE(char_var);
int_var := WORD_TO_INT(MW20);
real_var := DWORD_TO_REAL(MD30);

Please note that no number conversion takes
place in the last example. The bit pattern of the
memory doubleword is accepted unchanged in-
to the REAL variable.

Table 30.4 Implicit Conversion Functions

Function OK Conversion

BOOL_TO_BYTE N Filled with leading zeros

BOOL_TO_WORD N

BOOL_TO_DWORD N

BYTE_TO_WORD N

BYTE_TO_DWORD N

WORD_TO_DWORD N

INT_TO_DINT N Leading positions filled with the sign

INT_TO_REAL N -

DINT_TO_REAL N At conversion, accuracy, among other things, is reduced

CHAR_TO_STRING Y Conversion to a character string with one character

30 SCL Functions

496

Table 30.5 Explicit Conversion Functions (Part 1)

Function OK Conversion Remarks

BYTE_TO_BOOL Y Least significant bit is accepted The OK variable has TRUE if a bit
is set to “1” in the unaccepted part of
the variable

WORD_TO_BOOL Y

DWORD_TO_BOOL Y

WORD_TO_BYTE Y Least significant byte is accepted

DWORD_TO_BYTE Y

DWORD_TO_WORD Y Least significant word is accepted

CHAR_TO_BYTE N Without change to the assignment

BYTE_TO_CHAR N Without change to the assignment

CHAR_TO_INT N Most significant byte filled with
zeros

INT_TO_CHAR Y Acceptance of the least significant
byte without change

OK = TRUE if a bit is set in the left
byte

STRING_TO_CHAR Y Acceptance of the first character OK = FALSE if the STRING length
is not equal to 1

WORD_TO_INT N Acceptance without change

DWORD_TO_DINT N

INT_TO_WORD N

DINT_TO_DWORD N

REAL_TO_DWORD N No conversion !

DWORD_TO_REAL N No conversion !

DINT_TO_INT Y Bits for the sign copied OK = FALSE if the number range is
violated

REAL_TO_INT Y Rounded to INT

REAL_TO_DINT Y Rounded to DINT

ROUND Y Conversion of REAL to DINT with
rounding

As for REAL_TO_DINT

TRUNC Y Conversion of REAL to DINT
without rounding (“truncation” of
the fractional component)

OK = FALSE if the number range is
violated

DINT_TO_TIME N Acceptance without change

DINT_TO_TOD Y OK = FALSE if the range for TOD
is violated

DINT_TO_DATE Y OK = FALSE if the left word is
assigned

DATE_TO_DINT N

TIME_TO_DINT N

TOD_TO_DINT N

WORD_TO_BLOCK_DB N Acceptance without change

BLOCK_DB_TO_WORD N Acceptance without change

30.5 Conversion Functions

497

Examples:

MW10 := BOOL_TO_WORD(M20.3)

MW10 := M20.3

The conversion BOOL_TO_WORD is an im-
plicit function, and need not be specified. If
M20.3 has a signal status “1”, MW10 has the
value W#16#0001, otherwise W#16#0000.

M20.3 := WORD_TO_BOOL(MW10)

This conversion must be programmed. The sig-
nal status of the least significant bit (M11.0 in
the example) is applied. If one of the other bits

not involved in the conversion has a signal sta-
tus “1”, the OK variable is set to TRUE.

int_var := BOOL_TO_INT(M20.3)

The signal status of the bit is applied in the least
significant digit of the INT variable, so that the
value of int_var is either 0 or 1.

M20.3 := INT_TO_BOOL(int_var)

The signal status of the least significant bit is
applied, i.e. M20.3 is set to “1” in the case of an
odd value of the INT variable. If one of the re-
maining bits has a signal status “1”, the OK
variable is set to TRUE.

Table 30.6 Explicit Conversion Functions (Part 2)

Function OK Conversion

BOOL_TO_INT N WORD_TO_INT(BOOL_TO_WORD(x))

BOOL_TO_DINT N DWORD_TO_DINT(BOOL_TO_DWORD(x))

BYTE_TO_INT N WORD_TO_INT(BYTE_TO_WORD(x))

BYTE_TO_DINT N DWORD_TO_DINT(BYTE_TO_DWORD(x))

WORD_TO_DINT N INT_TO_DINT(WORD_TO_INT(x))

DWORD_TO_INT Y DINT_TO_INT(DWORD_TO_DINT(x))

INT_TO_BOOL Y WORD_TO_BOOL(INT_TO_WORD(x))

INT_TO_BYTE Y WORD_TO_BYTE(INT_TO_WORD(x))

INT_TO_DWORD N WORD_TO_DWORD(INT_TO_WORD(x))

DINT_TO_BOOL Y DWORD_TO_BOOL(DINT_TO_DWORD(x))

DINT_TO_BYTE Y DWORD_TO_BYTE(DINT_TO_DWORD(x))

DINT_TO_WORD Y DWORD_TO_WORD(DINT_TO_DWORD(x))

INT_TO_STRING N Like loadable IEC function FC 16 I_STRNG

DINT_TO_STRING N Like loadable IEC function FC 5 DI_STRNG

REAL_TO_STRING N Like loadable IEC function FC 30 R_STRNG

STRING_TO_INT N Like loadable IEC function FC 38 STRNG_I

STRING_TO_DINT N Like loadable IEC function FC 37 STRNG_DI

STRING_TO_REAL N Like loadable IEC function FC 39 STRNG_R

BCD_TO_INT(x) N x with the data type WORD or DWORD is interpreted as a BCD-
coded number between ±999 and ±9 999 999. If x contains a pseudo
tetrad (numerical value 10 to 15 or A to F in hexadecimal represen-
tation), the organization block OB 121 (programming error) is
called. If it is not present, the CPU got to STOP.

WORD_BCD_TO_INT(x) N

BCD_TO_DINT(x) N

DWORD_BCD_TO_DINT(x) N

INT_TO_BCD(x) N x with the data type INT or DINT is interpreted as an integer between
±999 and ±9 999 999. The result is a BCD-coded number with data
type WORD or DWORD.

INT_TO_BCD_WORD(x) N

DINT_TO_BCD(x) N

DINT_TO_BCD_DWORD(x) N

30 SCL Functions

498

30.6 Numerical Functions

SCL provides the following functions for se-
lecting values:

b SEL Binary selection

b MUX Multiple selection

b MAX Maximum selection

b MIN Minimum selection

b LIMIT Limiter

Apart from MUX, these functions are also
available as loadable IEC functions provided in
the Standard Library in the IEC Function
Blocks program with STEP 7. The functions in-
tegrated in SCL exactly correspond – partially
differing from the loadable functions – to the

IEC 61131-3 standard. Table 30.7 lists the pa-
rameters of the numerical functions.

SEL Binary selection

Call: any :=
SEL (G := bool, IN0 := any, IN1 := any);

The SEL function selects one of two variable
values (IN0 and IN1) depending on a switch
(parameter G). Variables of all data types are
permissible as input values for the IN0 and IN1
parameters, with the exception of S5TIME,
ARRAY, STRUCT and the parameter types.
The two input variables (current parameters)
and the function value must be of the same class
of data type.

Table 30.7 Parameters of the Numerical SCL Functions

Function Parameter Declaration Data Type Contents, Description

SEL G INPUT BOOL Selection criterion (G = “0” or “1”)

IN0 INPUT ANY 1) First input value

IN1 INPUT ANY 1) Second input value

Function value RETURN ANY 1) Selected input value

MUX K INPUT INT Selection criterion (K = 0 to 31)

IN0 INPUT ANY 1) First input value

IN1 INPUT ANY 1) Second input value

INn INPUT ANY 1) n = 2 to 31 (optional input values)

INELSE INPUT ANY 1) Alternative input value (optional)

Function value RETURN ANY 1) Selected input value

MAX IN1 INPUT ANY_NUM 2) First input value

IN2 INPUT ANY_NUM 2) Second input value

INn INPUT ANY_NUM 2) n = 3 to 32 (optional input values)

Function value RETURN ANY_NUM 2) Largest input value

MIN IN1 INPUT ANY_NUM 2) First input value

IN2 INPUT ANY_NUM 2) Second input value

INn INPUT ANY_NUM 2) n = 3 to 32 (optional input values)

Function value RETURN ANY_NUM 2) Smallest input value

LIMIT MN INPUT ANY_NUM 2) Lower limit

IN INPUT ANY_NUM 2) Input value

MX INPUT ANY_NUM 2) Upper limit

Function value RETURN ANY_NUM 2) Limited input value

1) Except ARRAY, STRUCT and parameter types
2) Plus the time data types, except S5TIME

30.7 Programming Your Own Functions with SCL

499

MUX Multiple selection

Call: any :=
MUX (K := int, IN0 := any, IN1 := any, ..., IN31
:= any, INELSE := any);

From 2 to 32 numerical variable values, the
MUX function selects the value whose number
is specified in the K parameter. If the value of K
is outside the number of input parameters, the
alternative value from the INELSE parameter is
output. If INELSE is missing, the value at IN0
is output.

Variables of all data types except S5TIME,
ARRAY, STRUCT and the parameter types are
permissible as input values. All input values
(current parameters) and the function value
must be of the same class of data type. The
function value accepts the data type of highest
significance.

Example:

selection:= MUX(
K := int0,
IN0:= int1,
IN1:= int2,
IN2:= dint1,
IN3:= dint2,
IN4:= real1,
INELSE:= real2);

If the variables to be selected are of data types
INT, DINT and REAL, the selection variable
accepts the data type of highest significance,
i.e. REAL. Depending on the value of the int0
variable, the values of the selected variables are
imported into selection, if necessary with the
implicit data type conversion INT_TO_REAL
or DINT_TO_REAL.

MAX Maximum selection

Call: any_num :=
MAX (IN1 := any_num, IN2 := any_num, ...,
IN32 := any_num);

From 2 to 32 numerical variable values, the
MAX function selects the largest one. Variables
of the data type class ANY_NUM and the time
data types except S5TIME are permissible as
input values. All input values (current parame-
ters) and the function value must be of the same
class of data type. The function value accepts
the data type of highest significance.

MIN Minimum selection

Call: any_num :=
MIN (IN1 := any_num, IN2 := any_num, ...,
IN32 := any_num);

From 2 to 32 numerical variable values, the
MIN function selects the smallest one. Vari-
ables of the data type class ANY_NUM and the
time data types except S5TIME are permissible
as input values. All input values (current pa-
rameters) and the function value must be of the
same class of data type. The function value ac-
cepts the data type of highest significance.

LIMIT Limiter

Call: any_num :=
LIMIT (MN := any_num, IN := any_num; MX
:= any_num);

The LIMIT function limits the numerical value
of the IN variable to the limits specified in the
MN and MX parameters. Variables of the data
type class ANY_NUM and the time data types
except S5TIME are permissible as input values.
All input values (current parameters) and the
function value must be of the same class of data
type. The function value accepts the data type
of highest significance. The lower limit (MN
parameter) must be less than the upper limit
(MX parameter).

30.7 Programming Your Own
Functions with SCL

If you do not find any suitable functions among
the SCL standard functions and the IEC func-
tions, SCL allows you to write your own func-
tions that you can then adapt to your own re-
quirements.

The correct block type for this purpose is the
function FC with function value. Programming
and calling a function FC with function value
are described in Chapter 29.2.2 “Function FC
with Function Value” and in Chapter 29.3.2
“Function FC with Function Value”, respec-
tively.

In many cases, the language resources of SCL
are insufficient for programming the desired
function. In such cases there is still the possibil-
ity of implementing the function with STL (see

30 SCL Functions

500

Chapter 30.8 “Programming Your Own Func-
tions with STL”). But with the principle of data
type views, SCL also makes it possible to pro-
cess complex variables. Chapter 27.1.9 “Data
Type Views” shows you which data type views
you can assign to which variables.

Bit-wise processing of variables of
elementary data types

Example: you want to process individual bits in
a doubleword variable in some way, e.g. scan
them or logically combine them and write the
result to another bit. For this purpose, you apply
a data type view to the variable in the form of a
bit field and you can now address the individual
bits as field components.

VAR_TEMP
DW_Var : DWORD;
Pattern AT DW_Var : ARRAY [0..31] OF BOOL;
END_VAR
...
Pattern[1] := Pattern[10] & Pattern[11];
...

In the small example, bits 10 and 11 of the vari-
able DW_VAR are combined for logic AND
and the result is assigned to bit 1.

Processing of variables of data types DT
and STRING

Variables of data types DT and STRING are
usually handled as “whole” variables by SCL,
for example when initializing function inputs or
when passing on from one block parameter to
another. The IEC functions are available to you
from the STEP 7 Standard Library for process-
ing variables of data type DT or STRING.

If you want to process parts of a variable of data
types DT and STRING with SCL statements,
apply a data type view to the variable whose
components can be processed with SCL. BYTE
fields are suitable for representing DT and
STRING variables (Table 30.8).

Table 30.8 Frequently Used Data Type Views

Data type of
variables

Data type view Declaration example for a variable with the name TEMPVAR and a data
type view with the name VIEW

Elementary Bit field TEMPVAR : DWORD;
VIEW AT TEMPVAR : ARRAY[0..31] OF BOOL;

DT BYTE field TEMPVAR : DT;
VIEW AT TEMPVAR : ARRAY [1..8] OF BYTE;

STRING CHAR field TEMPVAR : STRING[max];
VIEW AT TEMPVAR : ARRAY [1..max] OF CHAR;

ARRAY STRUCT TEMPVAR : ARRAY[0..255] OF BYTE;
VIEW1 AT TEMPVAR : STRUCT

name : data_type;
.... : ...
END_STRUCT;

VIEW2 AT TEMPVAR : STRUCT
name : data_type;
.... : ...
END_STRUCT;

ANY STRUCT TEMPVAR : ANY;
VIEW AT TEMPVAR : STRUCT

ID : BYTE;
TYP : BYTE;
NUM : INT;
DBN : INT;
PTR : DWORD;
END_STRUCT;

30.8 Programming Your Own Functions with STL

501

Example of an SCL function

The function “Hour” is to extract the hour in-
formation from the data format DT and supply
it with the data type INT.

FUNCTION Hour : INT
VAR_INPUT
DAT : DT;
TMP AT DAT : ARRAY [1..8] OF BYTE;

END_VAR
Hour :=
WORD_TO_INT(SHR(IN:=TMP[4],N:=4))*10 +
WORD_TO_INT(TMP[4] AND 16#0F);

END_FUNCTION
(* READ THE CPU-TIME AND
CALL THE FUNCTION "Hour" *)
SFC_ERROR := READ_CLK(DATE_TIME);
IF Hour(DATE_TIME) >= 18
THEN FINISH_WORK := TRUE;

END_IF;

Different views of fields and structures

Variables of data types ARRAY and STRUCT
can be assigned data type views that are them-
selves of data types ARRAY and STRUCT.
One application of this is setting up a data area
for a send or receive mailbox for message
frames.

You set up the maximum length of the mailbox
using a byte field, for example. For each mes-
sage frame that you want to process in the mail-
box, you can apply to the mailbox a data type
view that has the structure of the message
frame. The data type view is specially adapted
to the relevant message frame: it can therefore
also be shorter than the mailbox.

Manipulation of the ANY pointer

If you create a variable of data type ANY in the
temporary local data, the Compiler interprets
this variable as a pointer and passes it on direct
to an ANY input parameter, for example, of a
called block (see Chapter 29.2.4 “Temporary
Local Data”).

You can manipulate this ANY pointer at run-
time with the help of a data type view, enabling
you, for example, to dynamically specify dif-
ferent source data areas for copy blocks.

Example: copying from a data area that has
been specified with the variables DataBlock,
DataStart and Num_of_Bytes, to a variable
called Send_MailBox.

FUNCTION_BLOCK COPY
VAR_INPUT
AREA : ANY;
DATABLOCK : INT;
DATASTART : INT;
NUM_OF_BYTES : INT;

END_VAR
VAR_TEMP
SFC_ERROR : INT;
SEND_MAILBOX : ANY;
VIEW AT SEND_MAILBOX : STRUCT
ID : WORD;
TYP : BYTE;
NUM : INT;
DBN : INT;
PTR : DWORD;
END_STRUCT;

END_VAR
BEGIN
VIEW.ID := 16#10;
VIEW.TYP := 16#02;
VIEW.NUM := NUM_OF_BYTE;
VIEW.DBN := DATABLOCK;
VIEW.PTR := INT_TO_WORD(8*DATASTART);
SFC_ERROR := BLKMOV(

SRCBLK := AREA,
DSTBLK := SEND_MAILBOX);

END_FUNCTION_BLOCK

(* Call of the FB *)
COPY.COPYDATA(
AREA := SEND_MAILBOX,
DATABLOCK := 309,
DATASTART := 32,
NUM_OF_BYTE := 32);

More examples on this topic can be found in the
download files (download address: see pages 8-
9) in the SCL_Book library under the “General
Examples” program.

30.8 Programming Your Own
Functions with STL

The function FC with function value allows you
to program your own functions but still with the
possibilities of the SCL programming lan-
guage. However, since you can mix blocks cre-
ated with various languages in your program, it
is also possible to program functions FCs with
STL and then invoke them in SCL. This gives
you access to the more extensive function range
of STL, such as direct access to variable ad-
dresses or addressing via the address register.

You can program STL blocks in two different
ways: incrementally or source-file-oriented
(Chapter 3.4 “Programming Code Blocks
with STL”). If you select source-file-oriented

30 SCL Functions

502

programming, the procedure is identical to SCL
blocks:

1) Create an STL source in the Source Files
container.

2) Open the STL source with a double-click.

3) Program the source program with the STL
programming language (see notes below)

4) If you have chosen symbolic names for the
functions, update the symbol table.

5) Compile the STL program in order to have
the compiled functions available in the
Blocks container.

6) You can call the new functions in the same
way as, say, the standard functions in the
SCL program.

Source-file-oriented STL programming uses al-
most the same keywords for block program-
ming as SCL (see Table 3.3 in Chapter 3.4.2
“Programming STL Code Blocks Incremental-
ly”). The main difference regarding functions
with function value is that the function value in
the program has the name RET_VAL (or ret_
val). You then assign the value of the function
to the RET_VAL variable in the program.

For our little example, we select functions for
scanning, starting and resetting a timer function
in order to achieve simpler handling of the tim-
er functions. Chapter 7 “Timer Functions”
shows how timer functions are programmed in
STL.

The function T_SCAN yields the status of the
parameterized timer address:

FUNCTION T_SCAN : BOOL
VAR_INPUT
T_NO : TIMER;

END_VAR
BEGIN
U T_NO; = RET_VAL;

END_FUNCTION

The function T_PULSE starts a timer address
as a pulse via an input:

FUNCTION T_PULSE : VOID
VAR_INPUT
T_NO : TIMER; Start : BOOL;
Time_value : S5TIME;

END_VAR

BEGIN
U Start; L Time_value; SI T_NO;

END_FUNCTION

The function T_RESET resets a timer address
at every call:

FUNCTION T_RESET : VOID
VAR_INPUT
T_NO : TIMER;

END_VAR
BEGIN
SET; R T_NO;

END_FUNCTION

Following compiling, these functions could be
used in an SCL program as follows:

IF NOT T_SCAN(T1)
THEN T_PULSE(T_NO := T2,

Start := E1.0,
Time_value := S5T#5s);

ELSE T_RESET(T3);
END_IF;

These examples can be found in the download
files (download address: see pages 8-9) in the
SCL_Book library under the “General Exam-
ples” program.

30.9 Brief Description of the SCL
Examples

30.9.1 Conveyor Example

The “Conveyor” example shows the applica-
tion of binary logic operations, set/reset func-
tions and block calls. It is designed for the STL
programming language. If you have knowledge
of STL and you want to learn SCL, you will
find suggestions here for how to convert typical
STL functions into SCL.

Figure 30.1 shows the program and data struc-
ture of this example. Please refer to the follow-
ing sections for the detailed description

b 5.5 “Example of a Conveyor Belt Control
System” (FC 11)

b 8.7 “Parts Counter Example” (FC 12)

b 19.5.1 “Conveyor Belt Example” (FB 21)

30.9 Brief Description of the SCL Examples

503

b 19.5.2 “Parts Counter Example” (FB 22)

b 19.5.3 “Feed Example” (FB 20)

The program of this example can be found in
the download files (download address: see pag-
es 8-9) in the SCL_Book library under the
“Conveyor Example” program.

30.9.2 Message Frame Example

The “Message frame” example shows how to
handle user-defined data types and how to copy
data areas. In the STL programming language,
the use of indirect addressing with the address
registers and the manipulation of the ANY
pointer is represented in this context (Chapter
26.4 “Brief Description of the Message Frame
Example”).

The same functionality can be implemented
with the SCL programming language – more el-
egantly, to a certain extent. You can get specific
support here from the possibility of processing
individual field components at runtime with in-
dexing (Figure 30.2).

SCL is also better suited to the formulation of
this task (clearer and therefore easier to use and
less prone to errors). However, with direct ac-
cess to variables, STL offers a functionality that

is missing in SCL so that the solution was im-
plemented to a certain extent somewhat differ-
ently than in STL.

The program of this example can be found in
the download files (download address: see pag-
es 8-9) in the SCL_Book library under the
“Message Frame Example” program.

30.9.3 General Examples

The general examples focus on the processing
of variables of complex data types and the ma-
nipulation of the ANY pointer with the help of
data type views.

The following functions execute data type con-
version with the SCL language resources:

b FC 61 DT_TO_STRING
Extracts the date and converts to a STRING
variable

b FC 62 DT_TO_DATE
Extracts the date and converts to a DATE
variable

b FC 63 DT_TO_TOD
Extracts the time-of-day and converts to a
TOD variable

Figure 30.1 Data and Program Structure for the Conveyor Example

30 SCL Functions

504

The following function blocks provide access
to variables of complex data types as well as da-
ta management in a ring buffer and in a FIFO
register

b FB 61 Variable_length

b FB 62 Checksum

b FB 63 Ring_buffer

b FB 64 FIFO_register

The source programs “STL Functions” and
“Call STL Functions” show you how to write
simple functions in STL and integrate these
functions in your SCL program. You will learn
how to use SIMATIC timers and counters in
SCL in the same way as in the standard pro-
gramming languages.

These examples can be found in the download
files (download address: see pages 8-9) in the
SCL_Book library under the “General Exam-
ples” program.

Figure 30.2 Data and Program Structure for the Message Frame Example

31 IEC functions

505

31 IEC functions

The IEC functions are loadable functions FCs
supplied with STEP 7. They are located in the
Standard Library in the IEC Function Blocks
program. They supplement the standard func-
tions of SCL and can also be used by other lan-
guages such as STL. You can find the overview
of all IEC functions in the Appendix. At this
point, they are arranged according to the fol-
lowing function groups:

b Conversion functions

b Comparison functions for
DATE_AND_TIME

b Comparison functions for STRING

b STRING functions

b Date/time-of-day functions

b Numerical functions

The call is represented in SCL notation. If you
use the IEC functions in STL, the function val-
ue has the name RET_VAL and represents the
first output parameter. Example:

Call in SCL:

CompResult := EQ_STRNG(
S1 := string1,
S2 := string2);

Call in STL:

CALL EQ_STRNG(
S1 := string1,
S2 := string2,
RET_VAL := CompResult);

Some IEC functions set the binary result BR as
a group error message. BR can be scanned in
SCL via the ENO output and in STL direct via
binary scanning or jump functions.

31.1 Conversion Functions

General

The conversion functions convert the data type
of a variable. The value to be converted is at the
function input and the function value has the
new data type.

General call:

var_aus :=
Conversion_function(var_in);

Some conversion functions set the binary result
BR or the ENO output to FALSE if an error oc-
curs during conversion. In such a case, conver-
sion does not take place.

Example: The INT value in the variable Speed
is to be converted to a character string located
in the variable Display.

Display := I_STRNG(Speed);
IF ENO
 THEN (*Conversion in order*);
 ELSE (*Error occurred*);
END_IF;

If you assign a STRING function value to a
STRING variable located in the temporary lo-
cal data, you must assign a defined value with
the required length to this variable in the pro-
gram (pre-assignment per declaration is not
possible in the temporary local data).

A specific space (number of bytes) is reserved
for the STRING variable declared in the tempo-
rary local data. You can set this length in the
Compiler Properties. If you make no setting,
254 (+2) bytes are assigned.

FC 33 S5TI_TIM
Data type conversion S5TIME to TIME

The function FC 33 S5TI_TIM converts the da-
ta format S5TIME to the format TIME.

The function does not report errors.

31 IEC functions

506

FC 40 TIM_S5TI
Data type conversion TIME to S5TIME

The function FC 40 TIM_S5TI converts the da-
ta format TIME to the format S5TIME. The
conversion rounds down.

If the input parameter is greater than the repre-
sentable S5TIME format (greater than
TIME#02:46:30.000), S5TIME#999.3 is out-
put as the result and the binary result or the
ENO output is set to FALSE.

FC 16 I_STRNG
Data type conversion INT to STRING

The function FC 16 I_STRING converts a vari-
able in the INT format to a character string. The
character string is represented with a leading
sign (number of digits plus sign).

If the variable specified at the function value is
too short, conversion does not take place and
the binary result BR or the ENO output is set to
FALSE.

FC 5 DI_STRNG
Data type conversion DINT to STRING

The function FC 5 DI_STRING converts a vari-
able in DINT format to a character string. The
character string is represented with a leading
sign (number of digits plus sign).

If the variable specified at the function value is
too short, conversion does not take place and
the binary result BR or the ENO output is set to
FALSE.

FC 30 R_STRNG
Data type conversion REAL to STRING

The function FC 30 R_STRNG converts a vari-
able in REAL format to a character string. The
character string is represented with 14 digits:

±v.nnnnnnnE±xx ± Sign
v 1 place before the point
n 7 decimal places
x 2 exponent places

If the variable specified at the function value is
too short, or if there is no valid floating-point
number at the input parameter, conversion does

not place and the binary result or the ENO out-
put is set to FALSE.

FC 38 STRNG_I
Data type conversion STRING to INT

The function FC 38 STRNG_I converts a char-
acter string to a variable in INT format. The first
character of the string can be a sign or a digit and
the subsequent characters must be digits.

If the length of the character string is zero or
greater than 6, or if there are illegal characters
in the string, or if the converted value exceeds
the INT number range, conversion does not
take place and the binary result BR or the ENO
output is set to FALSE.

FC 37 STRNG_DI
Data type conversion STRING to DINT

The function FC 37 STRNG_DI converts a
character string to a variable in DINT format.
The first character of the string can be a sign or
a digit and the subsequent characters must be
digits.

If the length of the character string is zero or
greater than 11, or if there are illegal characters
in the string, or if the converted value exceeds
the DINT number range, conversion does not
take place and the binary result BR or the ENO
output is set to FALSE.

FC 39 STRNG_R
Data type conversion STRING to REAL

The function FC 39 STRNG_R converts a char-
acter string to a variable in REAL format. The
character string must exist in the following for-
mat:

±v nnnnnnnE±xx ± Sign
v 1 place before the point
n 7 decimal places
x 2 exponent places

If the length of the character string is less 14, or
if it is not structured as shown above, or if the
converted value exceeds the REAL number
range, conversion does not take place and the
binary result BR or the ENO output is set to
FALSE.

31.2 Comparison Functions

507

31.2 Comparison Functions

The comparison functions compare the values
of two variables and report the comparison re-
sult via the function value. The function value
is TRUE if the comparison is met, otherwise it
is FALSE. A comparison function does not re-
port errors. There are comparison functions for
DT variables and for STRING variables.

General call:

Result :=
Comparison_function_DT(
DT1 := DT_var1,
DT2 := DT_var2);

Result :=
Comparison_function_STRNG(
S1 := STRING_var1,
S2 := STRING_var2);

FC 9 EQ_DT
Comparison of DT for equal to

The function FC 9 EQ_DT compares the con-
tents of two variables in the DATE_AND_TIME
format for equal to, and only outputs TRUE as
the function value if the time at parameter DT1
is equal to the time at parameter DT2.

FC 28 NE_DT
Comparison of DT for not equal to

The function FC 28 NE_DT compares the con-
tents of two variables in the DATE_AND_TIME
format for not equal to, and only outputs TRUE
as the function value if the time at parameter
DT1 is not equal to the time at parameter DT2.

FC 14 GT_DT
Comparison of DT for greater than

The function FC 14 GT_DT compares the con-
tents of two variables in the DATE_AND_
TIME format for greater than, and only outputs
TRUE as the function value if the time at pa-
rameter DT1 is greater (later) than the time at
parameter DT2.

FC 12 GE_DT
Comparison of DT for greater than or equal to

The function FC 12 GE_DT compares the con-
tents of two variables in the DATE_AND_TIME
format for greater than or equal to, and only out-
puts TRUE as the function value if the time at
parameter DT1 is greater (later) than the time at
parameter DT2, or if both times are equal.

FC 23 LT_DT
Comparison of DT for less than

The function FC 23 LT_DT compares the con-
tents of two variables in the DATE_AND_
TIME format for less than, and only outputs
TRUE as the function value if the time at pa-
rameter DT1 is less (earlier) than the time at pa-
rameter DT2.

FC 18 LE_DT
Comparison of DT for less than or equal to

The function FC 18 LE_DT compares the con-
tents of two variables in the DATE_AND_
TIME format for less than or equal to, and only
outputs TRUE as the function value if the time
at parameter DT1 is less (earlier) than the time
at parameter DT2, or if both times are equal.

FC 10 EQ_STRNG
Comparison of STRING for equal to

The function FC 10 EQ_STRNG compares the
contents of two variables in the STRING for-
mat for equal to, and only outputs TRUE as the
function value if the character string at parame-
ter S1 is equal to the character string at param-
eter S2.

FC 29 NE_STRNG
Comparison of STRING for not equal to

The function FC 29 NE_STRNG compares the
contents of two variables in the STRING for-
mat for not equal to, and only outputs TRUE as
the function value if the character string at pa-
rameter S1 is not equal to the character string at
parameter S2.

31 IEC functions

508

FC 15 GT_STRNG
Comparison of STRING for greater than

The function FC 15 GT_STRNG compares the
contents of two variables in the STRING for-
mat for greater than, and only outputs TRUE as
the function value if the character string at pa-
rameter S1 is greater than the character string at
parameter S2. The characters are compared
starting from the left via their ASCII codes (e.g.
is ‘a’ greater than ‘A’). The first variant charac-
ter decides the comparison result. If the first
characters are equal, the longer string is taken
as the greater.

FC 13 GE_STRNG
Comparison of STRING for greater than or
equal to

The function FC 13 GE_STRNG compares the
contents of two variables in the STRING for-
mat for greater than or equal to, and only out-
puts TRUE as the function value if the charac-
ter string at parameter S1 is greater than the
character string at parameter S2, or if both
strings are equal. The characters are compared
starting from the left via their ASCII codes (e.g.
is ‘A’ greater than ‘a’). The first variant charac-
ter decides the comparison result. If the first
characters are equal, the longer string is taken
as the greater.

FC 24 LT_STRNG
Comparison of STRING for less than

The function FC 24 LT_STRNG compares the
contents of two variables in the STRING for-
mat for less than and only outputs TRUE as the
function value if the character string at parame-
ter S1 is less than the character string at param-
eter S2. The characters are compared starting
from the left via their ASCII codes (e.g. is ‘A’
less than ‘a’). The first variant character de-
cides the comparison result. If the first charac-
ters are equal, the shorter string is taken as be-
ing “less than”.

FC 19 LE_STRNG
Comparison of STRING for less than or
equal to

The function FC 19 LE_STRNG compares the
contents of two variables in the STRING for-

mat for less than or equal to and only outputs
TRUE as the function value if the character
string at parameter S1 is less than the character
string at parameter S2, or if both strings are
equal. The characters are compared starting
from the left via their ASCII codes (e.g. is ‘A’
less than ‘a’). The first variant character de-
cides the comparison result. If the first charac-
ters are equal, the shorter string is taken as be-
ing “less than”.

31.3 STRING Functions

The STRING functions allow you to use char-
acter strings. Some STRING functions set the
binary result BR or the ENO output to FALSE
if an error occurs during execution of the
STRING function.

The STRING functions check the actual param-
eter for validity (e.g. is a block parameter ap-
plied to the STRING variable long enough). If
you declare a STRING variable in the tempo-
rary local data and then use it as an actual pa-
rameter, you must first assign (any) character
string of the required length to this variable.
The reason is that variables in the temporary lo-
cal data cannot be pre-assigned by the compiler.
That is, their values are semi random, and in the
case of STRING variables, so are the bytes for
the maximum and current length. These bytes
receive meaningful values when the string is as-
signed.

A specific space (number of bytes) is reserved
for a STRING variable declared in the tempo-
rary local data. You can set this length in the
Compiler Properties. If you make no setting,
254 (+2) bytes are assigned.

FC 21 LEN
Length of a STRING variable

Call: int := LEN (string);

The function FC 21 LEN outputs the current
length of a character string (number of valid char-
acters) as the function value. An empty string has
the length zero. The maximum length is 254.

The function does not report errors.

31.3 STRING Functions

509

FC 11 FIND
Searching in a STRING variable

Call: int := FIND (IN1 := string, IN2 := string);

The function FC 11 FIND yields the position of
the second character string (IN2) within the
first character string (IN1). The search begins
on the left; the first occurrence of a character
string is reported. If the second character string
is not contained in the first, zero is returned.

The function does not report errors.

FC 20 LEFT
Left section of a STRING variable

Call: string := LEFT (IN := string, L := int);

The function FC 20 LEFT yields the first L
character of a string. If L is greater than the cur-
rent length of the STRING variable, the input
value is returned. If L = 0 and if the input value
is an empty string, an empty string is returned.

If L is negative, an empty string is output and
the binary result BR or the ENO output is set to
FALSE.

FC 32 RIGHT
Right section of a STRING variable

Call: string := RIGHT (IN := string, L := int);

The function FC 32 RIGHT yields the last L
character of a string. If L is greater than the cur-
rent length of the STRING variable, the input
value is returned. If L = 0 and if the input value
is an empty string, an empty string is returned.

If L is negative, an empty string is output and
the binary result BR or the ENO output is set to
FALSE.

FC 26 MID
Mid section of a STRING variable

Call: string := MID (IN := string, L := int, P :=
int);

The function FC 26 MID yields the mid section
of a string (L characters from the P character in-
clusive). If the sum of L and P exceeds the cur-
rent length of the STRING variable, a string
from the P character is yielded to the end of the
input value.

In all other cases (P outside the current length,
P and/or L equal to zero or negative), an empty
string is output and the binary result BR or the
ENO output is set to FALSE.

FC 2 CONCAT
Concatenation of two STRING variables

Call: string := CONCAT (IN1 := string, IN2 :=
string);

The function FC 2 CONCAT joins two
STRING variables together to form one.

If the resulting string is longer than the variable
applied at the output parameter, the resulting
string is limited to the maximum set length and
the binary result or the ENO output is set to
FALSE.

FC 17 INSERT
Insertion into a STRING variable

Call: string := INSERT (IN1 := string, IN2 :=
string, P := int);

The function FC 17 INSERT inserts the charac-
ter string at parameter IN2 into the string at pa-
rameter IN1 following the P character. If P
equals zero, the second string is inserted in
front of the first string. If P is greater than the
current length of the first string, the second
string is appended to the first.

If P is negative, an empty string is output and
the binary result BR or the ENO output is set to
FALSE. The binary result or the ENO output
are also set to FALSE if the resulting character
string is longer than the variable specified at the
output parameter; in this case, the resulting
character string is limited to the maximum set
length.

FC 4 DELETE
Deletion of a STRING variable

Call: string := DELETE (IN := string, L := int,
P := int);

The function FC 4 DELETE deletes L charac-
ters from the P character (inclusive) in a char-
acter string. If L and/or P are equal to zero or if
P is greater than the current length of the input
string, the input string is returned. If the sum of
L and P is greater than the input string, the char-
acters up to the end of the string are deleted.

31 IEC functions

510

If L and/or P are negative, an empty string is
output and the binary result BR or the ENO out-
put is set to FALSE.

FC 31 REPLACE
Replacement in a STRING variable

Call: string := REPLACE (IN1 := string, IN2 :=
string, L := int, P := int);

The function FC 31 REPLACE replaces L char-
acters of the first character string (IN1) from the
P character (inclusive) with the second charac-
ter string (IN2). If L is equal to zero, the first
string is returned. If P is equal to zero or one, re-
placement is made from the 1st character (inclu-
sive). If P is outside the first character string,
the second string is appended to the first string.

If L and/or P are negative, an empty string is
output and the binary result BR or the ENO out-
put is set to FALSE. The binary result or the
ENO output are also set to FALSE if the result-
ing character string is longer than the variable
specified at the output parameter; in this case,
the resulting character string is limited to the
maximum set length.

31.4 Date/Time-of-Day Functions

With the date/time-of-day functions, you han-
dle variables of data types DATE, TIME_OF_
DAY and DATE_AND_TIME.

Some date/time-of-day functions set the binary
result BR or the ENO output to FALSE if an er-
ror has occurred during execution of the func-
tion.

FC 3 D_TOD_DT
Combining DATE and TIME_OF_DAY to
DT

Call: date_and_time := D_TOD_DT (IN1 :=
date; IN2 := time_of_day);

The function FC 3 D_TOD_DT combines the
data formats DATE (D#) and TIME_OF_DAY
(TOD#) and converts these formats to the
DATE_AND_TIME (DT#) format. The input
value IN1 must be between the limits
DATE#1990-01-01 and DATE#2089-12-31.

The function does not report errors.

FC 6 DT_DATE
Extraction of DATE from DT

Call: date := DT_DATE (date_and_time);

The function FC 6 DT_DATE extracts the data
format DATE (D#) from the DATE_AND_
TIME (DT#) format. DATE is between the lim-
its DATE#1990-01-01 and DATE#2089-12-31.

The function does not report errors.

FC 7 DT_DAY
Extraction of the day of the week from DT

Call: int := DT_DAY (date_and_time);

The function FC 7 DT_DAY extracts the day of
the week from the DATE_AND_TIME (DT#)
format. The day of the week is available in the
INT data format:

1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday

The function does not report errors.

FC 8 DT_TOD
Extraction of TIME_OF_DAY from DT

Call:
time_of_day := DT_DAY (date_and_time);

The function FC 8 DT_TOD extracts the data
format TIME_OF_DAY (TOD#) from the
DATE_AND_TIME (DT#) format.

The function does not report errors.

FC 1 AD_DT_TM
Adding a time period to a time

Call: date_and_time := AD_DT_TM (T :=
date_and_time, D := time);

The function FC 1 AD_DT_TM adds a time pe-
riod in the TIME (T#) format to a time in the
DATE_AND_TIME (DT#) format and yields a
new time in the DATE_AND_TIME (DT#) for-
mat. The time (parameter T) must be within the
range DT#1990-01-01-00:00:00.000 and

31.5 Numerical Functions

511

DT#2089-12-31-59:59:59.999. The function
does not execute an input check.

If the result of the addition is not within the
range given above, the result is limited to the
relevant value and the binary result BR or the
ENO output is set to FALSE.

FC 35 SB_DT_TM
Subtracting a time period from a time

Call: date_and_time := SB_DT_TM (T :=
date_and_time, D := time);

The function FC 35 SB_DT_TM subtracts a
time period in the TIME (T#) format from a time
in the DATE_AND_TIME (DT#) format and
yields a new time in the DATE_AND_TIME
(DT#) format. The time (parameter T) must be
within the range DT#1990-01-01-00:00:00.000
and DT#2089-12-31-59:59:59.999. The func-
tion does not execute an input check.

If the result of the subtraction is not within the
range given above, the result is limited to the
relevant value and the binary result BR or the
ENO output is set to FALSE.

FC 34 SB_DT_DT
Subtracting two times

Call: time := SB_DT_DT (T1 := date_and_
time, T2 := date_and_time);

The function FC 34 SB_DT_DT subtracts two
times in the DATE_AND_TIME (DT#) format
and yields a time period in the TIME (T#) for-
mat. The times must be within the range

DT#1990-01-01-00:00:00.000 and

DT#2089-12-31-59:59:59.999.

The function does not execute an input check.
If the first time (parameter T1) is greater (later)
than the second (parameter T2), the result is
positive; if the first time is less (earlier) than the
second, the result is negative.

If the result of the subtraction is outside the
TIME number range, the result is limited to the
relevant value and the binary result BR or the
ENO output is set to FALSE.

31.5 Numerical Functions

The numerical functions leave the function val-
ue unchanged and set the binary result or the
ENO output to FALSE if

b a parameterized variable is of an impermis-
sible data type,

b all parameterized variables do not share the
same data type,

b a REAL variable does not represent a valid
floating-point number.

FC 22 LIMIT
Delimiter

Call: any_num := LIMIT (MN := any_num, IN
:= any_num; MX := any_num);

The function FC 22 limits the numerical value
of the variable IN to the limit values specified
at the parameters MN and MX. Variables of da-
ta type INT, DINT and REL are permissible as
input values. All input values (actual parame-
ters) must be of the same data type. The lower
limit value (parameter MN) must be less than
the upper limit value (parameter MX).

The function reports an error if, in addition to
the errors listed above, the lower limit value
MN is not less than the upper limit value MX.

FC 25 MAX
Selecting the maximum

Call: any_num := MAX(IN1 := any_num, IN2
:= any_num, IN3 := any_num);

The function FC 25 MAX selects the highest of
three numerical variable values. Variables of
data type INT, DINT and REL are permissible
as input values. All input values (actual param-
eters) must be of the same data type.

FC 27 MIN
Selecting the minimum

Call: any_num := MIN(IN1 := any_num, IN2
:= any_num, IN3 := any_num);

The function FC 27 MIN selects the lowest of
three numerical values. Variables of data type
INT, DINT and REL are permissible as input

31 IEC functions

512

values. All input values (actual parameters)
must be of the same data type.

FC 36 SEL
Binary selection

Call: any := SEL (G := bool, IN0 := any, IN1 :=
any);

The function FC 36 SEL selects one of two
variable values (IN0 and IN1) dependent on a
switch (parameter G). Variables of all elemen-
tary data types except BOOL are permissible as
input values at the parameters IN0 and IN1.
Both input variables and the function value
must be of the same data type.

Appendix

513

Appendix

This section of the book contains instructions
for converting a STEP 5 program into a STEP
7 program, an overview of the contents of the
STEP 7 block libraries and an overview of all
STL and SCL statements and functions.

With the optional package S5/S7-Converter,
you can convert an existing STEP 5 program
into a (STEP 7) STL program as a source file.

The scope of supply of STEP 7 includes Block
Libraries with loadable functions and function
blocks and with block headers and interface de-
scriptions of system functions SFCs and system
function blocks SFBs.

The loadable functions FCs and function block
SFBs are compiled blocks that you copy to your
user program (or more precisely, to the offline
container Blocks) and then call. These blocks
occupy memory space like entirely “normal”
user blocks and they are also loaded into the
CPU.

You can rename loadable functions and func-
tion blocks, for example, if you have already
assigned your own blocks to their numbers.
However, you still get the correct online Help
(function key F1 with the block selected) since
the help function is oriented around the block
properties FAMILY and NAME.

The system functions SFCs and system func-
tions blocks SFBs are blocks in the operating
system of the CPU. In order to call these blocks
offline, the standard library contains the block
header and the interface description of these
blocks (the program is, of course, located in the
CPU). You can copy the interface descriptions
like a compiled block into the offline container
Blocks and then call the system block. The pro-
gram editor learns from the interface descrip-
tion how many block parameters the system
block has and the data type and name of a block
parameter.

In the case of incremental programming, you
drag the library blocks from the program ele-

ments catalog to the program window and thus
call them. The program editor then copies these
blocks automatically into your program.

If you call the library blocks with symbolic
names from the library’s symbol table in the
case of source-file-oriented programming, the
standard block will also be automatically cop-
ied to your program at the compilation stage.

The book ends with an STL Operation View
and an SCL Statement Overview.

32 S5/S7 Converter
Conversion of STEP 5 programs to
STEP 7 programs

33 Block Libraries
Organization blocks (OBs), system func-
tions (SFCs), system function blocks
(SFBs), IEC function blocks (loadable
IEC functions), S5-S7 converting blocks
(loadable conversion functions), TI-S7
converting blocks (loadable conversion
functions), PID control blocks (closed-
loop control functions), communications
blocks (DP functions)

34 STL Operation Overview
All STL operations

35 SCL Statement and Function Overview
All SCL statements and SCL functions

32 S5/S7 Converter

514

32 S5/S7 Converter

With the S5/S7 Converter, you can convert a
STEP 5 program into a STEP 7 STL source file.
The Converter turns all directly convertible
statements into the corresponding STEP 7
statements. STEP 5 statements that cannot be
converted to STEP 7 statements, are comment-
ed out. The Converter takes over all comments.
As an option, the assignment list can also be
converted to an importable symbol table.

To convert a sequential control with GRAPH 5
to a STEP 7 program, you must create the pro-
gram again with S7-GRAPH.

The S5/S7 Converter is included in the scope of
supply of the STEP 7 Standard Package. You do
not require authorization to use the Converter.

In the electronic catalog CA01 (CD), you will
find support for the hardware conversion of a
SIMATIC S5 configuration to a SIMATIC S7
configuration under the menu point SELECTION

AIDS SIMATIC. After selecting the S5 config-
uration with EDIT GENERATE SIGNAL LIST

and EDIT GENERATE CONFIGURATION, you
generate an S7 station from the specifications
for the S5 configuration.

32.1 General

To convert a STEP 5 program, you require the
program file nameST.S5D and the cross-refer-
ence list nameXR.INI as well as the assignment
list nameZ0.SEQ if available. In addition, you
can create a macro file. It contains statement se-
quences that the Converter can use in place of
certain STEP 5 statements. From these files, the
Converter generates a STEP 7 source file and,
if required, a symbol table. All generated files
are stored in the same directory as the STEP 5
files.

The Converter transfers organization blocks
with user program into the corresponding STEP
7 organization blocks and all other code blocks
into functions FCs. The block numbers of the
FC blocks start at zero and are numbered con-
secutively; you can change the suggested block
numbers in a dialog window.

The Converter detects standard blocks in the
following Siemens block packages:

b Floating-point arithmetic

b Signal functions

b Basic functions with analog functions

b Math functions

Figure 32.1 Files for the Converter

32.2 Preparation

515

The library S5-S7 Converting Blocks, included
in the scope of supply of STEP 7, contains re-
placement blocks for the standard blocks from
these packages. You can also find standard
blocks (“integral functions”) in this library, that
replace some of the function blocks integrated
into the S5-115U CPUs.

If the STEP 5 program contains blocks from
these packages, the Converter converts the call
and signals which blocks occur in the program.
You must then copy the relevant blocks from
the library to your user program before compil-
ing the converted program.

You can follow the procedure below when con-
verting a STEP 5 program:

b Program executability check in the destina-
tion environment

b If necessary, preparation of the STEP 5 pro-
gram (removal of non-convertible sections
that are replaced, for example, by CPU pa-
rameterization)

b If necessary, creation of macros (replace-
ment of STEP 5 statements with self-select-
ed STEP 7 statement sequences when con-
verting)

b Conversion (generation of a STEP 7 source
program)

b Setting up of a STEP 7 project with import-
ing of the source program and the symbol
table into the STEP 7 project, if necessary,
copying of the standard function blocks
used

b If post editing is required, correct or supple-
ment the STEP 7 source program

b Compilation

The conversion sequence is not fixed. You can,
for example, convert a STEP 5 program with-
out preparation and then make all the correc-
tions in the STEP 7 source program.

32.2 Preparation

32.2.1 Checking Executability on the
Target System (PLC)

If you want to use an existing STEP 5 program
in a SIMATIC S7, you must first check that the

program can execute on the target system
(PLC). For example:

b Does the destination CPU have the required
properties? Do the required program execu-
tion characteristics exist?

b Which modules has the STEP 5 program
worked with? Which modules are accessed
in the STEP 7 program?

b Does the destination CPU have the required
number of addresses (for example, inputs,
outputs, blocks)?

You can operate an S5 expansion unit via the
IM 463-2 interface module or you can operate
certain S5 modules in an adapter casing in an
S7-400. It is also possible to connect SIMATIC
S5 modules to SIMATIC S7 as distributed I/O
via PROFIBUS DP.

32.2.2 Checking Program Execution
Characteristics

The program execution levels familiar to you
from SIMATIC S5 generally correspond to the
program execution levels in SIMATIC S7, now
called priority classes. You replace the settings
you have made in data block DB 1 or DX 0 or
perhaps in the system data with the parameter-
ization of the S7-CPU (for example, restart
characteristics, watchdog interrupt handling).

The integral organization blocks and the inte-
gral function blocks in S5 correspond to the S7
system blocks. If you have used integral func-
tions in S5, you must imitate this functionality
in S7 with system blocks or with CPU parame-
terization.

Data block DB 1

On the S5-115U, the program execution char-
acteristics are set in data block DB 1 or in the
system data RS. The top of Table 32.1 shows
how these characteristics can be implemented
with SIMATIC S7.

System utilities

The CPUs of the S5-115U provide system util-
ities that you can use with organization block
OB 250 (CPU 945) or via system datum RS 125
(CPU 941 to CPU 944). The middle section of

32 S5/S7 Converter

516

Table 32.1 contains suggestions for converting
these system utilities to SIMATIC S7.

Data block DX 0

With the CPUs of the upper performance range,
the entries in data block DX 0 determine the pro-
gram execution characteristics. The bottom sec-
tion of Table 32.1 shows the conversion to
SIMATIC S7.

32.2.3 Checking the Modules

I/O modules

Compare the technical specifications of the I/O
modules used with those of the SM modules in
S7. Are there analog modules available with the
required area? When you access analog mod-
ules direct, please note the differences in data
format to S5.

Intelligent I/O modules IPs

You can also use some IP modules in the
S7-400 in conjunction with the adapter casing:

b IP 240 Positioning, module, posi-
tion decoding module and
counter module

b IP 242B Counter module

b IP 244 Temperature control module

b IP 246/247 Positioning modules

b WF 721/723 Positioning modules

b WF 705 Position decoding module

There are standard blocks for these modules
that are supplied together with the module and
adapter casing. If you have been using these
modules, you must exchange the S5 standard
blocks for the S7 standard blocks and adapt
your program in accordance with the new pa-
rameter initialization. For the remaining IP
modules, you use comparable FM modules.

Communications processors CPs

The communications processors used in S5 are
replaced with CP modules with corresponding
functionality. The CP modules are accessed in
S7 via SFB communications replacing the S5
data handling blocks. The functionality is simi-

lar but implemented with STEP 7 language re-
sources. You must adapt a corresponding S5
program with data handling functions to the
SFB blocks.

S5 modules in S7-400

You connect S5 expansion units to an S7-400
using an IM 463-2 interface module. You can
connect up to four S5 expansion units to each of
the two interfaces; a maximum of four IM 463-
2s can be used in one central mounting rack. In
the S5 expansion unit, an IM 314 interface
module handles the connection. Only digital
and analog modules are permissible. Process
interrupts cannot be transferred. You set the I/O
areas of the S5 modules on the IM 314 S5 inter-
face module (as usual with S5). The I/O areas P,
Q, IM3 and IM4 are available.

You can operate some IP and WF modules in an
S7-400 using an adapter casing (see above).
You set the S5 addresses in the familiar way on
the modules.

You parameterize the assignment of the S5 ad-
dresses to the S7 addresses in the Hardware
Configuration. You can find the IM 463-2 inter-
face module and the adapter casing in the mod-
ule catalog under SIMATIC 400 Æ IM-400 Æ S5
ADAPTER. After arranging the modules in the
rack, you address these modules, like S7 signal
modules, in the peripheral I/O area, separated
into input and output address. Please ensure
that one the one hand, the S7 address areas, and
on the other hand, S5 address areas do not over-
lap.

32.2.4 Checking the Addresses

Check the number of available addresses in the
selected destination CPU. Are there sufficient
inputs, outputs, memory bits, timers and coun-
ters available? The Converter converts the
memory bits from the extended area (S memory
bits) to memory bits from M 256.0.

In S7 there is one single peripheral I/O area. All
modules addressed in the S5 I/O areas P, Q,
IM3 and IM4 and in the global area are now ad-
dressed in the S7 peripheral I/O area P (you
must take careful note of this if you have ad-
dressed a large number of modules in the ex-
tended I/O areas and you are connecting these

32.2 Preparation

517

Table 32.1 Comparison of Program Execution Characteristics

Data Block in DB 1 and System Data (S5-115U)
Function 941 - 944 945 Replaced in S7 with
Restart delay x x CPU parameter “Restart”
Retentive feature x x CPU parameter “Retentivity”
Cycle time monitoring x x CPU parameter “Cycle / Clock memory”
Time interval for watchdog interrupts x x CPU parameter “Watchdog interrupt”
Software protection x x CPU parameter “Protection”
Output disable process images x x Handling via partial process images:

SFC 26 UPDAT_PI, SFC 27 UPDAT_PO
Integral clock x x CPU parameter “Diagnostics / Clock”

SFC 0 SET_CLK, SFC 1 READ_CLK
Delay interrupt OB 6

Time duration x x CPU parameter “Interrupts”
Execution priority x - CPU parameter “Interrupts”

Sequential process image transfer - x - omitted -
Reduced PIQ transfer - x - omitted -
System utilities OB 250 and BS 125
Function OB 250 BS 125 Replaced in S7 with
Time intervals for watchdog interrupts x - CPU parameter “Watchdog interrupt”
Time duration of delay interrupt x - CPU parameter “Interrupts”
Reduced PIQ transfer x - - omitted -
Read/write DBA/DBL register x - Read with, e.g., L DBNO, L DBLG

direct writing omitted
Call DX/FX blocks indirectly x - Indirect block call
Change block ID x - - omitted -
Update configuration image x x - omitted -
Set up block address list x x - omitted -
Create data block x x SFC 22 CREAT_DB
I/O accesses without QVZ x x Handle synchronization error events:

SFC 36 MSK_FLT, SFC 37 DMSK_FLT
SFC 38 READ_ERR

Disable/enable digital outputs x x Master Control Relay MCR
Delete block x x Delete data block: SFC 23 DEL_DB
Update process image - x Handling via partial process images:

SFC 26 UPDAT_PI, SFC 27 UPDAT_PO
Interpret data block DB 1 - x - omitted -
Data block DX 0
Function 135U 155U Replaced in S7 with
Restart characteristics x x CPU parameter “Restart”
Number of processed timer cells x x - omitted - (fixed)
Cycle time monitoring x x CPU parameter “Cycle / clock memory”
Multiprocessor restart, interprocessor
communication flags

x x - omitted -

Accuracy of floating-point arithmetic x - - omitted -
Timed interrupt handling - x CPU parameter “Watchdog interrupt”
Process interrupt handling, interrupt x x CPU parameter “Interrupts”
Process interrupts level/level-triggered x - Module parameterization
Addressing error monitoring x - OB 122 (I/O access errors)
Error handling (system stop) x - replaced by handling of error OBs

32 S5/S7 Converter

518

modules via, for example, the IM 463-2 to an
S7-400). The page memory area is omitted
without replacement.

The Converter converts all blocks with user
program (except organization blocks) into
functions, that is, the total number of all pro-
gram blocks (PBs), step blocks without se-
quencer program (SBs) and functions blocks
(FBs and FXs) must not exceed the permissible
number of functions (FCs). Similarly, the total
number of data blocks (DBs and DXs) must not
exceed the permissible number of S7 data
blocks. These restrictions are only relevant in
practice if you are using the S7-300 as the target
system (PLC).

The system data areas RI, RJ, RS and RT are
omitted without replacement in S7. Any infor-
mation you have buffered in these areas is
stored in S7 in global data blocks or in memory
bits. You now get system information from the
RS area via system functions; you implement
functions initiated via this area via system func-
tions or CPU parameterization.

Preparing the STEP 5 Program

Before conversion, you can prepare your STEP
5 program for its future use as a STEP 7 pro-
gram (but you do not have to do this; you can
also carry out all corrections after conversion to
the STEP 7 source file). With this adaptation,
you can reduce the number of error messages
and warnings. For example, you can make the
following adaptations before conversion:

b Deletion of the data blocks with program
characteristics DB 1 or DX 0

b Removal of all calls of integral blocks or ac-
cesses to the system data area RS whose
functionality can be reached via the param-
eterization of the S7-CPU

b Adaptation of the address areas inputs, out-
puts, peripheral I/O to the (new) module ad-
dresses (you should ensure here that the
STEP 5 address range is not exceeded, oth-
erwise an error will be signaled already in
the first conversion run; these statements are
then not converted)

b With non-convertible program sections that
occur repeatedly, you can delete the sections
down to one “unique” STEP 5 statement per

program section. You assign a macro (a
STEP 7 statement sequence) to this
“unique” statement that is to replace the
program section.

b If your program contains many (long) data
blocks that have no data structure (those
used, for example, as a data buffer), you can
significantly reduce the number of state-
ments to be compiled and therefore the
source code if you delete all but one of the
data words in this data block. After conver-
sion (and before compiling) program the
contents of these data blocks in the source
file with a field declaration, for example
Buffer : ARRAY [1..256] OF WORD.

You can use the Converter to convert not only
whole programs but also individual blocks.

32.3 Converting

32.3.1 Creating Macros

You can create macros before conversion for re-
placing non-convertible STEP 5 statements or
for making a change different to the standard
conversion. You create conversion macros with
the Converter. If a macro is defined twice, the
first definition is used. Macros with the SI-
MATIC instruction set (German) are stored in
the file S7U5CAPA.MAC; macros with the in-
ternational instruction set (English) are stored
in the file S7U5CAPB.MAC. The Converter
distinguishes between instruction macros and
OB macros. You can create 256 instruction
macros and 256 OB macros.

Instruction macros replace a STEP 5 statement
with a sequence of specified STEP 7 statements.

General structure of an instruction macro:

$MACRO: <STEP 5 statement>
<STEP 7 statement sequence>
$ENDMACRO

The STEP 5 statement must be specified in full
(with complete addresses). The Converter then
inserts the specified STEP 7 statement se-
quence in their place.

Example: You use a delay interrupt (organiza-
tion block OB 6) in the STEP 5 program for the

32.3 Converting

519

CPU 945. You have started this interrupt by
calling special function OB 250:

L KF +200
L KB 1
JU OB 250

The first load statement contains the number of
milliseconds by which the call of OB 6 is to be
delayed. This statement can remain and you re-
place the remaining two statements with a
STEP 5 statement that otherwise does not occur
in your program, for example, TB RT 200.0, so
that your STEP 5 program appears as follows
prior to conversion:

L KF +200
TB RT 200.0

You now write the following instruction macro:

$MACRO: TB RT 200.0
T MD 250;
CALL SFC 32 (
 OB_NO := 20,
 DTIME := MD 250,
 SIGN := W#16#0000,
 RET_VAL := MW 254);
$ENDMACRO

The STEP 5 statement TB RT 200.0 is replaced
at conversion with the specified STEP 7 state-
ment sequence. The delay time in ms is loaded
into the (scratchpad) memory word MW 250 and
then SFC 32 is called. In the dialog window be-
fore starting, the Converter suggests the number
20 instead of the number 6 for the delay OB.

OB macros replace an OB call (JU OB or JC
OB) with the specified STEP 7 statement
sequence.

The general structure of an OB macro is as
follows:

$OBCALL: <Number of the OB>
<STEP 7 statement sequence>
$ENDMACRO

Example: In the STEP 5 program for the CPU
945, you use organization block OB 160 to start
a waiting time. In STEP 7, a waiting time is im-
plemented by system function SFC 47 WAIT. If
you enter the macro

$OBCALL: 160
T MW 250;
CALL SFC 47 (WT := MW 250);

$ENDMACRO
the Converter replaces every OB 160 call (even
a conditional call) with the specified statement
sequence.

Input of the macros begins with EDIT RE-
PLACE MACRO. You enter the macros in the
opened file S7U5CAPA.MAC and save the file
with FILE SAVE. Terminate macro input with
FILE EXIT.

32.3.2 Preparing the Conversion

If there is still no cross-reference list na-
meXR.INI for your STEP 5 program, you must
create one for conversion (under STEP 5 with
MANAGE CREATE XREF).

You can now

b create your own working directory for the
conversion and copy the required data into
this directory or

b execute the conversion in the directory
(folder) containing the STEP 5 files (if you
have worked with the same programming
device under STEP 5) or

b execute the conversion on diskette (if you
have generated the STEP 5 files on another
programming device).

The directory for the conversion must contain
the files nameST.S5D and nameXR.INI as well
as nameZ0.SEQ if appropriate. The Converter
also puts the destination files nameAC.AWL as
well as nameA0.SEQ and, if appropriate, name-
AF.SEQ and nameS7.SEQ into this directory.

The file S7S5CAPx.MAC is stored in the Win-
dows directory.

32.3.3 Starting the Converter

You call the S5/S7 Converter via the Windows
95/NT taskbar: START SIMATIC STEP 7
 S5 CONVERT FILE. With FILE OPEN, you
select the S5 program file you want to convert.
If you click on “OK”, the Converter displays
the source and destination files as well as the
assignment of the old blocks to the new. If nec-
essary, you can change the names of the desti-
nation files in the text field. To change the sug-
gested block numbers, double click on the line

32 S5/S7 Converter

520

and enter the new block number in the dialog
field. The converter identifies standard blocks
with a star (you must then copy these blocks
from the block library into your offline user
program before compiling the S7 source file).

You start the Converter with the “Start” button.
In the first run, it compiles the S5 program into
an S5-ASCII text file (nameA0.seq) and in the
second run it compiles this into the S7 source
file. The assignment list is compiled into the
symbol table. The conversion is completed
with the display of error messages and warn-
ings. All errors and warnings are contained in
the error file nameAF.SEQ.

Error messages are output if parts of the S5 pro-
gram are not convertible and can only be ac-
commodated in the S7 program as comments.
Warnings contain information on possible
problems; they are output if the converted state-
ments require to be checked again. The messag-
es refer in part to the S5 program (for example,
if an illegal MC 5 code is found) or to the S7
program (for example, if a non-convertible
statement is found). If you click on a message,
the Converter displays the environment of the
message in a window.

It is advisable to print out the error list in order
to process the error messages.

32.3.4 Convertible Functions

Table 32.2 lists the statements that are convert-
ed essentially unchanged. These also include
statements with addresses that are replaced in
STEP 7 with others, such as the extended S
memory bits that are replaced by the M memo-
ry bits from 256. Syntax changes can also occur
(for example, +G becomes +R). You will nor-
mally not have to correct these statements.

The substitution statements (accesses to block
parameters) are largely converted. Some edit-
ing is required with statements that access both
timer and counter functions (for example SEC
=parname) as well as in the processing of block
parameters (DO =parname). Here, either code
blocks or data blocks can be used as actual ad-
dresses and (important!): the block number can
change as a result of the conversion.

Organization blocks contain the numbers used
in STEP 7. All other blocks with user program
become functions FC. The Converter converts
data blocks DB to global data blocks with the
same number. Data blocks DX are converted to
data blocks DB from number 256 (DX 1 be-
comes DB 257, etc.). The Converter suggests
numbers; you can change all the suggested
block numbers in a window prior to the conver-
sion run.

Table 32.2 Conversion of the Operations

Functions with STEP 5 Functions with STEP 7

Binary logic operations, memory functions Binary logic operations, memory functions

Timer and counter functions Timer and counter functions

Bit test functions replaced with SET followed by check or with double negation
Set/Reset

Load and transfer functions
(without system data and absolute address)

Load and transfer functions

Comparison functions Comparison functions

Calculation functions Calculation functions

Digital logic operations Word logic operations

Shift functions Shift functions

Jump functions Jump functions

Conversion functions Conversion functions

Disable/enable interrupts Replaced with SFC 41, SFC 42

Stop functions Replaced with SFC 46

Null operations (NOP, ***, blank line) NOP, NETWORK, // (blank line comment)

32.4 Post-Editing

521

The converter takes over the library number of
the blocks as AUTHOR in the block header.
The name of a function block is taken over as
NAME provided it does not contain any special
characters (otherwise it is taken over without
special characters with the original name as
comment).

Special function calls are not converted (they
must be replaced with system functions, for ex-
ample).

The addresses of the inputs and outputs are tak-
en over unchanged. In the case of load and
transfer statements with addresses from the P
area, the Converter uses peripheral inputs PI
and peripheral outputs PQ with unchanged ad-
dresses. Addresses from the Q area are mapped
to the peripheral I/O area (P) from address 256
(L OB 0 becomes L PIB 256, T OB 1 becomes
T PQB 257, etc.).

The addresses of the memory bits F are taken
over unchanged. This also applies for the mem-
ory bits used as ‘scratchpad memory’ from
memory byte FY 200 to FY 255. If you convert
your STEP 5 program largely unchanged, you
can retain the scratchpad memory bits as usual.
If you want to continue to use the STEP 5 pro-
gram or parts of it in a STEP 7 environment, I
recommend that you store the ‘scratchpad
memory’ blockwise in the temporary local data.
This applies especially if you want to transfer
your own program standards from STEP 5 to
STEP 7. The extended S memory bits are
mapped to the memory bits from address 256
(A S 0.0 becomes A M 256.0, L SY 2 becomes
L MB 258, etc.)

Timer and counter functions are converted un-
changed. Direct access to the individual bits of
the timer or counter word is not longer possible
under STEP 7. Influencing of the edge memory
bits in these words with the bit test statements
can be replaced with SET and CLR in conjunc-
tion with the relevant timer and counter opera-
tion.

Please note that in STEP 7 the data are address
bytewise (in STEP 5, by contrast, wordwise).
Thus, DL 0 becomes DBB 0, DR 0 becomes
DBB 1; you can see the conversion for any ad-
dresses in Table 32.3. With direct and indirect
addresses, the Converter uses the correct S7 ad-
dress; with data addressed via block parame-

ters, you must make the conversion to bytewise
addressing yourself.

Floating-point numbers are taken over un-
changed, provided they are specified as con-
stants in load statements or they have been used
as actual parameters, and they are treated at
conversion like STEP 7 floating-point num-
bers. The standard blocks supplied as a replace-
ment for the STEP 5 standard function blocks
also process floating-point numbers in the
STEP 7 format (data type REAL). If you have
put together floating-point yourself in your
STEP 5 program or if you have taken them over
from other devices via, for example, a computer
link, you must adapt the STEP 5 representation
of these floating-point numbers to the data type
REAL. A conversion example can be found in
the library STL_Book under the program “Gen-
eral examples” (FC 45 GP_TO_REAL). You
can download the library from the publisher’s
Web site (see page 8).

32.4 Post-Editing

32.4.1 Creating the STEP 7 Project

To complete the conversion, you create a STEP
7 project that corresponds in structure to your
target system (PLC) (if you have not already
created it in order to learn the S7 module ad-
dresses). If you want to change module ad-
dresses, parameterize modules or change the
execution properties of the CPU, you require a
hardware configuration (that is, a fully set up
project). If the default settings of the module
characteristics cannot be changed, it is enough
to set up a module-independent program.

Table 32.3
Address Conversion for Data Addresses

STEP 5 STEP 7

DL [n] DBB [2n]

DR [n] DBB [2n+1]

DW [n] DBW [2n]

DD [n] DBD [2n]

D [(n).0..7] DBX [(2n+1).0..7]

D [(n).8..15] DBX [(2n).0..7]

32 S5/S7 Converter

522

b You create a station (S7-300 or S7-400),
open the object Hardware and configure the
station. You also set the properties of the
CPU with the Hardware Configuration (for
example, numbers of the interrupt OBs). To-
gether with the CPU, the SIMATIC Manag-
er also sets up the lower-level object con-
tainers.

b With the object Sources marked, you fetch
the generated file nameAC.AWL into the
source program container with INSERT
EXTERNAL SOURCE FILE.

b If your program uses S5 standard blocks,
open the library S5/S7 Converting Blocks
under Standard Library and copy the S7
standard blocks, indicated by the Converter
in the block list with a star, into the offline
user program Blocks of your project. If you
use S7 system blocks in the converted pro-
gram (for example, SFC 20 BLKMOV),
open the library System Function Blocks and
copy the system blocks used into the offline
user program Blocks.

b If you have been working with symbolic
programming, open the (empty) symbol ta-
ble Symbols and fetch the converted sym-
bols nameS7.SEQ with SYMBOLTABLE
IMPORT.

Following these preparations, you can now pro-
cess the source file with the Editor before com-
piling it (you can reduce the number of error
messages, if you carry out all corrections before
compiling).

32.4.2 Non-convertible Functions

After conversion, you usually have to post-edit
the source file. This affects all the statements
listed in Table 32.4.

32.4.3 Address Changes

The address changes affect essentially the input
and output modules. Under certain circum-
stances, you must adapt the accesses to the in-
puts and outputs as well as the direct peripheral
I/O accesses to the (new) module addresses.
You can carry out this adaptation before con-
version in the STEP 5 file (if the address vol-
ume suitable for STEP 5) or you can swap the
absolute addresses in the S7 source file with the
help of the ‘Replace’ function of the Editor
used (use caution if the old and new address ar-
eas overlap).

In the case of programming with symbolic ad-
dressing, you can also generate a source with
symbol addresses, change the absolute address-
es in the symbol table and then re-compile. Pro-
ceed as follows here:

b A requirement is that you have a symbol ta-
ble with symbols for all the absolute ad-
dresses to be changed and a program com-
piled free of errors (the blocks in which the
absolute addresses occur must be available
in compiled form).

Table 32.4 Unconvertible Functions

Functions in STEP 5 Remarks

Load and transfer functions
with system data
with absolute addresses

Replaced, for example, with system functions
Must be replaced with a new program

Register functions (LIR, TIR, LDI, TDI, MBA, MAB,
MSA, MAS, MBA, MSB, MBR, ABR, ACR)

Must be replaced with a new program

Block transfer (TNB, TNW, TXB, TXW) Replaced with SFC 20 BLKMOV

DO functions
DO DW, DO FW
DO RS

Converted
Must be replaced with a new program

Calling special functions Replace special functions with SFCs

LIM, SIM, IAE, RAE Can be replaced with SFC 39 .. SFC 42

Semaphore functions (SED, SEE, TSC, TSG) No replacement

Other (IAI, RAI, ASM, UBE) No replacement

32.4 Post-Editing

523

b You set the Editor to symbolic addressing:
OPTIONS CUSTOMIZE displays a dialog
field; select the option SYMBOLIC REPRE-
SENTATION in the ‘Editor’ tab.

b You generate a new source file using the Ed-
itor with FILE GENERATE SOURCE FILE.
After entering the file name, you select all
blocks in the dialog window shown that you
want as a source file with symbolic address-
ing. The new source file now contains the
statements with symbolic addressing.

b Next, correct all absolute addresses in the
symbol table from the (old) S5 version to
the (new) S7 version.

b If you now compile the new source file, the
new absolute addresses will be contained in
the compiled blocks.

32.4.4 Indirect Addressing

The Converter can also understand indirect ad-
dressing with DO MW and DO DW with STEP
7 statements. However, it is necessary here to
convert the pointer to the STEP 7 format,
which, in conjunction with the buffering of ac-
cumulator contents and the status word, leads to
an increased memory requirement.

With suitable programming you can usually ex-
ecute indirect addressing, whether it is memo-
ry-indirect or register-indirect, with fewer
statements and a clearer program structure.

If indirect addressing occurs frequently, STEP
7-adapted programming is certainly of advan-
tage.

b Indirect addressing of timers, counters and
blocks
This is converted into memory-indirect ad-
dressing using a temporary local data word.

b Indirect addressing of blocks
Allocation of the new block numbers cannot
be taken into account (manual correction)

b Indirect addressing
Converted bitwise and wordwise using
AR1, buffering of STW, Accum 1 and 2 in
temporary local data (see below)

b Indirect addressing via the BR register
No conversion possible, change manually
via address registers

b Other indirect addressing
Must be changed manually

The Converter changes indirect addressing with
DO MW and DO DW of binary logic operations,
memory functions, and load and transfer func-
tions to a STEP 7 program. The STEP 5 pointer
must be changed to the format of an area-inter-
nal STEP 7 pointer (with buffering of the accu-
mulator contents and the status word). The result
is a long sequence of statements (see example).

If you have used a large number of indirect ad-
dresses in your program, manual conversion
could be of advantage. As index register, you
have unrestricted access to the two address reg-
isters AR1 and AR2 (in functions FCs). You
can also address memory bits or data memory-
indirect as in STEP 5, but you then require one
doubleword per index register instead of one
word.

The example in Table 32.5 shows in the first
column a STEP 5 program which is compared
with a data field with the bit pattern of an input
word; if they are identical, a memory bit is set
in each case. The second column contains the
converted program. Using both address regis-
ters, you can write a directly comparable pro-
gram requiring significantly fewer statements.

First, the address registers are loaded with the
pointers (take account of bytewise addressing
of the data!). Access to the data words and the
memory bits is then register-indirect. After ev-
ery comparison, address register AR1 is incre-
mented by 2 bytes and address register AR2 is
incremented by one bit (conversion to the byte
address is omitted). In the example, the pointer
to the data words is used as the break criterion,

Jump functions Replaced with jump distribu-
tor SPL

Shift functions Replaced with shift functions
with number of positions in
accum 2

TNB, TNW Replaced with SFC 20
BLKMOV with “variable”
ANY pointer

LIR, TIR No direct replacement
available

Decrementing/
incrementing

No direct replacement
available

32 S5/S7 Converter

524

Table 32.5 Converting Indirect Addressing

STEP 5 program Converted program Optimized program

FB 174
Name : COMP

FUNCTION FC 4 : VOID
 NAME: COMP
 VAR_TEMP
 conv_accum1 :dword;
 conv_accum2 :dword;
 conv_stw :word;
 END_VAR
 BEGIN
 NETWORK

FUNCTION FC 4 : VOID
 NAME: COMP

BEGIN

:L KB 20
:T DW 2
:L KB 50
:T DW 3

LOOP :L IW 10

L 20;
T DBW 4;
L 50;
T DBW 6;

LOOP: L IW 10;

LAR1 P#40.0;

LAR2 P#50.0;

LOOP: L IW 10;

T conv_accum1;
L STW;
T conv_stw;
L DBB 5;
SLW 4;
LAR1;
L conv_stw;
T STW;
L conv_accum1;

:DO DW 2
:L DW 0

L DBW[AR1,P#0.0]; L DBW[AR1,P#0.0];

:>F >I; >I;

T conv_accum1;
TAK;
T conv_accum2;
L STW;
T conv_stw;
L DBB 6;
SLW 5;
SRW 5;
L DBB 7;
SLW 3;
OW;
LAR1;
L conv_stw;
T STW;
L conv_accum2;
L conv_accum1;

:DO DW 3
:= F 0.0

= M[AR1,P#0.0]; = M[AR2,P#0.0];

:L DW 2
:I 1
:T DW 2
:L KB 100
:>F
:JC =END
:L DL 3
:I 1
:T DL 3
:L KB 8
:<F
:JC =LOOP
:L DR 3
:I 1
:T DW 3
:JU =LOOP

END :NOP 0
:BE

L DBW 4;
INC 1;
T DBW 4;
L 100;
>I;
JC END;
L DBB 6;
INC 1;
T DBB 6;
L 8;
<I;
JC LOOP;
L DBB 7;
INC 1;
T DBW 6;
JU LOOP;

END: NOP 0;
END_FUNCTION

+AR1 P#2.0;
CAR1;
L P#200.0;
>D;
JC END;

+AR2 P#0.1;

JU LOOP;
END: NOP 0;
END_FUNCTION

32.4 Post-Editing

525

just as in STEP 5; at this point STEP 7 provides
use of the loop jump LOOP.

32.4.5 Access to “Excessively Long” Data
Blocks

Access to “excessively long” data blocks, that
is access to data addresses that had a byte ad-
dress > 255, was carried out under STEP 5 with
absolute addressing. The data block start ad-
dress was calculated, the address offset was
added and the data address was accessed either
direct with LIR/TIR or via the BR register with
LRW/TRW.

With STEP 7, you can assign data addresses di-
rect up to the permissible limit (8095 on the S7-
300, 32767 on the S7-400). You can therefore
replace access via the absolute address with a
“normal” STL statement.

32.4.6 Working with Absolute Addresses

If is necessary to handle absolute memory ad-
dresses in STEP 5 if you assign data addresses
in “excessively long” data blocks, or if you ad-
dress indirectly with the BR register, or if you
use the block transfer. Access to absolute mem-
ory addresses in no longer possible with
STEP 7; the STEP address counter (with the as-
sociated operations) has been removed without
replacement.

Access to data addresses in “excessively long”
data blocks is carried out direct in STEP 7 with
“normal” statements. In this regard, calculation
of the data block is also omitted. The obvious
solution for indirect addressing via the BR reg-
ister is register-indirect addressing, if necessary
also area-crossing.

The system function SFC 20 BLKMOV replac-
es block transfer. You specify the variables or
memory areas to be copied direct as parame-
ters. If you want to change the source or target
area at runtime, use a “variable” ANY pointer
as actual parameter.

32.4.7 Parameter Initialization

The converter takes over the actual parameters
at block calls without change. If you have spec-
ified addresses with an actual parameter, you
check and, if necessary, modify this address
specification.

Examples:

b Specifying a data word number:
must be converted to bytewise addressing

b Specifying an I/O address:
the new module address must be used

b Transferring a block:
must be provided with the new block num-
ber

32.4.8 Special Function Organization
Blocks

In STEP 7, you can use system functions or
STL statements to replace the organization
blocks with special functions (Table 32.6).
Some functions are omitted completely (for ex-
ample, page addressing, system program ac-
cesses).

32.4.9 Error Handling

Signaling a range violation via the status bits
OV and OS in STEP 7 is similar to STEP 5, but
there are some minor deviations. If you check
OV and OS, make sure you know the precise
functionality in conjunction with the associated
statement (for example, arithmetic function).

Almost all system functions SFCs signal any
errors via the function value RET_VAL. You
can evaluate this value in the program.

STEP 7 has error organization blocks for syn-
chronous errors (OB 121, OB 122) and asyn-
chronous errors (OB 80 to OB 87). Table 32.7
shows you how you can replace the STEP 5 er-
ror organization blocks in STEP 7.

32 S5/S7 Converter

526

Table 32.6 Converting the Special Function Organization Blocks

Function 115U 135U 155U S7 Replacement

Process condition code byte - 110 - Statement sequence

Process accumulators - 111 - 113 131 - 133 Statement sequence

Handle interrupts - 120 - 123 122
141 - 143

SFC 39 DIS_IRT, SFC 40 EN_IRT,
SFC 41 DIS_AIRT, SFC 42 EN_AIRT

Activate a timer job - 151 151 SFC 28 SET_TINT, SFC 29 CAN_TINT,
SFC 30 ACT_TINT,.SFC 31 QRY_TINT

Handle a delay interrupt - 153 153 SFC 32 SRT_DINT, SFC 33 QRY_DINT,
SFC 34 CAN_DINT

Variable waiting time 160 - - SFC 43 WAIT

Delete block - - 124 Data block: SFC 23 DEL_DB

Create block 125 - 125 Data block: SFC 22 CREAT_DB

Read block stack - 170 - - omitted -

Test data block - 181 - SFC 24 TEST_DB

Data block access - 180 - - omitted -

Copy data blocks 183, 184 254, 255 254, 255 SFC 20 BLKMOV (data areas)

Copy memory areas 182
190 - 193

182
190 - 193

- SFC 20 BLKMOV

Set and read time-of-day - 150 121, 150 SFC 0 SET_CLK, SFC 1 READ_CLK

Cycle statistics - 152 - Start information OB 1,
SFC 6 RD_SINFO

Read status information - 228 - Start information, SFC 6 RD_SINFO

Multiprocessor communi-
cations

- 200 - 205 200 - 205 Replacement: GD communication

Compare restart types - 223 223 - omitted -

Transfer interprocessor
communication flags

- 224 - GD communication

Set cycle time - 221 - CPU parameterization

Cycle time triggering - 222 31, 222 SFC 43 RE_TRIGR

Transfer process images 254, 255 - 126 SFC 26 UPDAT_PI, SFC 27 UPDAT_PO

Counter loop - 160 - 163 - Statement sequence

Sign extension 220 220 - Statement sequence

Page accesses - 216 - 218 - omitted -

System program access - 226, 227 - - omitted -

Process shift register - 240 - 248 - - omitted -

Handling blocks - 230 - 237 - SFB blocks for communications

PID algorithm 251 250 - 251 - Standard blocks for PID control

Execute system service 250 - - (see above under ‘Checking Program Ex-
ecution Characteristics’)

32.4 Post-Editing

527

Table 32.7 Converting the Error Organization Blocks

Function S5-115 S5-135 S5-155 S7 Replacement

Calling an unloaded block 19 19 19 OB 121

Acknowledgment delay in the case of direct access
to I/O modules

23 23 23 OB 122

Acknowledgment in the case of updating the process image 24 24 24 OB 122

Addressing errors - 25 25 OB 122

Cycle time exceeded 26 26 26 OB 80

Substitution errors 27 27 27 -

Conditional Stop - 28 - -

Acknowledgment delay in the case of input byte IB 0 - - 28 OB 85

Illegal operation code - 29 - STOP

Acknowledgment delay in the case of direct access
in the extended I/O area

- - 29 OB 122

Illegal parameters - 30 - -

Parity errors or acknowledgment in the case of access
to the user memory

- - 30 OB 122

Special function group errors - 31 - -

Transfer errors in data blocks 32 32 32 OB 121

Watchdog errors in the case of time-controlled execution 33 33 33 OB 80

Battery failure 34 - - OB 81

Controller errors - 34 - -

Error in creating a data block - - 34 (SFC)

I/O errors 35 - - OB 86

Interface errors - 35 - OB 84

Self-test errors - - 36 -

33 Block Libraries

528

33 Block Libraries

The STEP 7 Basic software includes the Stan-
dard Library which contains the following
library programs:

b Organization Blocks

b System Function Blocks

b IEC Function Blocks

b S5-S7 Converting Blocks

b TI-S7 Converting Blocks

b PID Control Blocks

b Communication Blocks

b Miscellaneous Blocks
Time synchronization and time tagging

Further supplied libraries are SIMATIC_
NET_CP, which contains the communications
blocks for the CP modules in the CP 300 and
CP 400 library programs, Redundant IO
MGP with blocks for module redundancy, and
Redundant IO CGP with blocks for the redun-
dancy of individual module channels.

You can copy blocks or interface descriptions
from the above library programs into your own
projects or libraries.

33.1 Organization Blocks

(Prio = Default priority class)

OB Prio Designation

1 1 Main program

10 2 Time-of-day interrupt 0
11 2 Time-of-day interrupt 1
12 2 Time-of-day interrupt 2
13 2 Time-of-day interrupt 3
14 2 Time-of-day interrupt 4
15 2 Time-of-day interrupt 5
16 2 Time-of-day interrupt 6
17 2 Time-of-day interrupt 7

20 3 Time-delay interrupt 0
21 4 Time-delay interrupt 1
22 5 Time-delay interrupt 2
23 6 Time-delay interrupt 3

30 7 Watchdog interrupt 0 (5 s)
31 8 Watchdog interrupt 1 (2 s)

32 9 Watchdog interrupt 2 (1 s)
33 10 Watchdog interrupt 3 (500 ms)
34 11 Watchdog interrupt 4 (200 ms)
35 12 Watchdog interrupt 5 (100 ms)
36 13 Watchdog interrupt 6 (50 ms)
37 14 Watchdog interrupt 7 (20 ms)
38 15 Watchdog interrupt 8 (10 ms)

40 16 Hardware interrupt 0
41 17 Hardware interrupt 1
42 18 Hardware interrupt 2
43 19 Hardware interrupt 3
44 20 Hardware interrupt 4
45 21 Hardware interrupt 5
46 22 Hardware interrupt 6
47 23 Hardware interrupt 7

55 2 DPV1 status interrupt
56 2 DPV1 update interrupt
57 2 DPV1 manufacturer specific

interrupt

60 25 Multiprocessor interrupt

33.2 System Function Blocks

529

OB PrioDesignation

61 25 Synchronous cycle interrupt 0
62 25 Synchronous cycle interrupt 1
63 25 Synchronous cycle interrupt 2
64 25 Synchronous cycle interrupt 3

65 25 Technology synchronous interrupt

70 25 I/O redundancy error
72 28 CPU redundancy error
73 25 Communication redundancy error

80 26 Time error 1)

81 26 Power supply fault 1)

82 26 Diagnostics interrupt 1)

83 26 Insert/remove-module interrupt 1)

84 26 CPU hardware fault 1)

85 26 Priority class error 1)

86 26 DP error 1)

87 26 Communications error 1)

88 28 Processing abort

90 29 Background processing

100 27 Warm restart
101 27 Hot restart
102 27 Cold restart

121 - Programming error
122 - I/O access error

1) Prio = 28 at restart

33.2 System Function Blocks

CPU clock and run-time meter

SFC Name Designation

0 SET_CLK Set clock
1 READ_CLK Read clock

2 SET_RTM Set run-time meter
3 CTRL_RTM Modify run-time meter
4 READ_RTM Read run-time meter
48 SNC_RTCB Synchronize slave clocks

64 TIME_TCK Read system time

100 SET_CLKS Set clock and clock status

101 RTM Set operating hours
counter

IEC timers and IEC counters

SFB Name Designation

0 CTU Up counter
1 CTD Down counter
2 CTUD Up/down counter

3 TP Pulse
4 TON On delay
5 TOF Off delay

S7 communication

SFB Name Designation

8 USEND Uncoordinated send
9 URVC Uncoordinated receive
12 BSEND Block-oriented send
13 BRCV Block-oriented receive

14 GET Read data from partner
15 PUT Write data to partner
16 PRINT Write data to printer

19 START Initiate cold or warm
restart in the partner

20 STOP Set partner to STOP
21 RESUME Initiate restart in the

partner

22 STATUS Check status of partner
23 USTATUS Receive status of partner

SFC Name Designation

62 CONTROL Check communications
status

87 C_DIAG Determine connection
status

S7 basic communication

SFC Name Designation

65 X_SEND Send data externally
66 X_RCV Receive data externally
67 X_GET Read data externally
68 X_PUT Write data externally
69 X_ABORT Abort external connection

72 I_GET Read data internally
73 I_PUT Write data internally
74 I_ABORT Abort internal connection

33 Block Libraries

530

Global data communications

SFC Name Designation

60 GD_SND Send GD packet
61 GD_RCV Receive GD packet

Point-to-point coupling S7-300C

SFB Name Designation

60 SEND_PTP Send data (ASCII,
3964 (R))

61 RCV_PTP Receive data (ASCII,
3964(R))

62 RES_RCVB Delete receive buffer
(ASCII, 3964(R))

63 SEND_RK Send data (RK 512)
64 FETCH_RK Fetch data (RK 512)
65 SERVE_RK Receive and serve

data (RK 512)

Integrated functions S7-300C

SFB Name Designation

44 ANALOG Positioning with
analog output

46 DIGITAL Positioning with
digital output

47 COUNT Control counter
48 FREQUENC Control frequency

measurement
49 PULSE Control pulse-width

modulation

Integrated functions CPU 312/314/614

SFB Name Designation

29 HS_COUNT High-speed counter
30 FREQ_MES Frequency meter
38 HSC_A_B Control “Counter A/B”
39 POS Control “Positioning”

41 CONT_C Continuous closed-loop
control

42 CONT_S Step-action control
43 PULSEGEN Generate pulse

SFC Name Designation

63 AB_CALL Call assembler block

Drum

SFB Name Designation

32 DRUM Drum

H-CPU

SFC Name Designation

90 H_CTRL Control operating modes
on H-CPU

Interrupt events

SFC Name Designation

28 SET_TINT Set time-of-day interrupt
29 CAN_TINT Cancel time-of-day

interrupt
30 ACT_TINT Activate time-of-day

interrupt
31 QRY_TINT Query time-of-day

interrupt
32 SRT_DINT Start time-delay interrupt
33 CAN_DINT Cancel time-delay

interrupt
34 QRY_DINT Query time-delay interrupt

35 MP_ALM Trigger multiprocessor
alarm

36 MSK_FLT Mask synchronous errors
37 DMSK_FLT Unmask synchronous

errors
38 READ_ERR Read event status register

39 DIS_IRT Disable asynchronous
errors

40 EN_IRT Enable asynchronous
errors

41 DIS_AIRT Delay asynchronous errors
42 EN_AIRT Enable asynchronous

errors

Address modules

SFC Name Designation

5 GADR_LGC Determine logical address
49 LGC_GADR Determine slot
50 RD_LGADR Determine all logical

addresses

70 GEO_LOG Determine logical address
71 LOG_GEO Determine slot

33.2 System Function Blocks

531

Data record transfer

SFB Name Designation

52 RDREC Read data record from a
DP slave

53 WRREC Write data record to a
DP slave

81 RD_DPAR Read predefined
parameters

SFC Name Designation

54 RD_DPARM Read predefined
parameters

55 WR_PARM Write dynamic
parameters

56 WR_DPARM Write predefined
parameters

57 PARM_MOD Parameterize module
58 WR_REC Write data record
59 RD_REC Read data record

102 RD_DPARA Read predefined
parameters

Process image updating

SFC Name Designation

26 UPDAT_PI Update process image
input

27 UPDAT_PO Update process image
output

79 SET Set I/O bit field
80 RSET Reset I/O bit

field

126 SYNC_PI Update partial process
image input in
isochronous mode

127 SYNC_PO Update partial process
image output in
isochronous mode

Diagnostics

SFC Name Designation

6 RD_SINFO Read start information

51 RDSYSST Read partial system status
list

52 WR_USMSG Entry in the diagnostic
buffer

99 WWW Synchronize websites

Distributed I/O

SFB Name Designation

54 RALRM Receive alarm

73 RCVREC Receive data record

74 PRVREC Provide data record

75 SALRM Trigger alarm

104 IP_CONF Set IP config.

SFC Name Designation

7 DP_PRAL Trigger hardware interrupt

11 DPSYC_FR SYNC/FREEZE

12 D_ACT_DP Activate or deactivate
DP slave

13 DPNRM_DG Read diagnostic data

14 DPRD_DAT Read slave data

15 DPWR_DAT Write slave data

103 DP_TOPOL Determine bus topology

Create block-related messages

SFB Name Designation

31 NOTIFY_8P Messages without
acknowledgment display

33 ALARM Messages with
acknowledgment display

34 ALARM_8 Messages without
accompanying values

35 ALARM_8P Messages with
accompanying values

36 NOTIFY Messages without
acknowledgment display

37 AR_SEND Send archive data

SFC Name Designation

9 EN_MSG Enable messages
10 DIS_MSG Disable messages
17 ALARM_SQ Messages that can be

acknowledged
18 ALARM_S Messages that are always

acknowledged
19 ALARM_SC Determine

acknowledgment status
105 READ_SI Read dynamic system

resources
106 DEL_SI Delete dynamic system

resources

33 Block Libraries

532

107 ALARM_DQ Alarms for
acknowledgment

108 ALARM_D Alarms always
acknowledged

Copy and block functions

SFC Name Designation

20 BLKMOV Copy memory area
21 FILL Pre-assign data area

22 CREAT_DB Create data block
in work memory

23 DEL_DB Delete data block
24 TEST_DB Test data block

25 COMPRESS Compress memory

44 REPL_VAL Enter substitute value

81 UBLKMOV Copy data area without
gaps

82 CREA_DBL Create data block in
load memory

83 READ_DBL Read load memory
84 WRIT_DBL Write load memory
85 CREA_DB Create data block in

work memory

Program control

SFC Name Designation

43 RE_TRIGR Retrigger cycle time
monitor

46 STP Change to STOP state

47 WAIT Wait for delay time

78 OB_RT Determine OB runtime

104 CIR Plant modification
during runtime

109 PROTECT Change protection level

Blocks for PROFINET CbA

SFC Name Designation

112 PN_IN Update inputs

113 PN_OUT Update outputs

114 PN_DP Update DP connection

33.3 IEC Function Blocks

String functions

FC Name Designation

21 LEN Length of a STRING
20 LEFT Left section of a STRING
32 RIGHT Right section of a STRING
26 MID Middle section of a

STRING

2 CONCAT Concatenate STRINGs
17 INSERT Insert STRING
4 DELETE Delete STRING
31 REPLACE Replace STRING
11 FIND Find STRING

16 I_STRNG Convert INT to STRING
5 DI_STRNG Convert DINT to STRING

30 R_STRNG Convert REAL to
STRING

38 STRNG_I Convert STRING to INT

37 STRNG_DI Convert STRING to DINT
39 STRNG_R Convert STRING to

REAL

Date and time functions

FC Name Designation

3 D_TOD_DT Combine DATE and TOD
to DT

6 DT_DATE Extract DATE from DT
7 DT_DAY Extract day-of-the-week

from DT
8 DT_TOD Extract TOD from DT

33 S5TI_TIM Convert S5TIME to TIME
40 TIM_S5TI Convert TIME to S5TIME

1 AD_DT_TM Add TIME to DT
35 SB_DT_TM Subtract TIME from DT
34 SB_DT_DT Subtract DT from DT

Comparisons

FC Name Designation

9 EQ_DT Compare DT for equal to
28 NE_DT Compare DT for

not equal to
14 GT_DT Compare DT for

greater than

33.4 S5-S7 Converting Blocks

533

12 GE_DT Compare DT for
greater than or equal to

23 LT_DT Compare DT for less than
18 LE_DT Compare DT for

less than or equal to

10 EQ_STRNG Compare STRING for
equal to

29 NE_STRNG Compare STRING for
not equal to

15 GT_STRNG Compare STRING for
greater than

13 GE_STRNG Compare STRING for
greater than or equal to

24 LT_STRNG Compare STRING for
less than

19 LE_STRNG Compare STRING for
less than or equal to

Math functions

FC Name Designation

22 LIMIT Limiter
25 MAX Maximum selection
27 MIN Minimum selection
36 SEL Binary selection

33.4 S5-S7 Converting Blocks

Floating-point arithmetic

FC Name Designation

61 GP_FPGP Convert fixed-point to
floating-point

62 GP_GPFP Convert floating-point to
fixed-point

63 GP_ADD Add floating-point
numbers

64 GP_SUB Subtract floating-point
numbers

65 GP_MUL Multiply floating-point
numbers

66 GP_DIV Divide floating-point
numbers

67 GP_VGL Compare floating-point
numbers

68 GP_RAD Find the square root of a
floating-point number

Signal functions

FC Name Designation

69 MLD_TG Clock pulse generator
70 MLD_TGZ Clock pulse generator with

timer function

71 MLD_EZW Initial value single
blinking wordwise

72 MLD_EDW Initial value double
blinking wordwise

73 MLD_SAMW Group signal wordwise
74 MLD_SAM Group signal

75 MLD_EZ Initial value single
blinking

76 MLD_ED Initial value double
blinking

77 MLD_EZWK Initial value single
blinking (wordwise)
memory bit

78 MLD_EZDK Initial value double
blinking (wordwise)
memory bit

79 MLD_EZK Initial value single
blinking memory bit

80 MLD_EDK Initial value double
blinking memory bit

Integrated functions

FC Name Designation

81 COD_B4 BCD-binary conversion
4 decades

82 COD_16 Binary-BCD conversion
4 decades

83 MUL_16 16-bit fixed-point
multiplier

84 DIV_16 16-bit fixed-point divider

Basic functions

FC Name Designation

85 ADD_32 32-bit fixed-point adder
86 SUB_32 32-bit fixed-point

subtractor

87 MUL_32 32-bit fixed-point
multiplier

88 DIV_32 32-bit fixed-point divider

33 Block Libraries

534

89 RAD_16 16-bit fixed-point
square root extractor

90 REG_SCHB Bitwise shift register
91 REG_SCHW Wordwise shift register

92 REG_FIFO Buffer (FIFO)
93 REG_LIFO Stack (LIFO)

94 DB_COPY1 Copy data area (direct)
95 DB_COPY2 Copy data area (indirect)

96 RETTEN Save scratchpad memory
(AG 155U)

97 LADEN Load scratchpad memory
(AG 155U)

98 COD_B8 BCD-binary conversion
8 decades

99 COD_32 Binary-BCD conversion
8 decades

Analog functions

FC Name Designation

100 AE_460_1 Analog input module 460
101 AE_460_2 Analog input module 460
102 AE_463_1 Analog input module 463
103 AE_463_2 Analog input module 463
104 AE_464_1 Analog input module 464
105 AE_464_2 Analog input module 464
106 AE_466_1 Analog input module 466
107 AE_466_2 Analog input module 466

108 RLG_AA1 Analog output module
109 RLG_AA2 Analog output module

110 PER_ET1 ET 100 distributed I/O
111 PER_ET2 ET 100 distributed I/O

Math functions

FC Name Designation

112 SINUS Sine
113 COSINUS Cosine
114 TANGENS Tangent
115 COTANG Cotangent

116 ARCSIN Arc sine
117 ARCCOS Arc cosine
118 ARCTAN Arc tangent
119 ARCCOT Arc cotangent

120 LN_X Natural logarithm
121 LG_X Logarithm to base 10
122 B_LOG_X Logarithm to any base

123 E_H_N Exponential function with
base e

124 ZEHN_H_N Exponential function with
base 10

125 A2_H_A1 Exponential function with
any base

33.5 TI-S7 Converting Blocks

FB Name Designation

80 LEAD_LAG Lead/lag algorithm
81 DCAT Discrete control time

interrupt

82 MCAT Motor control time
interrupt

83 IMC Index matrix comparison
84 SMC Matrix scanner
85 DRUM Event maskable drum
86 PACK Collect/distribute table

data

FC Name Designation

80 TONR Latching ON delay
81 IBLKMOV Transfer data area

indirectly
82 RSET Reset process image

bit by bit
83 SET Set process image

bit by bit

84 ATT Enter value in table
85 FIFO Output first value in table
86 TBL_FIND Find value in table
87 LIFO Output last value
88 TBL Execute table operation
89 TBL_WRD Copy value from the table
90 WSR Save datum
91 WRD_TBL Combine table element
92 SHRB Shift bit in bit shift register

93 SEG Bit pattern for 7-segment
display

94 ATH ASCII-hexadecimal
conversion

95 HTA Hexadecimal-ASCII
conversion

96 ENCO Least significant set bit
97 DECO Set bit in word
98 BCDCPL Generate ten’s

complement
99 BITSUM Count set bits

33.6 PID Control Blocks

535

100 RSETI Reset PQ byte by byte
101 SETI Set PQ byte by byte

102 DEV Calculate standard
deviation

103 CDT Correlated data tables
104 TBL_TBL Table combination
105 SCALE Scale values
106 UNSCALE Unscale values

33.6 PID Control Blocks

FB Name Designation

41 CONT_C Continuous control
42 CONT_S Step control
43 PULSGEN Generate pulse
58 TCONT_CP Continuous temperature

control
59 TCONT_S Step temperature control

33.7 Communication Blocks

FB Name Designation

8 USEND Uncoordinated send
9 URCV Uncoordinated receive
12 BSEND Block-oriented send
13 BRCV Block-oriented receive
14 GET Read data from partner
15 PUT Write data to partner

28 USEND_E Uncoordinated send
29 URCV_E Uncoordinated receive
34 GET_E Read data from partner
35 PUT_E Write data to partner

FC Name Designation

1 DP_SEND Send data
2 DP_RECV Receive data
3 DP_DIAG Diagnostics
4 DP_CTRL Control

62 C_CNTR Scan connection status

For DP standard slaves and
PROFINET IO devices

FB Name Designation

20 GETIO Read inputs
21 SETIO Set outputs
22 GETIO_PA Read inputs consistent
23 SETIO_PA Set outputs consistent

IE communication

FB Name Designation

63 TSEND Send data
64 TRCV Receive data
65 TCON Establish connection
66 TDISCON Cancel connection
67 TUSEND Send data over UDP
68 TURCV Receive data over UDP

UDTName Designation

65 TCON_PAR Data structure for configu-
ration of connection

651 TCON_PAR TCP_conn_active
652 TCON_PAR TCP_conn_passive
653 TCON_PAR ISOonTCP_conn_active
654 TCON_PAR ISOonTCP_conn_passive
655 TCON_PAR ISOonTCP_conn_

CP_active
656 TCON_PAR ISOonTCP_conn_

CP_passive
657 TCPN_PAR UDP_local_open

66 TADD_PAR Address structure of
communication partner

661 TADD_PAR UDP_rem_address and
port

FB Name Designation

210 FW_TCP TCP server
for FETCH/WRITE

220 FW_IOT ISO-on-TCP server
for FETCH/WRITE

33.8 Miscellaneous Blocks

FC Name Designation

60 LOC_TIME Read local time and
summer ID

61 BT_LT Convert module time

33 Block Libraries

536

into local time
62 LT_BT Convert local time

into module time
63 S_LTINT Set time interrupt

according to local time

FB Name Designation

60 SET_SW Summer/winter time
switchover

61 SET_SW_S Summer/winter time
switchover with time
status

62 TIMESTMP Transmit messages with
time stamp

UDTName Designation

60 WS_RULES Rules for summer/winter
time switchover

33.9 SIMATIC_NET_CP

CP 300 library program

FB Name Designation

FMS communication:
2 IDENT Identify partner
3 READ Read data from partner
4 REPORT Transmit variables
5 STATUS Request status

information from partner
6 WRITE Write data to partner

8 USEND Uncoordinated send
9 URCV Uncoordinated receive
12 BSEND Block-oriented send
13 BRCV Block-oriented receive
14 GET Read data from partner
15 PUT Write data to partner

40 FTP_CMD FTP commands
(replaces FC 40 to 44)

52 PNIO_REC Transmit data record
54 PNIOALRM Receive alarm
55 IP_CONF Transmit configuration
56 LOG_TRIG Trigger ERPC

communication

FC Name Designation

1 DP_SEND Send data
2 DP_RECV Receive data

3 DP_DIAG Diagnostics
4 DP_CTRL Control

5 AG_SEND Send data
(PB FDL and Ethernet)

6 AG_RECV Receive data
(PB FDL and Ethernet)

7 AG_LOCK Block data exchange
(Industrial Ethernet)

8 AG_UNLOC Enable data exchange
(Industrial Ethernet)

10 AG_CNTRL Diagnose and initialize
connections

11 PNIO_SND Data transfer on
PROFINET

12 PNIO_RCV Data receipt on
PROFINET

40 FTP_CONN Establish connection to
server

41 FTP_STOR Transfer data block
to server

42 FTP_RETR Transfer file
to client

43 FTP_DELE Delete file on
server

44 FTP_QUIT Terminate connection

62 C_CNTRL Scan connection status

UDTName Designation

1 - FILE_DB_HEADER

CP 400 library program

FB Name Designation

FMS communication:
2 IDENT Identify partner
3 READ Read data from partner
4 REPORT Transmit variables
5 STATUS Request status

information from partner
6 WRITE Write data to partner

40 FTP_CMD FTP commands
(replaces FC 40 to 44)

55 IP_CONF Transmit connection con-
figuration

FC Name Designation

5 AG_SEND Send data
(PROFIBUS FDL and

33.10 Redundant IO MGP V31

537

Industrial Ethernet)
6 AG_RECV Receive data

(PROFIBUS FDL and
Industrial Ethernet)

7 AG_LOCK Disable data exchange
(Industrial Ethernet)

8 AG_UNLOC Enable data exchange
(Industrial Ethernet)

10 AG_CNTRL Diagnose and initialize
connections

40 FTP_CONN Establish connection to
server

41 FTP_STOR Transmit data block to
server

42 FTP_RETR Transmit file to client
43 FTP_DELE Delete file on server
44 FTP_QUIT Cancel connection

50 AG_LSEND Send data to
PROFIBUS CP

53 AG_SSEND Send data to
Ethernet CP

60 AG_LRECV Receive data from
PROFIBUS CP

63 AG_SRECV Receive data from
Ethernet CP

UDTName Designation

1 - FILE_DB_HEADER

33.10 Redundant IO MGP V31

Support of redundancy for modules

Red_IO library program

FB Name Designation

450 RED_IN Read redundant I/O signals
451 RED_OUT Output redundant I/O

signals
452 RED_DIAG Diagnose redundant I/O
453 RED_STAT Read status of redundant

I/O

FC Name Designation

450 RED_INIT Initialize I/O redundancy
451 RED_DEPA Trigger depassivation

33.11 Redundant IO CGP V40

Support of redundancy for individual module
channels

Red_IO library program

FB Name Designation

450 RED_IN Read redundant I/O signals
451 RED_OUT Output redundant I/O

signals
452 RED_DIAG Diagnose redundant I/O
453 RED_STAT Read status of redundant

I/O

FC Name Designation

450 RED_INIT Initialize I/O redundancy
451 RED_DEPA Trigger depassivation

33.12 Redundant IO CGP V51

Support of redundancy for individual module
channels

Red_IO library program

FB Name Designation

450 RED_IN Read redundant I/O signals
451 RED_OUT Output redundant I/O

signals
452 RED_DIAG Diagnose redundant I/O
453 RED_STAT Read status of redundant

I/O

FC Name Designation

450 RED_INIT Initialize I/O redundancy
451 RED_DEPA Trigger depassivation

34 STL Operation Overview

538

34 STL Operation Overview

The overview below lists the operations with absolute addresses.

The following are also possible with the addressing types:

34.1 Basic Functions

34.1.1 Binary Logic Operations

A - AND with check for “1”
AN - AND with check for “0”
O - OR with check for “1”

ON - OR with check for “0”
X - Exclusive OR with check

for “1”
XN - Exclusive OR with check

for “0”

- I an input
- Q an output
- M a memory bit

- L a local data bit
- T a timer function
- C a counter function

- DBX a global data bit
- DIX an instance data bit

- ==0 Result equal to zero
- <>0 Result not equal to zero

- >0 Result greater than zero
- >=0 Result greater than or

equal to zero

- <0 Result less than zero
- <=0 Result less than or

equal to zero

- UO Result invalid
- OV Overflow
- OS Stored overflow
- BR Binary result

A(AND open bracket
AN(AND NOT open bracket

O(OR open bracket
ON(OR NOT open bracket

X(Exclusive OR open bracket
XN(Exclusive OR NOT

open bracket

) Close bracket

O OR combination of AND

NOT Negate RLO
SET Set RLO
CLR Reset RLO

SAVE Save RLO to BR

A I [doubleword memory-indirect with the doublewords all addresses

MD Memory doubleword

LD Local data doubleword

DBD Global data doubleword

DID Instance data doubleword

A I [AR1, P#offset] register-indirect area-internal with AR1 no timer functions,
no counter functions and
no blocks

A I [AR2, P#offset] register-indirect area-internal with AR2

A [AR1, P#offset] register-indirect area-crossing with AR1

A [AR2, P#offset] register-indirect area-crossing with AR2

A #name parameter-indirect all addresses

34.2 Digital Functions

539

34.1.2 Memory Functions

= - Assign
S - Set
R - Reset
FP - Positive edge
FN - Negative edge

- I an input
- Q an output
- M a memory bit
- L a local data bit
- DBX a global data bit
- DIX an instance data bit

34.1.3 Transfer Functions

L - Load
T - Transfer

- IB an input byte
- IW an input word
- ID an input doubleword

- QB an output byte
- QW an output word
- QD an output doubleword

- MB a memory byte
- MW a memory word
- MD a memory doubleword

- LB a local data byte
- LW a local data word
- LD a local data doubleword

- DBB a global data byte
- DBW a global data word
- DBD a global data doubleword

- DIB an instance data byte
- DIW an instance data word
- DID an instance data doubleword

- STW the status word

L PIB Load peripheral input byte
L PIW Load peripheral input word
L PID Load peripheral input

doubleword

T PQB Transfer peripheral
output byte

T PQW Transfer peripheral
output word

T PQD Transfer peripheral
output doubleword

L T Direct loading of a timer value
LC T Coded loading of a timer value
L C Direct loading of a counter value
LC C Coded loading of a counter value

L const Load a constant
L P#.. Load a pointer
L P#var Load a variable start address

Accumulator functions

PUSH Shift accums “forward”
POP Shift accums “back”
ENT Shift accums (without CC1)
LEAVE Shift accums (without CC1)

TAK Swap accum 1 and accum 2
CAW Swap bytes 0 and 1 in accum 1
CAD Swap all bytes in accum 1

34.1.4 Timer Functions

SP T Start timer as pulse
SE T Start as extended pulse
SD T Start as ON delay
SS T Start as retentive ON delay
SF T Start as OFF delay

R T Reset timer function
FR T Enable timer function

34.1.5 Counter Functions

CU C Count up
CD C Count down

S C Set counter function
R C Reset counter function
FR C Enable counter function

34.2 Digital Functions

34.2.1 Comparison Functions

==I INT comparison for equal to
<>I INT comparison for not equal to
>I INT comparison for greater than
>=I INT comparison for

greater than or equal to
<I INT comparison for less than
<=I INT comparison for

less than or equal to

34 STL Operation Overview

540

==D DINT comparison for equal to
<>D DINT comparison for not equal to
>D DINT comparison for greater than
>=D DINT comparison for

greater than or equal
<D DINT comparison for less than
<=D DINT comparison for

less than or equal to

==R REAL comparison for equal to
<>R REAL comparison for not equal to
>R REAL comparison for greater than
>=R REAL comparison for

greater than or equal to
<R REAL comparison for less than
<=R REAL comparison for

less than or equal to

34.2.2 Math Functions

SIN Sine
COS Cosine
TAN Tangent

ASIN Arc sine
ACOS Arc cosine
ATAN Arc tangent

SQR Finding the square
SQRT Finding the square root
EXP Exponent to base e
LN Natural logarithm

34.2.3 Arithmetic Functions

+I INT addition
-I INT subtraction
*I INT multiplication
/I INT division

+D DINT addition
-D DINT subtraction
*D DINT multiplication
/D DINT division (integer)
MOD DINT division (remainder)

+R REAL addition
-R REAL subtraction
*R REAL multiplication
/R REAL division

+ const Adding a constant
+ P#.. Adding a pointer

DEC n Decrementing
INC n Incrementing

34.2.4 Conversion Functions

ITD Conversion of INT to DINT
ITB Conversion of INT to BCD
DTB Conversion of DINT to BCD
DTR Conversion of DINT to REAL

BTI Conversion of BCD to INT
BTD Conversion of BCD to DINT

Conversion of REAL to DINT
with

RND+ Rounding to next higher number
RND- Rounding to next lower number
RND Rounding to next integer
TRUNC Without rounding

INVI INT one’s complement
INVD DINT one’s complement
NEGI INT negation
NEGD DINT negation
NEGR REAL negation
ABS REAL absolute-value generation

34.2.5 Shift Functions

SLW - Shift left wordwise
SLD - Shift left doublewordwise
SRW - Shift right wordwise
SRD - Shift right doublewordwise
SSI - Shift with sign wordwise
SSD - Shift with sign doublewordwise
RLD - Rotate left doublewordwise
RRD - Rotate right doublewordwise

- n by n positions
- with number of positions

in accum 2

RLDA Rotate left through CC1
RRDA Rotate right through CC1

34.2.6 Word Logic Operations

AW - AND wordwise
AD - AND doublewordwise
OW - OR wordwise
OD - OR doublewordwise
XOW- Exclusive OR wordwise
XOD - Exclusive OR doublewordwise

- const with a word/doubleword constant
- with the contents of accum 2

34.3 Program Flow Control

541

34.3 Program Flow Control

34.3.1 Jump Functions

JU label Unconditional jump

Jump if
JC label RLO = “1”
JCB label RLO = “1” store with RLO
JCN label RLO = “0”
JNB label RLO = “0” store with RLO
JBI label BR = “1”
JNBI label BR = “0”

Jump if result
JZ label zero
JN label not zero
JP label greater than zero
JPZ label greater than or equal to zero
JM label less than zero
JMZ label less than or equal to zero
JUO label invalid

JO label Jump on overflow
JOS label Jump on stored overflow

JL label Jump distributor
LOOP label Jump loop

34.3.2 Master Control Relay

MCRA Activate MCR area
MCRD Deactivate MCR area
MCR(Open MCR zone
)MCR Close MCR zone

34.3.3 Block Functions

CALL FB Call function block
CALL FC Call function
CALL SFB Call system function block
CALL SFC Call system function

UC FB Call function block
unconditionally

CC FB Call function block
conditionally

UC FC Call function unconditionally
CC FC Call function conditionally

BEU Unconditional block end
BEC Conditional block end
BE Block end

OPN DB Call global data block
OPN DI Call instance data block
CDB Swap data block registers

L DBNO Load global data block number
L DINO Load instance data block number
L DBLG Load global data block length
L DILG Load instance data block length

NOP 0 Null operation
NOP 1 Null operation
BLD n Program display instruction

34.4 Indirect Addressing

LAR1 - Load AR1 with
LAR2 - Load AR2 with
- MD a memory doubleword
- LD a local data doubleword
- DBD a global data doubleword
- DID an instance data doubleword

LAR1 Load AR1 with accum 1
LAR2 Load AR2 with accum 1
LAR1 AR2 Load AR1 with AR2

LAR1 P#.. Load AR1 with a pointer
LAR2 P#.. Load AR2 with a pointer

LAR1 P#var Load AR1 with a
variable start address

LAR2 P#var Load AR2 with a
variable start address

TAR1 - Transfer AR1 to
TAR2 - Transfer AR2 to
- MD a memory doubleword
- LD a local data doubleword
- DBD a global data doubleword
- DID an instance data doubleword

TAR1 Transfer AR1 to accum 1
TAR2 Transfer AR2 to accum 1
TAR1 AR2 Transfer AR1 to AR2

CAR Swap AR1 and AR2

+AR1 Add accum 1 to AR1
+AR2 Add accum 1 to AR2
+AR1 P#.. Add pointer to AR1
+AR2 P#.. Add pointer to AR2

35 SCL Statement and Function Overview

542

35 SCL Statement and Function Overview

35.1 Operators

35.2 Control Statements

IF Program branching with
BOOLean value

CASE Program branching with
INT value

FOR Program loop with run variable

WHILE Program loop with
execution condition

REPEAT Program loop with
abort condition

CONTINUE Abort current loop pass

EXIT Exit program loop

GOTO Jump to a jump label

RETURN Exit the block

35.3 Block Calls

Initialization of the block parameters is manda-
tory with FC blocks and SFC blocks, and it is
optional with SFBs.

Combination Name Operator Priority

Parenthesis (Expression) (,) 1

Arithmetic Exponentiation ** 2

Unary plus, unary minus (sign) +, - 3

Multiplication, division *, /, DIV, MOD 4

Addition, subtraction +, - 5

Comparison Less than, less than or equal to, greater than,
greater than or equal to

<, <=, >, >= 6

Equal to, not equal to =, <> 7

Binary logic Negation (unary) NOT 3

AND logic operation AND, & 8

Exclusive OR XOR 9

OR logic operation OR 10

Assignment Assignment := 11

Functions FCs with
function value

Variable := FCx(...);
Variable := FCname(...);

System functions SFCs
with function value

Variable := SFCx(...);
Variable := SFCname(...);

Functions FCs without
function value

FCx(...);
FCname(...);

Function blocks FBs
with data block

FBx.DBx(...);
FBname.DBname(...);

System function blocks
SFBs with data block

SFBx.DBx(...);
SFBname.DBname(...);

Function blocks FBs and
system function blocks
SFBs as local instance

localname(...);

35.4 SCL Standard Functions

543

35.4 SCL Standard Functions

35.4.1 Timer Functions

with timer function

S_PULSE Pulse time
S_PEXT Extended pulse
S_ODT ON delay
S_ODTS Latching OFF delay
S_OFFDT Off delay

35.4.2 Counter Functions

35.4.3 Conversion Functions

Implicit conversion functions

Explicit conversion functions

Continued on next page

Call Data type

Time_BCD :=
Timer_function(
T_NO := Timer_address,
S := Start_input,
TV := Timer_duration,
R := Reset,
Q := Timer_status,
BI := Binary_time);

WORD
(see below)
TIMER
BOOL
S5TIME
BOOL
BOOL
WORD

Up counter call Data type

BCD_count_value :=
S_CU(
C_NO := Count_address,
CU := Count_up,
S := Set_input,
PV := Count_value,
R := Reset,
Q := Counter_status,
CV := Bin_count_val);

WORD

COUNTER
BOOL
BOOL
WORD
BOOL
BOOL
WORD

Down counter call Data type

BCD_count_value :=
S_CD(
C_NO := Count_address,
CD := Count_down,
S := Set_input,
PV := Count_value,
R := Reset,
Q := Counter_status,
CV := Bin_count_val);

WORD

COUNTER
BOOL
BOOL
WORD
BOOL
BOOL
WORD

Up Down counter call Data type

Count value_BCD :=
S_CUD(
C_NO := Count_operand,
CU := Count_up,
CD := Count_down,
S := Set_input
PV := Count_value,
R := Reset,
Q := Counter_status,
CV := Count_value_dual);

WORD

COUNTER
BOOL
BOOL
BOOL
WORD
BOOL
BOOL
WORD

BOOL_TO_BYTE
BOOL_TO_WORD
BOOL_TO_DWORD
BYTE_TO_WORD
BYTE_TO_DWORD
WORD_TO_DWORD

Supplement with lead-
ing zeros

INT_TO_DINT
INT_TO_REAL
DINT_TO_REAL

With sign extension

CHAR_TO_STRING

BYTE_TO_BOOL
WORD_TO_BOOL
DWORD_TO_BOOL
WORD_TO_BYTE
DWORD_TO_BYTE
DWORD_TO_WORD

Least significant bit/
byte/word is applied

CHAR_TO_BYTE
BYTE_TO_CHAR
CHAR_TO_INT
INT_TO_CHAR

Without changing the
bit assignment

STRING_TO_CHAR

WORD_TO_INT
DWORD_TO_DINT
INT_TO_WORD
DINT_TO_DWORD
REAL_TO_DWORD
DWORD_TO_REAL

Without changing the
bit assignment (no
conversion!)

DINT_TO_INT
REAL_TO_DINT
REAL_TO_INT

With rounding to INT
or DINT

TRUNC
ROUND

Conversion from RE-
AL to DINT

DINT_TO_TIME
DINT_TO_TOD
DINT_TO_DATE
DATE_TO_DINT
TIME_TO_DINT
TOD_TO_DINT

Without changing the
bit assignment

BLOCK_DB_TO_WORD
WORD_TO_BLOCK_DB

Without changing the
bit assignment

BOOL_TO_INT
BOOL_TO_DINT
BYTE_TO_INT
BYTE_TO_DINT
WORD_TO_DINT
DWORD_TO_DINT

Supplement with lead-
ing zeros

35 SCL Statement and Function Overview

544

Explicit conversion functions
(continued)

35.4.4 Math functions

with math_function:

SIN Sine
COS Cosine
TAN Tangent

ASIN Arc sine
ACOS Arc cosine
ATAN Arc tangent

EXP Exponentiation to base e
EXPD Exponentiation to base 10

LN Natural logarithm
LOG Decade logarithm

SQR Generate square
SQRT Generate square root

35.4.5 Shift and Rotate

with the shift function:

SHL Shift to left
SHR Shift to right
ROL Rotate to left
ROR Rotate to right

INT_TO_BOOL
INT_TO_BYTE
INT_TO_DWORD
DINT_TO_BOOL
DINT_TO_BYTE
DINT_TO WORD

Least significant bit/
byte/word is applied

INT_TO_STRING
DINT_TO_STRING
REAL_TO_STRING
STRING_TO_INT
STRING_TO_DINT
STRING_TO REAL

Corresponding to the
loadable IEC func-
tions (Chapter 31)

BCD_TO_INT
WORD_BCD_TO_INT
BCD_TO_DINT
WORD_BCD_TO_DINT

Conversion of BCD to
INT or DINT

INT_TO_BCD
INT_TO_WORD_BCD
DINT_TO_BCD
DINT_TO_WORD_BCD

Conversion of INT or
DINT to BCD

Call ABS Data type

Result :=
ABS(input value);

ANY_NUM
ANY_NUM

Call Data type

Result :=
MathFunction(
Input_value);

REAL
(see below)
ANY_NUM

Call ABS Data type

Result :=
ABS(Input_value);

ANY_NUM
ANY_NUM

Call Data type

Result :=
Shift_function(
IN := Input_value,
N := Num_of_places);

ANY_BIT
(see below)
ANY_BIT
INT

Index

545

Index

A
Absolute-value generation

description STL 215
SCL 494

Accumulator functions 164
Actual parameters 267
Address priority 83
Address registers 443
Addressing

absolute 113
indirect in SCL 472
indirect in STL 436
symbolic 115

AND function 142
Anwenderprogramm

schützen 292
ANY (data type) 137

description SCL 485
description STL 456

ANY pointer
changing at runtime (STL) 456
structure 438

Arc functions
description SCL 494
description STL 209

Area pointer 436
Arithmetic functions

description SCL 475
description STL 201

ARRAY (data type) 430
Assignment

description SCL 476
description STL 149

Asynchronous errors 414

B
Background scanning OB 90 282
Binary flags 225
Binary logic operations 139
Binary result

EN/ENO 231
setting and resetting the BR 229

setting and resetting the RLO 229
status bit BR 227
use 231

Binary status 140
Bit memories 50
Block end

description SCL 481
description STL 246

Block functions
description STL 243

Block libraries 528
Block network 119
Block parameters

data storage in FBs 456
data storage in FCs 454
description SCL 486
description STL 261
passing on 270

Block properties 108
Block structure 108
Block types 106
Blocks

call (STL) 244
calling (SCL) 487
checking block consistency 112
comparing 79
correcting the interface 111
programming (SCL) 483
protection 110
testing 92
transferring 90

C
CASE statement 479
Chain calculation STL 205
CHAR (data type) 424
Check result 140
Check statements 140
Checksum 60, 106
Clock memories 50
Cold restart 397
Comments multilingual 86

Index

546

Communication
distributed I/O 294

Communication error OB 87 415
Communications

global data 337
introduction 37
PtP communication 363
S7 basic communication 342
S7 communication 347

Comparison functions
description SCL 475
description STL 197
IEC functions 507
in a logic operation (STL) 199
status bits 229

Compilation control file 83
Compile source file

SCL 81
STL 78

Complex data types 428
Compressing

SFC 25 COMPRESS 289
user program 91

Configuration in RUN 368
Configuration table 61
Configuring stations 60
Connecting a PLC 87
Connection

Type 69
Connection table 67
Connections

combining 72
Constant addition STL 206
Constant notation SCL 469
CONTINUE statement 481
Control statements SCL 478
Controlling I/O bits 241
Conversion functions

description SCL 495
description STL 211
IEC functions 505
status bits 227

COUNTER (data type) 137
Counter functions

description SCL 493
description STL 187
IEC counters (SFBs) 191

Counting down 188
Counting up 188
CPU hardware faults OB 84 414
CPU information 89

Create source file
STL 78

Cycle statistics 281

D
Data addresses

addressing SCL 471
addressing STL 253

Data block
data storage 450
load length (STL) 255
load number (STL) 255
offline/online 91
open (STL) 254

Data block registers
DB and DI 251
exchange (STL) 255

Data type views 470
Data types

classes SCL 469
complex (description) 428
complex (overview) 137
elementary (description) 423
elementary (overview) 134
overview 134
special features in SCL 469
user-defined (UDTs) 434

DATE (data type) 427
DATE_AND_TIME (data type) 429
Date/time-of-day functions IEC 510
DB pointer 436
Decrementing 206
Device name, devices number 313
Diagnosing hardware 92
Diagnostic interrupt OB 82 417
Diagnostics address 46, 296

PROFINET IO 313
Digital flags 225
DINT (data type) 425
DINT calculation

description STL 203
SCL 473, 475
status bits 227

Disable output modules 394
Distributed I/O

addressing PROFINET IO 312
adressing PROFIBUS DP 294
configuring PROFIBUS DP 298
configuringPROFINET IO 315
description 30

Index

547

introduction PROFIBUS DP 30
system functions 329

DP master system
configuring 299
description 31
direct data exchange 309, 329
equidistant bus cycles 309
in the Network Configuration 66
isochrone mode 309

DPV1 interrupts 384

E
Edge evaluation 152
Editing program source

compiler properties for SCL 126
description SCL 80
keywords for SCL 124
keywords for STL 120

Elementary data types 423
EN/ENO

description SCL 490
STL 231

Enabling peripheral outputs 96
Error handling 409
Exclusive OR function 142
EXIT statement 481
Explicit conversion 495
Exponentiation

description STL 210
SCL 473

Expressions SCL 474

F
Fault-tolerant SIMATIC 25
First check

description 140
status bit 225

FOR statement 479
Forcing variables 95
Formal parameters 264
Fully-addressed data operands 252
Function blocks

description SCL 487
Function overview SCL 542
Function value

declaration SCL 484
declaration STL 263

G
Geographical address

PROFIBUS DP 294
PROFINET IO 313

Global data communication 337
Global data table 339
GOTO statement 481
GSD files

for PROFIBUS DP 307
GSD-Dateien

für PROFINET IO 321

H
Hardware catalog 61
Hardware interrupts 382
Hot restart 400

I
IEC counter functions 191
IEC functions

Description 505
library 532

IEC timer functions 185
IF statement 478
Implicit conversion 495
Incrementing 206
Inputs 48
Insert/remove module interrupt

OB 83 414
INT (data type) 425
INT calculation

description STL 202
SCL 473, 475
status bits 227

Internode communication
see DP master system direct data exchange

Interrupt handling 373
DPV1 interrupts 384
hardware interrupts 382
multiprocessor interrupts 386
synchronous cycle interrupt 387
time-delay interrupts 378
time-of-day interrupts 374
watchdog interrupts 380

IP address 312
Isochronous mode 309

J
Jump distributor STL 237
Jump functions

description SCL 481
description STL 233

Index

548

K
Kommunikation

IE-Kommunikation 356

L
Language settings 86
Lateral communication

DP master system 309
Libraries

communication blocks 535
creating 57
general 53
IEC function blocks 532
miscellaneous blocks 535
organization blocks 528
overview 528
PID control blocks 535
redundant IO CGP V40 537
Redundant IO CGP V50 537
Redundant IO MGP V30 537
S5-S7 converting blocks 533
SIMATIC_NET_CP 536
system function blocks 529
TI-S7 converting blocks 534

License 51
Load function

description 161
introduction 159

Load memory 28
Load variable address 449
Local data

data storage 451
static 249
temporary 246

Local instances
description STL 249
SCL 489

Local time 285
Logarithm

description STL 210
SCL 494

Logic step 140
Logical address

general 46
PROFIBUS DP 295
PROFINET IO 313

Logical expressions SCL 476
Loop jump STL 238

M
Main program OB1 277
Master Control Relay MCR 239
Math functions

description SCL 494
description STL 208

Memory card 27
Memory functions 149
Memory reset 395
Memory-indirect addressing 440
Micro memory card 28
Minimum scan cycle time 282
Modifying variables 95
Module start address 46
Module time 285
Modules

ascertaining addresses 400
monitoring and modifying 64
parameterizing 403

Monitoring variables 95
Move functions 159
Multi instances

see Local instances
Multilingual texts 86
Multiprocessing mode 289
Multiprocessor interrupt 386
Multiproject

adjusting projects 71
creating and editing 59

N
Negation

conversion function STL 214
NOT (SCL) 476
RLO 144

Nesting depth
blocks 278
brackets (STL) 145
MCR 241
STRUCT 433

Nesting expression
binary (STL) 145
operators SCL 473

Network
configuring 64
templates 119
transitions 70

Notation for constants STL 135
Null operations 259
Number range overflow 226

Index

549

Number representations 425
Numerical functions IEC 511

O
OK variable 490
One’s complement STL 214
Online help 56
Operating mode

HOLD 394
RESTART 397
RUN (main program) 277
STOP 395

Operation overview STL 538
Operator inputs on the contact 97
Operators SCL 473
OR function 142
Organization blocks

asynchronous errors OB 80 to OB 88 414
background scanning OB 90 282
interrupts OB 10 to OB 60 374
interrupts OB 10 to OB 64 373
main program OB 1 277
overview 105
redundancy errors OB 70, 72, 73 415
restart OB 100 to OB 102 394
synchronous errors OB 121 and OB 122

409
Outputs 49
Overflow

overflow status bit OV 226
stored overflow status bit OS 226

P
Parameter types

actual parameters SCL 489
actual parameters STL 270
formal parameters SCL 487
formal parameters STL 266
overview 137

Peripheral inputs 47
Peripheral outputs 48
POINTER (data type) 137
Pointers 436
Power supply errors OB 81 414
Priority classes 103
Process image

description 48
isochrone updating 388
subprocess images 279
updating 279

Processing abort OB 88 415
Processing the source program

Keywords for STL 120
PROFIBUS DP

addressing 294
configuring 298

PROFINET IO
addressing 312
configuring 315
Sendetakt, Aktualisierungszeit 323
SYNC-Domain 323
Topology Editor 325

PROFINET IO system
in the Network Configuration 66

PROFINET-IO-System
Beschreibung 33

Program editor
description AWL 75
description SCL 80

Program elements catalog 118
Program execution errors OB 85 415
Program length 105
Program organization 278
Program processing methods 102
Program status

SCL 100
STL 97

Program structure 277
Programming blocks (AWL) 75
Programming blocks (SCL) 80
Programming code blocks

with SCL 122
with STL 116

Project
archiving 58
creating 56
general 53
object hierarchy 54
versions 58

PtP communication 363

R
Rack failure OB 86 415
REAL (data type) 426
REAL calculation

description STL 204
SCL 473, 475
status bits 227

Reference data 84
Register-indirect area-internal addressing 442

Index

550

REPEAT statement 480
Reset function 149
Response time 283
Restart characteristics 393
Restart types 397
Result of logic operation

description 140
negating 144
status bit RLO 225

Retentivity 396
RETURN statement 481
Rewiring 83
Rotate functions

description SCL 494
description STL 219

Rounding
description STL 213

RS flipflop function 151
Run-time meter 287

S
S5/S7 conversion

description 514
executing 518
library 533
post-editing 521
preparing 515

S5/S7 converter 514
S5TIME (data type) 427
S7 basic communication

station-external 344
station-internal 342

S7 communication 347
Scan cycle monitoring time 281
SCL examples

conveyor 502
general examples 503
message frame 503

SCL notation for constants 136
Sensor type 143
Set function 149
SFB 0 CTU 191
SFB 1 CTD 191
SFB 104 IP_CONF 336
SFB 12 BSEND 350
SFB 13 BRCV 350
SFB 14 GET 351
SFB 15 PUT 351
SFB 16 PRINT 352
SFB 19 START 353

SFB 2 CTUD 191
SFB 20 STOP 353
SFB 21 RESUME 353
SFB 22 STATUS 353
SFB 23 USTATUS 353
SFB 3 TP 185
SFB 4 TON 185
SFB 5 TOF 185
SFB 52 RDREC 407
SFB 53 WRREC 408
SFB 54 RALRM 391
SFB 60 SEND_PTP 364
SFB 61 RCV_PTP 365
SFB 62 RES_RCVB 365
SFB 63 SEND_RK 368
SFB 64 FETCH_RK 368
SFB 65 SERVE_RK 368
SFB 75 SALRM 333
SFB 8 USEND 349
SFB 81 RD_DPAR 405
SFB 9 URC 349
SFC 0 SET_CLK 285
SFC 1 READ_CLK 285
SFC 100 SET_CLKS 285
SFC 101 RTM 288
SFC 102 RD_DPARA 405
SFC 103 DP_TOPOL 336
SFC 104 CIR 372
SFC 109 PROTECT 293
SFC 11 DPSYC_FR 334
SFC 12 D_ACT_DP 332
SFC 126 SYNC_PI 388
SFC 127 SYNC_PO 388
SFC 13 DPMRM_DG 336
SFC 14 DPRD_DAT 331
SFC 15 DPWR_DAT 332
SFC 2 SET_RTM 288
SFC 20 BLKMOV 166
SFC 21 FILL 166
SFC 22 CREAT_DB 257
SFC 23 DEL_DB 257
SFC 24 TEST_DB 257
SFC 25 COMPRESS 289
SFC 26 UPDAT_PI 280
SFC 27 UPDAT_PO 280
SFC 28 SET_TINT 376
SFC 29 CAN_TINT 377
SFC 3 CTRL_RTM 288
SFC 30 ACT_TINT 377
SFC 31 QRY_TINT 377
SFC 32 SRT_DINT 379

Index

551

SFC 33 CAN_DINT 380
SFC 34 QRY_DINT 380
SFC 35 MP_ALM 387
SFC 36 MSK_FLT 412
SFC 37 DMSK_FLT 412
SFC 38 READ_ERR 412
SFC 39 DIS_IRT 389
SFC 4 READ_RTM 288
SFC 40 EN_IRT 390
SFC 41 DIS_AIRT 390
SFC 42 EN_AIRT 391
SFC 43 RE_TRIGR 281
SFC 44 REPL_VAL 413
SFC 46 STP 289
SFC 47 WAIT 289
SFC 48 SNC_RTCB 285
SFC 49 LGC_GADR 401
SFC 5 GADR_LGC 401
SFC 50 RD_LGADR 401
SFC 51 RDSYSST 419
SFC 52 WR_USMSG 416
SFC 54 RD_DPARM 405
SFC 55 WR_PARM 406
SFC 56 WR_DPARM 406
SFC 57 PARM_MOD 407
SFC 58 WR_REC 408
SFC 59 RD_REC 408
SFC 6 RD_SINFO 284
SFC 60 GD_SND 341
SFC 61 GD_RCV 341
SFC 62 CONTROL 355
SFC 64 TIME_TCK 287
SFC 65 X_SEND 346
SFC 66 X_RCV 346
SFC 67 X_GET 347
SFC 68 X_PUT 347
SFC 69 X_ABORT 347
SFC 7 DP_PRAL 334
SFC 70 LOG_GEO 401
SFC 71 GEO_ LOG 401
SFC 72 I_GET 343
SFC 73 I_PUT 344
SFC 74 I_ABORT 344
SFC 78 OB_RT 290
SFC 79 SET 241
SFC 80 RSET 241
SFC 81 UBLKMOV 166
SFC 82 CREA_DBL 257
SFC 83 READ_DBL 166
SFC 84 WRIT_DBL 166
SFC 85 CREA_DB 257

SFC 87 C_DIAG 355
SFC 99 WWW 421
Shift functions

description SCL 494
description STL 216
status bits 229

SIMATIC Manager 52
Single-step mode

description AWL 98
SCL 101

Slot address 45
Square-root extraction

description STL 210
SCL 494

Squaring
description STL 210
SCL 494

Start information
interrupt handling 374
main program OB 1 283
multiprocessor interrupt 386
restart 394
Synchronous cycle interrupts 388
temporary local data 248

Static local data 249
Status bits

description 225
evaluating 229
status bit /FC 225
status bit BR 227
status bit OR 226
status bit OS 226
status bit OV 226
status bit RLO 225
status bit STA 225
status bits CC0 and CC1 227

Status word 227
STL examples

binary scaler 155
checksum 461
clock check 460
clock generator 174
conveyor belt 271
conveyor control 155
date conversion 463
feed 272
generate frame 462
message frame data 459
parts counter 192, 272
store frame 463

STRING (data type) 429

Index

552

STRING functions IEC 508
STRUCT (data type) 432
Subnets 39
Subprocess images 279
Symbol table 73
SYNC-/FREEZE 307
Synchronous Cycle Interrupts 387
Synchronous errors 409
System blocks

call SCL 487
call STL 245
description 107
library 529

System diagnostics 416
System memory 29
System time 287

T
Temporary local data

data storage 451
description 246

Time 285
TIME (data type) 427
Time characterstics

extended pulse 177
off-delay SFB 186
off-delay timers 183
on-delay SFB 186
on-delay timers 179
pulse 175
pulse generation SFB 185
retentive on-delay timers 181

Time stamp conflict 112
TIME_OF_DAY (data type) 428
Time-delay interrupts 378
Time-of-day interrupts 374
TIMER (data type) 137

Timer functions
description SCL 492
description STL 171
IEC timers (SFBs) 185

Timing errors OB 80 414
Transfer function

description 163
introduction 159

Trigonometric functions
description SCL 494
description STL 209

Two’s complement STL 214

U
UDT (data type) 434
User blocks 106
User data area 47
User program

generating a checksum 106
loading 89
Protecting 88
testing 92

User-defined data types 434

V
Value assignments 476
Variable table 93

W
Warm restart 399
Watchdog interrupts 380
WHILE statement 480
Word logic operations

description SCL 476
description STL 221
status bits 229

Work memory 29

Abbreviations

553

Abbreviations

AI Analog Input

AO Analog Output

AS Automation System

ASI Actuator-Sensor-Interface

BR Binary Result

CFC Continuous Function Chart

CP Communication Processor

CPU Central Processing Unit

DB Data Block

DI Digital Input

DO Digital Output

DP Distributed I/O

DS Data set (record)

EPROM Erasable Programmable
Read Only Memory

FB Function Block

FBD Function Block Diagram

FC Function Call

FEPROM Flash Erasable Programmable
Read Only Memory

FM Function Module

IM Interface Module

LAD Ladder Diagram

MC Memory Card

MCR Master Control Relay

MMC Micro Memory Card

MPI Multi Point Interface,

OB Organization Block

OP Operator Panel

PG Programming Device

PS Power Supply

RAM Random Access Memory

RLO Result of Logic Operation

SCL Structured Control Language

SDB System Data Block

SFB System Function Block

SFC System Function Call

SM Signal Module

STL Statement List

SZL System Status List

UDT User Data Type

VAT Variable Table

	Preface
	The Contents of the Book at a Glance
	The Programming Examples
	Table of Contents
	Introduction
	1 SIMATIC S7-300/400 Programmable Controller
	2 STEP 7 Programming Software
	3 SIMATIC S7 Program
	Basic Functions
	4 Binary Logic Operations
	5 Memory Functions
	6 Move Functions
	7 Timer Functions
	8 Counter Functions
	Digital Functions
	9 Comparison Functions
	10 Arithmetic Functions
	11 Math Functions
	12 Conversion Functions
	13 Shift Functions
	14 Word Logic
	Program Flow Control
	15 Status Bits
	16 Jump Functions
	17 Master Control Relay
	18 Block Functions
	19 Block Parameters
	Program Processing
	20 Main Program
	21 Interrupt Handling
	22 Restart Characteristics
	23 Error Handling
	Variable Handling
	24 Data Types
	25 Indirect Addressing
	26 Direct Variable Access
	Structured Control Language (SCL)
	27 Introduction, Language Elements
	28 Control Statements
	29 SCL Blocks
	30 SCL Functions
	31 IEC functions
	Appendix
	32 S5/S7 Converter
	33 Block Libraries
	34 STL Operation Overview
	35 SCL Statement and Function Overview
	Index
	Abbreviations

